Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Features
2.3. Geobotanical Description
2.4. Data Collection
2.5. Soil Available Phosphorus Determination
2.6. Data Analysis
3. Results
3.1. Impact of Phosphorus Pools on Mazri Attributes
3.2. Response of Plant Traits to Phosphorus Concentrations
3.3. Multivariate Analysis
4. Discussion
4.1. Environmental Factors and Mazri Palm Morphological Adaptations
4.2. Spatial Patterns of Distribution
4.3. Implications for Ecosystem Functioning
4.4. Synthesis and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cámara-Leret, R.; Tuomisto, H.; Ruokolainen, K.; Balslev, H.; Munch Kristiansen, S. Modelling responses of western Amazonian palms to soil nutrients. J. Ecol. 2017, 105, 367–381. [Google Scholar] [CrossRef]
- Kleyer, M.; Dray, S.; Bello, F.; Lepš, J.; Pakeman, R.J.; Strauss, B.; Thuiller, W.; Lavorel, S. Assessing species and community functional responses to environmental gradients: Which multivariate methods? J. Veg. Sci. 2012, 23, 805–821. [Google Scholar] [CrossRef]
- Pellissier, L.; Albouy, C.; Bascompte, J.; Farwig, N.; Graham, C.; Loreau, M.; Maglianesi, M.A.; Melián, C.J.; Pitteloud, C.; Roslin, T. Comparing species interaction networks along environmental gradients. Biol. Rev. 2018, 93, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.J.; Enquist, B.J. Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecol. Lett. 2006, 9, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Eiserhardt, W.L.; Svenning, J.-C.; Kissling, W.D.; Balslev, H. Geographical ecology of the palms (Arecaceae): Determinants of diversity and distributions across spatial scales. Ann. Bot. 2011, 108, 1391–1416. [Google Scholar] [CrossRef]
- Cunha, H.F.V.; Andersen, K.M.; Lugli, L.F.; Santana, F.D.; Aleixo, I.F.; Moraes, A.M.; Garcia, S.; Di Ponzio, R.; Mendoza, E.O.; Brum, B. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 2022, 608, 558–562. [Google Scholar] [CrossRef]
- Sattari, S.Z.; Bouwman, A.F.; Giller, K.E.; Van Ittersum, M.K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl. Acad. Sci. USA 2012, 109, 6348–6353. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Sci. 2022, 29, 166. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef]
- Poirier, Y.; Jaskolowski, A.; Clúa, J. Phosphate acquisition and metabolism in plants. Curr. Biol. 2022, 32, R623–R629. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Duan, C.; Guo, X.; Wang, Y.; Fang, L. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
- Wilson, S.G.; Dahlgren, R.A.; Margenot, A.J.; Rasmussen, C.; O’Geen, A.T. Expanding the Paradigm: The influence of climate and lithology on soil phosphorus. Geoderma 2022, 421, 115809. [Google Scholar] [CrossRef]
- Ding, W.; Cong, W.-F.; Lambers, H. Plant phosphorus-acquisition and-use strategies affect soil carbon cycling. Trends Ecol. Evol. 2021, 36, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Irshad, M.; Ullah, F.; Mahmood, Q.; Shahzad, M.; Tariq, M.A.U.R.; Hussain, Z.; Mohiuddin, M.; An, P.; Ng, A. Phosphorus extractability in relation to soil properties in different fields of fruit orchards under similar ecological conditions of Pakistan. Front. Ecol. Evol. 2023, 10, 1077270. [Google Scholar] [CrossRef]
- Yu, X.; Feng, L.; Huang, Y.; Liang, Y.; Pan, F.; Zhang, W.; Xu, Z.; Liu, J.; Xiao, Y. Planted Citrus Regulates the Community and Networks of phoD-Harboring Bacteria to Drive Phosphorus Availability between Karst and Non-Karst Soils. Microorganisms 2024, 12, 2582. [Google Scholar] [CrossRef] [PubMed]
- Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Lewandowski, H.; Niederberger, J.; Oelmann, Y.; Rüger, C. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci. 2015, 178, 43–88. [Google Scholar] [CrossRef]
- Andersen, K.M.; Endara, M.J.; Turner, B.L.; Dalling, J.W. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 2012, 168, 519–531. [Google Scholar] [CrossRef]
- Toledo, M.; Peña-Claros, M.; Bongers, F.; Alarcón, A.; Balcázar, J.; Chuviña, J.; Leaño, C.; Licona, J.C.; Poorter, L. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 2012, 100, 253–263. [Google Scholar] [CrossRef]
- Abdullah, A.; Khan, S.M.; Ahmad, S.; Zeb, S.A.; Haq, Z.U.; Balslev, H. On the Trail of the Mazri Palm (Nannorrhops ritchieana) in Pakistan. Palms 2024, 68, 26–39. [Google Scholar]
- Abdullah; Khan, S.M.; Pieroni, A.; Haq, Z.U.; Ahmad, Z. Mazri (Nannorrhops ritchiana (Griff) Aitch.): A remarkable source of manufacturing traditional handicrafts, goods and utensils in Pakistan. J. Ethnobiol. Ethnomed. 2020, 16, 45. [Google Scholar]
- Naseem, S.; Naseem, S.; Bashir, E.; Shirin, K.; Sheikh, S.A. Biogeochemical evaluation of Nannorrhops ritchiana: A Mg-flora from Khuzdar, Balochistan, Pakistan. Chin. J. Geochem. 2005, 24, 327–337. [Google Scholar] [CrossRef]
- Khan, S.M.; Haq, Z.U.; Khalid, N.; Ahmad, Z.; Ejaz, U. Utilization of three indigenous plant species as alternative to plastic can reduce pollution and bring sustainability in the environment. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 533–544. [Google Scholar]
- Abdullah; Haq, Z.U.; Khan, S.M. The indispensable bond between Mazri Palm (Nannorrhops ritchiana) and the Indian Porcupine (Hystrix indica) leads them towards extinction! Biodivers. Conserv. 2019, 28, 3387–3388. [Google Scholar] [CrossRef]
- Ahmed, N.; Umer, A.; Ali, M.A.; Iqbal, J.; Mubashir, M.; Grewal, A.G.; Butt, B.; Rasheed, M.K.; Chaudhry, U.K. Micronutrients status of mango (Mangifera indica) orchards in Multan region, Punjab, Pakistan, and relationship with soil properties. Open Agric. 2020, 5, 271–279. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar]
- Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245–246. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 30 September 2025).
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Yang, N.; Lin, Y.-A.; Merkel, C.A.; DeMers, M.A.; Qu, P.-P.; Webb, E.A.; Fu, F.-X.; Hutchins, D.A. Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera. ISME J. 2022, 16, 2702–2711. [Google Scholar]
- Chadwick, O.A.; Derry, L.A.; Vitousek, P.M.; Huebert, B.J.; Hedin, L.O. Changing sources of nutrients during four million years of ecosystem development. Nature 1999, 397, 491–497. [Google Scholar] [CrossRef]
- Holden, M.H.; McDonald-Madden, E. Conservation from the grave: Human burials to fund the conservation of threatened species. Conserv. Lett. 2018, 11, e12421. [Google Scholar]
- Ruokolainen, K.; Vormisto, J. The most widespread Amazonian palms tend to be tall and habitat generalists. Basic Appl. Ecol. 2000, 1, 97–108. [Google Scholar] [CrossRef]
- Palms, R.-F. On the Role of Microenvironmental Heterogeneity in the Ecology and Diversification of Neotropical. Bot. Rev. 2001, 67, 1–53. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Gilliam, F.S.; Gundersen, P.; Zhang, W.; Chen, H.; Mo, J. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE 2013, 8, e61188. [Google Scholar] [CrossRef] [PubMed]
- Mohidin, H.; Hanafi, M.M.; Rafii, Y.M.; Abdullah, S.N.A.; Idris, A.S.; Man, S.; Idris, J.; Sahebi, M. Determination of optimum levels of nitrogen, phosphorus and potassium of oil palm seedlings in solution culture. Bragantia 2015, 74, 247–254. [Google Scholar] [CrossRef]
- de Oliveira, A.C.P.; Nunes, A.; Rodrigues, R.G.; Branquinho, C. The response of plant functional traits to aridity in a tropical dry forest. Sci. Total Environ. 2020, 747, 141177. [Google Scholar] [CrossRef]
- Grime, J.P. Competitive exclusion in herbaceous vegetation. Nature 1973, 242, 247–344. [Google Scholar] [CrossRef]
- Ward, D.; Shrestha, M.K.; Golan-Goldhirsh, A. Evolution and ecology meet molecular genetics: Adaptive phenotypic plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient. Ann. Bot. 2012, 109, 247–255. [Google Scholar] [CrossRef]
Phosphorus mg/kg | Density Individuals (10 × 10 m2) | Cover (% Area Covered) | Abundance (Individuals/Site) | Palm Height (cm) | Leaf Number | Segments Number | Leaf Length (cm) | Leaf Width (cm) | ||
---|---|---|---|---|---|---|---|---|---|---|
EWMZ | Min | 4.34 | 1.00 | 4.00 | 27.00 | 74.52 | 3.00 | 8.00 | 45.72 | 33.02 |
Max | 32.48 | 12.00 | 72.00 | 100.00 | 178.03 | 15.00 | 29.00 | 109.22 | 129.54 | |
Mean | 11.97 | 4.00 | 29.40 | 61.37 | 112.03 | 6.60 | 18.85 | 68.73 | 77.17 | |
Std. error | 1.37 | 0.79 | 4.04 | 5.19 | 6.45 | 0.72 | 1.25 | 3.96 | 6.50 | |
Variance | 37.76 | 12.42 | 327.20 | 538.96 | 833.23 | 10.25 | 31.29 | 313.61 | 845.47 | |
Stand. dev | 6.15 | 3.52 | 18.09 | 23.22 | 28.87 | 3.20 | 5.59 | 17.71 | 29.08 | |
Median | 11.13 | 2.00 | 26.00 | 59.33 | 107.65 | 6.00 | 20.50 | 66.04 | 72.39 | |
NDMZ | Min | 3.12 | 1.00 | 2.00 | 22.22 | 45.54 | 2.00 | 7.00 | 27.94 | 7.62 |
Max | 71.40 | 18.00 | 95.00 | 100.00 | 173.89 | 19.00 | 24.00 | 106.68 | 88.90 | |
Mean | 18.36 | 3.20 | 42.44 | 74.08 | 89.06 | 6.54 | 14.04 | 54.64 | 41.66 | |
Std. error | 1.17 | 0.24 | 1.88 | 1.91 | 1.75 | 0.21 | 0.27 | 1.07 | 1.15 | |
Variance | 219.95 | 9.14 | 573.33 | 590.35 | 496.41 | 6.86 | 11.92 | 186.84 | 213.33 | |
Stand. dev | 14.83 | 3.02 | 23.94 | 24.30 | 22.28 | 2.62 | 3.45 | 13.67 | 14.61 | |
Median | 13.54 | 2.00 | 40.00 | 71.83 | 86.94 | 6.00 | 14.00 | 53.34 | 40.64 | |
WDMZ | Min | 1.11 | 1.00 | 6.00 | 25.00 | 38.09 | 2.00 | 7.00 | 23.37 | 15.24 |
Max | 117.59 | 24.00 | 98.00 | 100.00 | 269.11 | 15.00 | 39.00 | 165.10 | 137.16 | |
Mean | 11.59 | 5.41 | 46.96 | 78.05 | 113.26 | 5.62 | 16.19 | 69.49 | 54.96 | |
Std. error | 1.09 | 0.23 | 1.44 | 1.09 | 2.82 | 0.12 | 0.38 | 1.73 | 1.68 | |
Variance | 262.09 | 11.57 | 458.56 | 262.29 | 1770.02 | 3.10 | 32.44 | 666.20 | 623.14 | |
Stand. dev | 16.19 | 3.40 | 21.41 | 16.20 | 42.07 | 1.76 | 5.70 | 25.81 | 24.96 | |
Median | 5.99 | 4.00 | 47.00 | 77.84 | 111.79 | 6.00 | 16.00 | 68.58 | 53.34 | |
SPMZ | Min | 2.33 | 1.00 | 5.00 | 33.33 | 53.82 | 3.00 | 0.00 | 33.02 | 12.70 |
Max | 52.84 | 17.00 | 88.00 | 100.00 | 240.13 | 25.00 | 30.00 | 147.32 | 111.76 | |
Mean | 19.64 | 4.45 | 43.36 | 80.28 | 99.96 | 7.33 | 17.68 | 61.33 | 50.71 | |
Std. error | 1.27 | 0.35 | 2.16 | 1.73 | 2.52 | 0.29 | 0.56 | 1.55 | 1.38 | |
Variance | 171.69 | 13.22 | 495.39 | 316.37 | 673.47 | 8.79 | 33.31 | 253.48 | 202.54 | |
Stand. dev | 13.10 | 3.64 | 22.26 | 17.79 | 25.95 | 2.97 | 5.77 | 15.92 | 14.23 | |
Median | 16.14 | 3.00 | 38.00 | 78.99 | 96.88 | 7.00 | 18.00 | 59.44 | 52.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, A.; Khan, S.M.; Afza, R.; Kipkoech, A.; Zeb, S.A.; Haq, Z.; Manan, F.; Ahmad, Z.; Khan, M.S.; Hussain, J.; et al. Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management. Wild 2025, 2, 41. https://doi.org/10.3390/wild2040041
Abdullah A, Khan SM, Afza R, Kipkoech A, Zeb SA, Haq Z, Manan F, Ahmad Z, Khan MS, Hussain J, et al. Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management. Wild. 2025; 2(4):41. https://doi.org/10.3390/wild2040041
Chicago/Turabian StyleAbdullah, Abdullah, Shujaul Mulk Khan, Rabia Afza, Amos Kipkoech, Shakil Ahmad Zeb, Zahoorul Haq, Fazal Manan, Zeeshan Ahmad, Muhammad Shakeel Khan, Jawad Hussain, and et al. 2025. "Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management" Wild 2, no. 4: 41. https://doi.org/10.3390/wild2040041
APA StyleAbdullah, A., Khan, S. M., Afza, R., Kipkoech, A., Zeb, S. A., Haq, Z., Manan, F., Ahmad, Z., Khan, M. S., Hussain, J., & Balslev, H. (2025). Phosphorus Dynamics in Nannorrhops ritchieana (Mazri) Forests Across Different Climatic Zones of Pakistan: A Framework for Sustainability and Management. Wild, 2(4), 41. https://doi.org/10.3390/wild2040041