Glucose-6-Phosphate Dehydrogenase Deficiency and Cardiovascular Risk in Familial Hypercholesterolemia: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- personal and family history of early onset of coronary, cerebrovascular, and peripheral vascular diseases;
- LDL-C levels (calculated using the Friedewald formula [31]) exceeding 190 mg/dL without treatment or >100 mg/dL following treatment with maximum doses of statins (40–80 mg atorvastatin), or above the age- and sex-specific 95th percentile for the local population;
- tendon xanthomas or evidence of severe hypercholesterolemia in a first-degree relative.
2.2. Clinical and Laboratory Data of Participants
2.3. Assessment of Cardiovascular Disease Outcomes
2.4. Genetic Analysis
2.5. Glucose-6-Phosphate Dehydrogenase Status Determination
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Baseline Characteristics of the Cohort
3.2. Molecular Genetic Findings and CVD Risk
4. Discussion
Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 6PGD | 6-phosphogluconate dehydrogenase |
| APOB | Apolipoprotein B |
| BMI | Body Mass Index |
| CVD | Cardiovascular disease |
| FH | Familial Hypercholesterolemia |
| G6PD | Glucose-6-phosphate dehydrogenase |
| HDL-C | High Density Lipoprotein Cholesterol |
| LDL-C | Low Density Lipoprotein Cholesterol |
| LDLR | Low Density Lipoprotein Receptor |
| LDLRAP1 | Low-Density Lipoprotein Receptor Adaptor Protein 1 |
| NADPH | Reduced Nicotinamide Adenine Dinucleotide Phosphate |
| OR | Odds Ratio |
| PCSK9 | Proprotein Convertase Subtilisin/Kexin type 9 |
| TG | Triglycerides |
References
- Sudhof, T.C.; Goldstein, J.L.; Brown, M.S.; Russell, D.W. The LDL receptor gene: A mosaic of exons shared with different proteins. Science 1985, 228, 815–822. [Google Scholar] [CrossRef]
- Cladaras, C.; Hadzopoulou-Cladaras, M.; Nolte, R.T.; Atkinson, D.; Zannis, V.I. The complete sequence and structural analysis of human apolipoprotein B-100: Relationship between apoB-100 and apoB-48 forms. EMBO J. 1986, 5, 3495–3507. [Google Scholar] [CrossRef]
- Abifadel, M.; Varret, M.; Rabes, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.K.; Wilund, K.; Arca, M.; Zuliani, G.; Fellin, R.; Maioli, M.; Calandra, S.; Bertolini, S.; Cossu, F.; Grishin, N.; et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292, 1394–1398. [Google Scholar] [CrossRef]
- Santos, R.D.; Gidding, S.S.; Hegele, R.A.; Cuchel, M.A.; Barter, P.J.; Watts, G.F.; Baum, S.J.; Catapano, A.L.; Chapman, M.J.; Defesche, J.C.; et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 2016, 4, 850–861. [Google Scholar] [CrossRef]
- Akioyamen, L.E.; Genest, J.; Chu, A.; Inibhunu, H.; Ko, D.T.; Tu, J.V. Risk factors for cardiovascular disease in heterozygous familial hypercholesterolemia: A systematic review and meta-analysis. J. Clin. Lipidol. 2019, 13, 15–30. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, L.; Zhang, H.; Fu, Z.; Liu, Q.; Zhao, H.; Liu, Y.; Chen, Y. Association Between Familial Hypercholesterolemia and Risk of Cardiovascular Events and Death in Different Cohorts: A Meta-Analysis of 1.1 Million Subjects. Front. Cardiovasc. Med. 2022, 9, 860196. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Zhang, F.; Song, J.; Lee, C.; Wu, M.; Chen, H. Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction. Clin. Cardiol. 2019, 42, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.Z.; Breen, J.; Neves, E.; Grocott-Mason, R.; Barbir, M. Prevalence of cardiovascular events in genetically confirmed versus unconfirmed familial hypercholesterolaemia. Glob. Cardiol. Sci. Pract. 2020, 2020, e202024. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Zamora, A.; Plana, N.; Comas-Cufi, M.; Garcia-Gil, M.; Marti-Lluch, R.; Ponjoan, A.; Alves-Cabratosa, L.; Elosua, R.; Marrugat, J.; et al. Incidence of Cardiovascular Disease in Patients with Familial Hypercholesterolemia Phenotype: Analysis of 5 Years Follow-Up of Real-World Data from More than 1.5 Million Patients. J. Clin. Med. 2019, 8, 1080. [Google Scholar] [CrossRef]
- Malone, R.; Savage, S.; Crowley, V.; Hennessy, M.; O’Connor, P.; Kennedy, C. Risk Factors and Modifiers for Cardiovascular Disease Assessment of Patients with Heterozygous Familial Hypercholesterolaemia. J. Clin. Med. 2024, 13, 2270. [Google Scholar] [CrossRef]
- Bertolini, S.; Pisciotta, L.; Di Scala, L.; Langheim, S.; Bellocchio, A.; Masturzo, P.; Cantafora, A.; Martini, S.; Averna, M.; Pes, G.; et al. Genetic polymorphisms affecting the phenotypic expression of familial hypercholesterolemia. Atherosclerosis 2004, 174, 57–65. [Google Scholar] [CrossRef]
- Calandra, S.; Bertolini, S.; Pes, G.M.; Deiana, L.; Tarugi, P.; Pisciotta, L.; Li Volti, S.; Li Volti, G.; Maccarone, C. Beta-thalassemia is a modifying factor of the clinical expression of familial hypercholesterolemia. Semin. Vasc. Med. 2004, 4, 271–278. [Google Scholar] [CrossRef]
- Jansen, A.C.; van Aalst-Cohen, E.S.; Tanck, M.W.; Cheng, S.; Fontecha, M.R.; Li, J.; Defesche, J.C.; Kastelein, J.J. Genetic determinants of cardiovascular disease risk in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1475–1481. [Google Scholar] [CrossRef]
- Oosterveer, D.M.; Versmissen, J.; Schinkel, A.F.; Langendonk, J.G.; Mulder, M.; Sijbrands, E.J. Clinical and genetic factors influencing cardiovascular risk in patients with familial hypercholesterolemia. Clin. Lipidol. 2010, 5, 189–197. [Google Scholar] [CrossRef]
- van der Net, J.B.; Oosterveer, D.M.; Versmissen, J.; Defesche, J.C.; Yazdanpanah, M.; Aouizerat, B.E.; Steyerberg, E.W.; Malloy, M.J.; Pullinger, C.R.; Kastelein, J.J.; et al. Replication study of 10 genetic polymorphisms associated with coronary heart disease in a specific high-risk population with familial hypercholesterolemia. Eur. Heart J. 2008, 29, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Versmissen, J.; Oosterveer, D.M.; Hoekstra, M.; Out, R.; Berbee, J.F.; Blommesteijn-Touw, A.C.; van Vark-van der Zee, L.; Vongpromek, R.; Vanmierlo, T.; Defesche, J.C.; et al. Apolipoprotein isoform E4 does not increase coronary heart disease risk in carriers of low-density lipoprotein receptor mutations. Circ. Cardiovasc. Genet. 2011, 4, 655–660. [Google Scholar] [CrossRef]
- Radovanovic, J.; Banjac, K.; Obradovic, M.; Isenovic, E.R. Antioxidant enzymes and vascular diseases. Explor. Med. 2021, 2, 544–555. [Google Scholar] [CrossRef]
- Hecker, P.A.; Leopold, J.A.; Gupte, S.A.; Recchia, F.A.; Stanley, W.C. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H491–H500. [Google Scholar] [CrossRef] [PubMed]
- Cortes, R.; Martinez-Hervas, S.; Ivorra, C.; De Marco, G.; Gonzalez-Albert, V.; Rojo-Martinez, G.; Saez, G.; Carmena, R.; Ascaso, J.F.; Real, J.T.; et al. Enhanced reduction in oxidative stress and altered glutathione and thioredoxin system response to unsaturated fatty acid load in familial hypercholesterolemia. Clin. Biochem. 2014, 47, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, S.; Keshavarz, R.; Hosseini, S.; Mansouri, A.; Mannarino, M.R.; Pirro, M.; Jamialahmadi, T.; Sahebkar, A. Evaluation of Oxidative Stress Status in Familial Hypercholesterolemia. J. Clin. Med. 2021, 10, 5867. [Google Scholar] [CrossRef] [PubMed]
- De Vita, G.; Alcalay, M.; Sampietro, M.; Cappellini, M.D.; Fiorelli, G.; Toniolo, D. Two point mutations are responsible for G6PD polymorphism in Sardinia. Am. J. Hum. Genet. 1989, 44, 233–240. [Google Scholar]
- Cocco, P.; Todde, P.; Fornera, S.; Manca, M.B.; Manca, P.; Sias, A.R. Mortality in a cohort of men expressing the glucose-6-phosphate dehydrogenase deficiency. Blood 1998, 91, 706–709. [Google Scholar] [CrossRef]
- Dore, M.P.; Parodi, G.; Portoghese, M.; Pes, G.M. The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. Oxidative Med. Cell. Longev. 2021, 2021, 5529256. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Kang, S.; Wyatt, C.J.; Kim, F.S.; Mangelsdorff, A.D.; Weigel, F.K. Glucose-6-Phosphate Dehydrogenase Deficiency is Associated with Cardiovascular Disease in U.S. Military Centers. Tex. Heart Inst. J. 2018, 45, 144–150. [Google Scholar] [CrossRef]
- Pes, G.M.; Parodi, G.; Dore, M.P. Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease: A propensity score-matched study. Atherosclerosis 2019, 282, 148–153. [Google Scholar] [CrossRef]
- Ou, Z.; Chen, Y.; Li, J.; Ouyang, F.; Liu, G.; Tan, S.; Huang, W.; Gong, X.; Zhang, Y.; Liang, Z.; et al. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology 2020, 95, e1471–e1478. [Google Scholar] [CrossRef]
- Andrews, P.H.; Zimring, J.C.; McNamara, C.A. Clinical associations and potential cellular mechanisms linking G6PD deficiency and atherosclerotic cardiovascular disease. NPJ Metab. Health Dis. 2025, 3, 16. [Google Scholar] [CrossRef]
- Deiana, L.; Garuti, R.; Pes, G.M.; Carru, C.; Errigo, A.; Rolleri, M.; Pisciotta, L.; Masturzo, P.; Cantafora, A.; Calandra, S.; et al. Influence of beta(0)-thalassemia on the phenotypic expression of heterozygous familial hypercholesterolemia: A study of patients with familial hypercholesterolemia from Sardinia. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Arai, H.; Ohmura, H.; Okazaki, H.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; et al. Guidelines for the Diagnosis and Treatment of Adult Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 558–586. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Leren, T.P.; Solberg, K.; Rodningen, O.K.; Tonstad, S.; Ose, L. Two founder mutations in the LDL receptor gene in Norwegian familial hypercholesterolemia subjects. Atherosclerosis 1994, 111, 175–182. [Google Scholar] [CrossRef]
- Errigo, A.; Bitti, A.; Galistu, F.; Salis, R.; Pes, G.M.; Dore, M.P. Relationship between Glucose-6-Phosphate Dehydrogenase Deficiency, X-Chromosome Inactivation and Inflammatory Markers. Antioxidants 2023, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Minucci, A.; Giardina, B.; Zuppi, C.; Capoluongo, E. Glucose-6-phosphate dehydrogenase laboratory assay: How, when, and why? IUBMB Life 2009, 61, 27–34. [Google Scholar] [CrossRef]
- Roper, D.; Layton, M.; Rees, D.; Lambert, C.; Vulliamy, T.; De la Salle, B.; D’Souza, C.; British Society for Haematology. Laboratory diagnosis of G6PD deficiency. A British Society for Haematology Guideline. Br. J. Haematol. 2020, 189, 24–38. [Google Scholar] [CrossRef]
- Mosca, A.; Paleari, R.; Rosti, E.; Luzzana, M.; Barella, S.; Sollaino, C.; Galanello, R. Simultaneous automated determination of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in whole blood. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, G.; Meloni, T.; Palomba, V.; Manoussakis, C.; Villa, S.; Cappellini, M.D. Gene frequency of glucose-6-phosphate dehydrogenase (G6PD) polymorphic variants in Sardinia. Gene Geogr. 1990, 4, 139–142. [Google Scholar] [PubMed]
- Pes, G.M.; Errigo, A.; Bitti, A.; Dore, M.P. Effect of age, period and birth-cohort on the frequency of glucose-6-phosphate dehydrogenase deficiency in Sardinian adults. Ann. Med. 2018, 50, 68–73. [Google Scholar] [CrossRef]
- Leopold, J.A.; Dam, A.; Maron, B.A.; Scribner, A.W.; Liao, R.; Handy, D.E.; Stanton, R.C.; Pitt, B.; Loscalzo, J. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 2007, 13, 189–197. [Google Scholar] [CrossRef]
- Jain, S.K.; Parsanathan, R.; Levine, S.N.; Bocchini, J.A.; Holick, M.F.; Vanchiere, J.A. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic. Biol. Med. 2020, 161, 84–91. [Google Scholar] [CrossRef]
- Sanna, G.D.; Canonico, M.E.; Siciliano, R.; Guarino, S.; Montereggi, F.; Ponti, E.; Corda, G.; Talanas, G.; Parodi, G. Impact of glucose-6-phosphate dehydrogenase deficiency on the severity of coronary atherosclerosis in patients with acute coronary syndromes. J. Cardiovasc. Med. 2021, 22, 813–817. [Google Scholar] [CrossRef]
- Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 2020, 136, 1225–1240. [Google Scholar] [CrossRef]
- Garg, A.; Fazio, S.; Duell, P.B.; Baass, A.; Udata, C.; Joh, T.; Riel, T.; Sirota, M.; Dettling, D.; Liang, H.; et al. Molecular Characterization of Familial Hypercholesterolemia in a North American Cohort. J. Endocr. Soc. 2020, 4, bvz015. [Google Scholar] [CrossRef]
- Warden, B.A.; Fazio, S.; Shapiro, M.D. Familial Hypercholesterolemia: Genes and Beyond; MDText.com, Inc.: South Dartmouth, MA, USA, 2024. [Google Scholar]
- Zubieliene, K.; Valteryte, G.; Jonaitiene, N.; Zaliaduonyte, D.; Zabiela, V. Familial Hypercholesterolemia and Its Current Diagnostics and Treatment Possibilities: A Literature Analysis. Medicina 2022, 58, 1665. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, H.H.; Brown, M.S.; Goldstein, J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1992, 1, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Errigo, A.; Carru, C.; Petrazzini, A.; Meloni, G.; Addis, L.; Filigheddu, G.; Pettinato, S.; Manca, S.; Cossu, M.; Pala, P.G.; et al. Screening rapido di mutazioni responsabili di ipercolesterolemia familiare dominante nella popolazione sarda. G. dell’Arterioscler. 2002, 27, 211–215. [Google Scholar]


| Clinical Features | Males | Females | Total |
|---|---|---|---|
| No. of patients (%) | 86 (39.6) | 131 (60.4) | 217 |
| Age (years) | 44.9 ± 18.7 | 47.8 ± 19.6 | 46.9 ± 19.3 |
| Body mass index, n (%) | |||
| <25 kg/m2 | 48 (55.8) | 79 (60.3) | 127 (58.5) |
| 25–29.9 | 30 (34.9) | 48 (36.6) | 78 (35.9) |
| ≥30 | 8 (9.3) | 4 (3.1) | 12 (5.5) |
| Smoking, n (%) | |||
| Never smokers | 49 (57.0) | 99 (75.6) | 148 (68.2) |
| Current or former smokers | 37 (43.0) | 32 (24.4) | 69 (31.8) |
| Cardiovascular disease, n (%) | |||
| None | 40 (46.5) | 55 (42.0) | 95 (43.8) |
| Myocardial infarction | 24 (27.9) | 26 (19.8) | 50 (23.0) |
| Angina | 4 (4.7) | 7 (5.3) | 11 (5.1) |
| Stroke | 2 (2.3) | 5 (3.8) | 7 (3.2) |
| Peripheral disease | 4 (4.7) | 11 (8.4) | 15 (6.9) |
| Others | 12 (14.0) | 27 (20.6) | 39 (18.0) |
| High blood pressure, n (%) | |||
| None | 49 (57.0) | 88 (67.2) | 137 (63.1) |
| Yes | 37 (43.0) | 43 (32.8) | 80 (36.9) |
| Lipid profile, mg/dL | |||
| TC 1 | 370.0 ± 82.8 | 360.4 ± 86.3 | 364.2 ± 84.9 |
| LDL-C 2 | 299.3 ± 80.6 | 287.1 ± 83.2 | 291.9 ± 82.5 |
| HDL-C 3 | 46.3 ± 12.4 | 53.3 ± 13.7 | 50.5 ± 13.6 |
| Non-HDL-C | 323.8 ± 80.9 | 309.8 ± 85.0 | 315.4 ± 83.5 |
| TG 4 | 122.8 ± 72.5 | 113.3 ± 63.8 | 117.0 ± 67.3 |
| Treatment, n (%) | |||
| Only statins | 65 (75.6) | 123 (93.9) | 188 (86.6) |
| Both statins and ezetimibe | 21 (24.4) | 8 (6.1) | 29 (13.4) |
| G6PD 5, n (%) | |||
| Normal | 77 (89.5) | 109 (83.2) | 186 (85.7) |
| Deficiency | 9 (10.5) | 22 (16.8) | 31 (14.3) |
| Cardiovascular Disease | FH Subjects with G6PD Deficiency (n = 31) | FH Subjects Without G6PD Deficiency (n = 186) | p-Value |
|---|---|---|---|
| Sex, n (%) | 0.192 | ||
| Male | 9 (29.0) | 77 (41.4) | |
| Female | 22 (71.0) | 109 (58.6) | |
| Age, years (mean ± SD) | 57.9 ± 15.8 | 44.5 ± 19.1 | 0.004 |
| Smoking, n (%) | 0.301 | ||
| Never smokers | 17 (54.8) | 131 (70.4) | |
| Current or former smokers | 14 (45.2) | 55 (29.6) | |
| Body mass index, n (%) | 0.480 | ||
| <25 kg/m2 | 22 (70.9) | 105 (56.4) | |
| 25–29.9 | 5 (16.1) | 73 (39.2) | |
| ≥30 | 4 (12.9) | 8 (4.3) | |
| Lipid profile (mg/dL) | |||
| Total cholesterol | 407.7 ± 109.2 | 357.3 ± 78.6 | 0.055 |
| HDL cholesterol | 50.4 ± 11.2 | 50.5 ± 14.0 | 0.889 |
| Non-HDL cholesterol | 378.8 ± 95.5 | 306.4 ± 77.9 | 0.002 |
| LDL cholesterol | 356.0 ± 95.9 | 282.9 ± 76.6 | 0.002 |
| Triglycerides | 113.8 ± 36.1 | 117.4 ± 70.7 | 0.714 |
| Cardiovascular disease, n (%) | <0.0001 | ||
| No | 7 (22.6) | 112 (60.2) | |
| Yes | 24 (77.4) | 74 (39.8) |
| Covariates | Unadjusted OR (95% CI) | Adjusted OR (95% CI) |
|---|---|---|
| Sex | ||
| Females | Ref. | Ref. |
| Males | 2.22 (1.27–3.86) ** | 2.91 (1.44–5.88) ** |
| Age # | 1.05 (1.03–1.07) ** | 1.04 (1.02–1.07) ** |
| Body mass index | ||
| <25 kg/m2 | Ref. | Ref. |
| 25–29.9 | 3.35 (1.86–6.05) ** | 2.12 (1.06–4.25) * |
| ≥30 | 6.29 (1.62–24.4) ** | 1.57 (0.36–6.94) |
| High blood pressure | ||
| No | Ref. | Ref. |
| Yes | 2.21 (1.26–3.87) ** | 2.31 (1.17–4.55) * |
| Smoking | ||
| No | Ref. | Ref. |
| Yes | 3.69 (2.02–6.75) ** | 2.71 (1.33–5.53) * |
| G6PD ¶ deficiency | ||
| No | Ref. | Ref. |
| Yes | 5.19 (2.13–12.66) ** | 3.57 (1.30–9.83) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Errigo, A.; Dore, M.P.; Merola, E.; Pes, G.M. Glucose-6-Phosphate Dehydrogenase Deficiency and Cardiovascular Risk in Familial Hypercholesterolemia: A Retrospective Cohort Study. Lipidology 2025, 2, 22. https://doi.org/10.3390/lipidology2040022
Errigo A, Dore MP, Merola E, Pes GM. Glucose-6-Phosphate Dehydrogenase Deficiency and Cardiovascular Risk in Familial Hypercholesterolemia: A Retrospective Cohort Study. Lipidology. 2025; 2(4):22. https://doi.org/10.3390/lipidology2040022
Chicago/Turabian StyleErrigo, Alessandra, Maria Pina Dore, Elettra Merola, and Giovanni Mario Pes. 2025. "Glucose-6-Phosphate Dehydrogenase Deficiency and Cardiovascular Risk in Familial Hypercholesterolemia: A Retrospective Cohort Study" Lipidology 2, no. 4: 22. https://doi.org/10.3390/lipidology2040022
APA StyleErrigo, A., Dore, M. P., Merola, E., & Pes, G. M. (2025). Glucose-6-Phosphate Dehydrogenase Deficiency and Cardiovascular Risk in Familial Hypercholesterolemia: A Retrospective Cohort Study. Lipidology, 2(4), 22. https://doi.org/10.3390/lipidology2040022

