An Improved Calculation of Bose–Einstein Condensation Temperature
Abstract
1. Introduction
2. Quantum Mechanical Standing Waves of Enclosed Particles
3. The Entropy of a Delocalized Configuration
4. The Continuum Limit of Large Distributions
- If Equation (24) can be solved in the case, the spin-triplet Fermi sea particles flow into the Bose–Einstein condensate till the condition is established; the Fermi sea and Bose–Einstein condensate co-exist at the given temperature.
- If Equation (24) cannot be solved for , all spin-triplet Fermi sea particles flow into the Bose–Einstein condensate when it becomes thermodynamically favorable. A thermodynamic precondition is that the pre-condensation mean energy in the Dirac–Fermi sea must be at least as high as the mean energy of the Bose–Einstein condensate.
5. Bose–Einstein Condensation
5.1. Three-Dimensional Isotropic Case
5.2. Stacked 2-Dimensional Case
5.3. Generalized Anisotropic Case
6. Discussion
6.1. The Role of Unpaired Fermi–Dirac Electrons in Superconductors
6.2. The Catalysis of Fermi–Dirac Electrons’ Unpairing
6.3. Isotropic Superconductors
6.4. Superconductors Comprising Stacked 2-Dimensional Topology
6.4.1. Optimally Doped Superconductors
6.4.2. Underdoped Superconductors
6.4.3. Overdoped Superconductors
6.5. Thin-Film 2-Dimensional Superconductors
6.6. Fermi Level Depletion in the Superconducting State
6.7. Bose–Einstein Condensation from Spin-Triplet Paired Electron State
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- London, F. On the Bose–Einstein Condensation. Phys. Rev. 1938, 54, 947–952. [Google Scholar] [CrossRef]
- The Nobel Prize in Physics 2001. Available online: https://www.nobelprize.org/prizes/physics/2001/popular-information/ (accessed on 20 July 2025).
- Villarreal, C.; de Llano, M. Bose-Einstein condensation in quasi-2D systems: Applications to high-Tc superconductivity. In Quantum Field Theory under the Influence of External Conditions; World Scientific: Singapore, 2010. [Google Scholar]
- Harrison, N.; Chan, M.K. Magic gap ratio for optimally robust fermionic condensation and its implications for high-Tc superconductivity. Phys. Rev. Lett. 2022, 129, 017001. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Pedersen, M.H. Cuprate Superconductors: Universal Properties and Trends, Evidence for Bose-Einstein Condensation. J. Supercond. 1994, 7, 593–598. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Yi, C.; Shi, Y.; Zhou, Y.; Zheng, G.Q. Spin-triplet superconductivity in K2Cr3As3. Sci. Adv. 2021, 7, eabl4432. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Liang, S.; Gardner, G.C.; Manfra, M.J. Direct observation of anyonic braiding statistics. Nat. Phys. 2020, 16, 931–936. [Google Scholar] [CrossRef]
- Kovacs, A.; Vassallo, G. Rethinking Electron Statistics Rules. Symmetry 2024, 16, 1185. [Google Scholar] [CrossRef]
- Ogawa, S.; Miyoshi, T.; Matano, K.; Kawasaki, S.; Inada, Y.; Zheng, G.Q. Single Crystal Growth of and Hyperfine Couplings in the Spin-Triplet Superconductor K2Cr3As3. J. Phys. Soc. Jpn. 2023, 92, 064711. [Google Scholar] [CrossRef]
- Shanenko, A.A.; Tempere, J.; Brosens, F.; Devreese, J.T. Mesoscopic samples: The superconducting condensate via the Gross–Pitaevskii scenario. Solid State Commun. 2004, 131, 409–414. [Google Scholar] [CrossRef]
- Pethick, C.J.; Smith, H. Bose–Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Syed, H.M.; Gould, T.J.; Webb, C.J.; Gray, E. Superconductivity in palladium hydride and deuteride at 52–61 kelvin. arXiv 2016, arXiv:1608.01774. [Google Scholar]
- Uemura, Y.J. Condensation, excitation, pairing, and superfluid density in high-Tc superconductors. J. Phys. Condens. Matter 2004, 16, S4515. [Google Scholar] [CrossRef]
- Luo, J.-L. The electronic state phase diagram of copper oxide high-temperature superconductors. In Advances in Theoretical and Experimental Research of High Temperature Cuprate Superconductivity; World Scientific: Singapore, 2020; pp. 1–26. [Google Scholar]
- Kačmarčik, J.; Vinograd, I.; Michon, B.; Rydh, A.; Demuer, A.; Zhou, R.; Mayaffre, H.; Liang, R.; Hardy, W.N.; Bonn, D.A.; et al. Unusual interplay between superconductivity and field-induced charge order in YBa2Cu3Oy. Phys. Rev. Lett. 2018, 121, 167002. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Adachi, S. 31P NMR studies of an iron-based superconductor Ba0.5Sr0.5Fe2(As1−xPx)2 with Tc = 29 K. J. Phys. Conf. Ser. 2020, 1590, 012011. [Google Scholar] [CrossRef]
- Surma, M. A New Semiempirical Formula for Superconducting Transition Temperatures of Metals and Alloys. Phys. Solidi B 1983, 116, 465–474. [Google Scholar] [CrossRef]
- Rowe, E.; Yuan, B.; Buzzi, M.; Jotzu, G.; Zhu, Y.; Fechner, M.; Först, M.; Liu, B.; Pontiroli, D.; Riccò, M.; et al. Resonant enhancement of photo-induced superconductivity in K3C60. Nat. Phys. 2023, 19, 1821–1826. [Google Scholar] [CrossRef]
- Klein, T.; Achatz, P.; Kacmarcik, J.; Marcenat, C.; Gustafsson, F.; Marcus, J.; Bustarret, E.; Pernot, J.; Omnes, F.; Sernelius, B.E.; et al. Metal-insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 2007, 75, 165313. [Google Scholar] [CrossRef]
- Roeser, H.P.; Haslam, D.T.; Lopez, J.S.; Stepper, M.; Von Schoenermark, M.F.; Huber, F.M.; Nikoghosyan, A.S. Electronic Energy Levels in High-Temperature Superconductors. J. Supercond. Nov. Magn. 2011, 24, 1443–1451. [Google Scholar] [CrossRef]
- Keller, H. Positive muons as probes in high-Tc superconductors. In Exotic Atoms in Condensed Matter; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Sederholm, L.; Conradson, S.D.; Geballe, T.H.; Jin, C.Q.; Gauzzi, A.; Gilioli, E.; Karppinen, M.; Baldinozzi, G. Extremely overdoped superconducting cuprates via high pressure oxygenation methods. Condens. Matter 2021, 6, 50. [Google Scholar] [CrossRef]
- Gauzzi, A.; Klein, Y.; Nisula, M.; Karppinen, M.; Biswas, P.K.; Saadaoui, H.; Morenzoni, E.; Manuel, P.; Khalyavin, D.; Marezio, M.; et al. Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates. Phys. Rev. B 2016, 94, 180509. [Google Scholar] [CrossRef]
- Zhai, H.Y.; Chu, W.K. Effect of interfacial strain on critical temperature of YBaCu3O7−δ thin films. Appl. Phys. Lett. 2000, 76, 3469–3471. [Google Scholar] [CrossRef]
- Chu, Z.; Chang, F.G.; Liu, Z.Y.; Han, L. Photovoltaic effect in Ag/MgB2 heterostructure. J. Alloys Compd. 2019, 793, 662–671. [Google Scholar] [CrossRef]
- Chu, Z.; Ma, Z.P.; Yang, F.; Han, L.; Zhang, N.; Chang, F.G. Origin of photovoltaic effect in (Bi, Pb)2Sr2Ca2Cu3O10+d/Ag heterostructure. J. Alloys Compd. 2017, 724, 413–420. [Google Scholar] [CrossRef]
- Yang, F.; Liu, H.; Liu, H.; Lu, Q.; Chang, F. Polarity switching of the photo-induced voltage in YBCO/Ag heterojunction. J. Phys. Chem. Solids 2020, 138, 109232. [Google Scholar] [CrossRef]
- Watson, M.D.; Feng, Y.; Nicholson, C.W.; Monney, C.; Riley, J.M.; Iwasawa, H.; Refson, K.; Sacksteder, V.; Adroja, D.T.; Zhao, J.; et al. Multiband One-Dimensional Electronic Structure and Spectroscopic Signature of Tomonaga-Luttinger Liquid Behavior in K2Cr3As3. Phys. Rev. Lett. 2017, 118, 097002. [Google Scholar] [CrossRef] [PubMed]
Feature | Present Model (PM) | BCS Theory (BCS) | Notes |
---|---|---|---|
Thermodynamic foundation | 5 | 3 | PM: uses coherent/incoherent balance; BCS: pre-defined pairing |
Emergent statistics | 5 | 2 | PM: stats emerge from thermodynamics; |
BCS: some fermions form special pairs | |||
High- explanation | 4 | 2 | PM: matches Uemura scaling; |
BCS: struggles in cuprates | |||
Dimensional flexibility | 5 | 3 | PM: supports 2D/3D/anisotropic cases; |
BCS: struggles with 2D materials | |||
prediction vs. experiment | 4 | 4 | Both align with data under different assumptions |
Mathematical simplicity | 4 | 3 | PM: closed-form; BCS: uses gap equation |
Spin-triplet compatibility | 5 | 3 | PM supports triplet condensates; BCS is singlet-centric |
Total Score | 32 | 20 |
Superconductor | ||
---|---|---|
7.2 K | 0.05% | |
(slowly cooled) | 8.2 K | 0.07% |
(rapidly cooled) | 60 K | 0.5% |
29 K | 3% |
Metal | Isotope Effect | |
---|---|---|
Nb | 9.25 K | |
Tc | 8.2 K | |
Pb | 7.2 K | |
La | 6 K | |
V | 5.4 K | |
Ta | 4.4 K | |
Hg | 4.15 K | |
Sn | 3.7 K | |
In | 3.4 K | |
Tl | 2.4 K | |
Re | 1.7 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacs, A. An Improved Calculation of Bose–Einstein Condensation Temperature. Mod. Math. Phys. 2025, 1, 6. https://doi.org/10.3390/mmphys1020006
Kovacs A. An Improved Calculation of Bose–Einstein Condensation Temperature. Modern Mathematical Physics. 2025; 1(2):6. https://doi.org/10.3390/mmphys1020006
Chicago/Turabian StyleKovacs, Andras. 2025. "An Improved Calculation of Bose–Einstein Condensation Temperature" Modern Mathematical Physics 1, no. 2: 6. https://doi.org/10.3390/mmphys1020006
APA StyleKovacs, A. (2025). An Improved Calculation of Bose–Einstein Condensation Temperature. Modern Mathematical Physics, 1(2), 6. https://doi.org/10.3390/mmphys1020006