Length of Monosodium Urate Crystals in Synovial Fluid Based on Ultrasound Articular Deposits: Advancements in Crystallization Process
Abstract
1. Introduction
2. Methods
2.1. Study Procedures
2.2. Variables
2.3. Statistics
3. Results
3.1. Crystal Length and Long Crystals According to Ultrasound Model 1
3.2. Crystal Length and Long Crystals According to Ultrasound Model 2 (DC Sign and Tophi as Organized Deposits)
3.3. Comparisons of Individual Ultrasound Features and Clinical and Laboratory Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pineda, C.; Amezcua-Guerra, L.M.; Solano, C.; Rodriguez-Henríquez, P.; Hernández-Díaz, C.; Vargas, A.; Hofmann, F.; Gutiérrez, M. Joint and Tendon Subclinical Involvement Suggestive of Gouty Arthritis in Asymptomatic Hyperuricemia: An Ultrasound Controlled Study. Arthritis Res. Ther. 2011, 13, R4. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, H.R. Pathology of the Synovial Membrane in Gout. Arthritis Rheum. 1975, 18, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Bieber, A.; Schlesinger, N.; Fawaz, A.; Mader, R. Chronic Tophaceous Gout as the First Manifestation of Gout in Two Cases and a Review of the Literature. Semin. Arthritis Rheum. 2018, 47, 843–848. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Puig, J.G.; Castillo, C.; Peiteado, D.; Torres, R.J.; Martín-Mola, E. Diagnosis of Gout in Patients with Asymptomatic Hyperuricaemia: A Pilot Ultrasound Study. Ann. Rheum. Dis. 2012, 71, 157–158. [Google Scholar] [CrossRef]
- Campion, E.W.; Glynn, R.J.; Delabry, L.O. Asymptomatic Hyperuricemia. Risks and Consequences in the Normative Aging Study. Am. J. Med. 1987, 82, 421–426. [Google Scholar] [CrossRef]
- Dalbeth, N.; Phipps-Green, A.; Frampton, C.; Neogi, T.; Taylor, W.J.; Merriman, T.R. Relationship between Serum Urate Concentration and Clinically Evident Incident Gout: An Individual Participant Data Analysis. Ann. Rheum. Dis. 2018, 77, 1048–1052. [Google Scholar] [CrossRef]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Dalbeth, N.; Stamp, L. Hyperuricaemia and Gout: Time for a New Staging System? Ann. Rheum. Dis. 2014, 73, 1598–1600. [Google Scholar] [CrossRef]
- McQueen, F.M.; Chhana, A.; Dalbeth, N. Mechanisms of Joint Damage in Gout: Evidence from Cellular and Imaging Studies. Nat. Rev. Rheumatol. 2012, 8, 173–181. [Google Scholar] [CrossRef]
- Pascual, E.; Andrés, M.; Vela, P. Gout Treatment: Should We Aim. for Rapid Crystal Dissolution? Ann. Rheum. Dis. 2013, 72, 635–637. [Google Scholar] [CrossRef]
- Wilcox, W.R.; Khalaf, A.A. Nucleation of Monosodium Urate Crystals. Ann. Rheum. Dis. 1975, 34, 332–339. [Google Scholar] [CrossRef]
- Tak, H.K.; Cooper, S.M.; Wilcox, W.R. Studies on the Nucleation of Monosodium Urate at 37 Degrees c. Arthritis Rheum. 1980, 23, 574–580. [Google Scholar] [CrossRef]
- McGill, N.W.; Dieppe, P.A. Evidence for a Promoter of Urate Crystal Formation in Gouty Synovial Fluid. Ann. Rheum. Dis. 1991, 50, 558–561. [Google Scholar] [CrossRef] [PubMed]
- McGill, N.W.; Dieppe, P.A. The Role of Serum and Synovial Fluid Components in the Promotion of Urate Crystal Formation. J. Rheumatol. 1991, 18, 1042–1045. [Google Scholar] [PubMed]
- Xu, H.; Zhang, B.; Chen, Y.; Zeng, F.; Wang, W.; Chen, Z.; Cao, L.; Shi, J.; Chen, J.; Zhu, X.; et al. Type II Collagen Facilitates Gouty Arthritis by Regulating MSU Crystallisation and Inflammatory Cell Recruitment. Ann. Rheum. Dis. 2023, 82, 416–427. [Google Scholar] [CrossRef]
- Chhana, A.; Pool, B.; Wei, Y.; Choi, A.; Gao, R.; Munro, J.; Cornish, J.; Dalbeth, N. Human Cartilage Homogenates Influence the Crystallization of Monosodium Urate and Inflammatory Response to Monosodium Urate Crystals: A Potential Link Between Osteoarthritis and Gout. Arthritis Rheumatol. 2019, 71, 2090–2099. [Google Scholar] [CrossRef]
- Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers 2019, 5, 69. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Brown, C.P. Embrittlement of Collagen in Early-Stage Human Osteoarthritis. J. Mech. Behav. Biomed. Mater. 2020, 104, 103663. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.; Merriman, T.R.; Rossitto, L.-A.; Liu-Bryan, R.; Karsh, J.; Phipps-Green, A.; Jay, G.D.; Elsayed, S.; Qadri, M.; Miner, M.; et al. Amplification of Inflammation by Lubricin Deficiency Implicated in Incident, Erosive Gout Independent of Hyperuricemia. Arthritis Rheumatol. 2023, 75, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The Crystallization of Monosodium Urate. Curr. Rheumatol. Rep. 2014, 16, 400. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Elert, K.; Ibañez-Velasco, A.; Monasterio-Guillot, L.; Andres, M.; Sivera, F.; Pascual, E.; Ruiz-Agudo, E. Unraveling the Pathological Biomineralization of Monosodium Urate Crystals in Gout Patients. Commun. Biol. 2024, 7, 828. [Google Scholar] [CrossRef]
- Pascual, E.; Ordóñez, S. Orderly Arrayed Deposit of Urate Crystals in Gout Suggest Epitaxial Formation. Ann. Rheum. Dis. 1998, 57, 255. [Google Scholar] [CrossRef]
- Pascual, E.; Martínez, A.; Ordóñez, S. Gout: The Mechanism of Urate Crystal Nucleation and Growth. A Hypothesis Based in Facts. Jt. Bone Spine 2013, 80, 1–4. [Google Scholar] [CrossRef]
- Pascual, E.; Addadi, L.; Andrés, M.; Sivera, F. Mechanisms of Crystal Formation in Gout-a Structural Approach. Nat. Rev. Rheumatol. 2015, 11, 725–730. [Google Scholar] [CrossRef]
- Fiechtner, J.J.; Simkin, P.A. Urate Spherulites in Gouty Synovia. J. Am. Med. Assoc. 1981, 245, 1533–1536. [Google Scholar] [CrossRef]
- Bursill, D.; Taylor, W.J.; Terkeltaub, R.; Abhishek, A.; So, A.K.; Vargas-Santos, A.B.; Gaffo, A.L.; Rosenthal, A.; Tausche, A.-K.; Reginato, A.; et al. Gout, Hyperuricaemia and Crystal-Associated Disease Network (G-CAN) Consensus Statement Regarding Labels and Definitions of Disease States of Gout. Ann. Rheum. Dis. 2019, 78, 1592–1600. [Google Scholar] [CrossRef]
- Pastor, S.; Bernal, J.-A.; Caño, R.; Gómez-Sabater, S.; Borras, F.; Andrés, M. Persistence of Crystals in Stored Synovial Fluid Samples. J. Rheumatol. 2020, 47, 1416–1423. [Google Scholar] [CrossRef]
- Christiansen, S.N.; Filippou, G.; Scirè, C.A.; Balint, P.V.; Bruyn, G.A.; Dalbeth, N.; Dejaco, C.; Sedie, A.D.; Filippucci, E.; Hammer, H.B.; et al. Consensus-Based Semi-Quantitative Ultrasound Scoring System for Gout Lesions: Results of an OMERACT Delphi Process and Web-Reliability Exercise. Semin. Arthritis Rheum. 2021, 51, 644–649. [Google Scholar] [CrossRef]
- D’Agostino, M.-A.; Terslev, L.; Aegerter, P.; Backhaus, M.; Balint, P.; Bruyn, G.A.; Filippucci, E.; Grassi, W.; Iagnocco, A.; Jousse-Joulin, S.; et al. Scoring Ultrasound Synovitis in Rheumatoid Arthritis: A EULAR-OMERACT Ultrasound Taskforce-Part 1: Definition and Development of a Standardised, Consensus-Based Scoring System. RMD Open 2017, 3, e000428. [Google Scholar] [CrossRef]
- Calabuig, I.; Martínez-Sanchis, A.; Andrés, M. Sonographic Tophi and Inflammation Are Associated With Carotid Atheroma Plaques in Gout. Front. Med. 2021, 8, 795984. [Google Scholar] [CrossRef]
- Lameire, N.H.; Levin, A.; Kellum, J.A.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C.; Stevens, P.E.; Caskey, F.J.; Farmer, C.K.T.; Ferreiro Fuentes, A.; et al. Harmonizing Acute and Chronic Kidney Disease Definition and Classification: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021, 100, 516–526. [Google Scholar] [CrossRef]
- Terslev, L.; Gutierrez, M.; Schmidt, W.A.; Keen, H.I.; Filippucci, E.; Kane, D.; Thiele, R.; Kaeley, G.; Balint, P.; Mandl, P.; et al. Ultrasound as an Outcome Measure in Gout. A Validation Process by the OMERACT Ultrasound Working Group. J. Rheumatol. 2015, 42, 2177–2181. [Google Scholar] [CrossRef]
- McGill, N.W.; Hayes, A.; Dieppe, P.A. Morphological Evidence for Biological Control of Urate Crystal Formation in Vivo and in Vitro. Scand. J. Rheumatol. 1992, 21, 215–219. [Google Scholar] [CrossRef]
- Dieppe, P.; Swan, A. Identification of Crystals in Synovial Fluid. Ann. Rheum. Dis. 1999, 58, 261–263. [Google Scholar] [CrossRef]
- Perrin, C.M.; Dobish, M.A.; Keuren, E.V.; Swift, J.A. Monosodium Urate Monohydrate Crystallization. CrystEngComm 2011, 13, 1111–1117. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, H.; Yuan, X.; Wang, X.; Li, M.; Fan, Y.; He, Y.; Jia, Z.; Han, L.; Liu, Z. Comparison of the Different Monosodium Urate Crystals in the Preparation Process and Pro-Inflammation. Adv. Rheumatol. 2023, 63, 39. [Google Scholar] [CrossRef]
- Fiddis, R.W.; Vlachos, N.; Calvert, P.D. Studies of Urate Crystallisation in Relation to Gout. Ann. Rheum. Dis. 1983, 42, 12–15. [Google Scholar] [CrossRef]
- Boyde, A. The Bone Cartilage Interface and Osteoarthritis. Calcif. Tissue Int. 2021, 109, 303–328. [Google Scholar] [CrossRef]
- Ostwald, W.Z. Blocking of Ostwald Ripening Allowing Long-Term Stabilization. Phys. Chem. 1901, 37, 385. [Google Scholar]
- Schumacher, H.R.; Fishbein, P.; Phelps, P.; Tse, R.; Krauser, R. Comparison of Sodium Urate and Calcium Pyrophosphate Crystal Phagocytosis by Polymorphonuclear Leukocytes. Effects of Crystal Size and Other Factors. Arthritis Rheum. 1975, 18, 783–792. [Google Scholar] [CrossRef]
- Chhana, A.; Lee, G.; Dalbeth, N. Factors Influencing the Crystallization of Monosodium Urate: A Systematic Literature Review. BMC Musculoskelet. Disord. 2015, 16, 296. [Google Scholar] [CrossRef]
- Dalbeth, N.; Clark, B.; Gregory, K.; Gamble, G.; Sheehan, T.; Doyle, A.; McQueen, F.M. Mechanisms of Bone Erosion in Gout: A Quantitative Analysis Using Plain Radiography and Computed Tomography. Ann. Rheum. Dis. 2009, 68, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Aati, O.; Kalluru, R.; Gamble, G.D.; Horne, A.; Doyle, A.J.; McQueen, F.M. Relationship between Structural Joint Damage and Urate Deposition in Gout: A Plain Radiography and Dual-Energy CT Study. Ann. Rheum. Dis. 2014, 74, 1030–1036. [Google Scholar] [CrossRef]
- Pecherstorfer, C.; Simon, D.; Unbehend, S.; Ellmann, H.; Englbrecht, M.; Hartmann, F.; Figueiredo, C.; Hueber, A.; Haschka, J.; Kocijan, R.; et al. A Detailed Analysis of the Association between Urate Deposition and Erosions and Osteophytes in Gout. ACR Open Rheumatol. 2020, 2, 565–572. [Google Scholar] [CrossRef]
- Wu, M.; Liu, F.J.; Chen, J.; Chen, L.; Wei, C.; Hu, Z.M.; Han, Y.; Lu, J.X.; Jiang, L.X.; Chen, H.B. Prevalence and Factors Associated With Bone Erosion in Patients With Gout. Arthritis Care Res. 2019, 71, 1653–1659. [Google Scholar] [CrossRef]
- Dalbeth, N.; Billington, K.; Doyle, A.; Frampton, C.; Tan, P.; Aati, O.; Allan, J.; Drake, J.; Horne, A.; Stamp, L.K. Effects of Allopurinol Dose Escalation on Bone Erosion and Urate Volume in Gout: A Dual-Energy Computed Tomography Imaging Study Within a Randomized, Controlled Trial. Arthritis Rheumatol. 2019, 71, 1739–1746. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 Updated EULAR Evidence-Based Recommendations for the Management of Gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef]
- Sivera, F.; Andrés, M.; Carmona, L.; Kydd, A.S.R.; Moi, J.; Seth, R.; Sriranganathan, M.; van Durme, C.; van Echteld, I.; Vinik, O.; et al. Multinational Evidence-Based Recommendations for the Diagnosis and Management of Gout: Integrating Systematic Literature Review and Expert Opinion of a Broad Panel of Rheumatologists in the 3e Initiative. Ann. Rheum. Dis. 2014, 73, 328–335. [Google Scholar] [CrossRef]
- Naredo, E.; Uson, J.; Jiménez-Palop, M.; Martínez, A.; Vicente, E.; Brito, E.; Rodríguez, A.; Cornejo, F.J.; Castañeda, S.; Martínez, M.J.; et al. Ultrasound-Detected Musculoskeletal Urate Crystal Deposition: Which Joints and What Findings Should Be Assessed for Diagnosing Gout? Ann. Rheum. Dis. 2014, 73, 1522–1528. [Google Scholar] [CrossRef]
- Hammer, H.B.; Karoliussen, L.; Terslev, L.; Haavardsholm, E.A.; Kvien, T.K.; Uhlig, T. Ultrasound Shows Rapid Reduction of Crystal Depositions during a Treat-to-Target Approach in Gout Patients: 12-Month Results from the NOR-Gout Study. Ann. Rheum. Dis. 2020, 79, 1500–1505. [Google Scholar] [CrossRef]
- Chowalloor, P.V.; Keen, H.I. A Systematic Review of Ultrasonography in Gout and Asymptomatic Hyperuricaemia. Ann. Rheum. Dis. 2013, 72, 638–645. [Google Scholar] [CrossRef]
- Christiansen, S.N.; Østergaard, M.; Slot, O.; Fana, V.; Terslev, L. Retrospective Longitudinal Assessment of Ultrasound Gout Lesions Using the OMERACT Semi-Quantitative Scoring System. Rheumatology 2022, 61, 4711–4721. [Google Scholar] [CrossRef]
- Liu, E.; Dalbeth, N.; Pool, B.; Ramirez Cazares, A.; Ranganath, V.K.; FitzGerald, J.D. Ultrasound Findings of Monosodium Urate Aggregates in Patients with Gout. Gout Urate Cryst. Depos. Dis. 2023, 1, 83–88. [Google Scholar] [CrossRef]
- de Ávila Fernandes, E.; Kubota, E.S.; Sandim, G.B.; Mitraud, S.A.V.; Ferrari, A.J.L.; Fernandes, A.R.C. Ultrasound Features of Tophi in Chronic Tophaceous Gout. Skeletal Radiol. 2011, 40, 309–315. [Google Scholar] [CrossRef]
- Yokose, C.; Dalbeth, N.; Wei, J.; Nicolaou, S.; Simeone, F.J.; Baumgartner, S.; Fung, M.; Zhang, Y.; Choi, H.K. Radiologic Evidence of Symmetric and Polyarticular Monosodium Urate Crystal Deposition in Gout—A Cluster Pattern Analysis of Dual-Energy CT. Semin. Arthritis Rheum. 2020, 50, 54–58. [Google Scholar] [CrossRef]
- Ottaviani, S.; Allard, A.; Bardin, T.; Richette, P. An Exploratory Ultrasound Study of Early Gout. Clin. Exp. Rheumatol. 2011, 29, 816–821. [Google Scholar]
- Ogdie, A.; Taylor, W.J.; Neogi, T.; Fransen, J.; Jansen, T.L.; Schumacher, H.R.; Louthrenoo, W.; Vazquez-Mellado, J.; Eliseev, M.; McCarthy, G.; et al. Performance of Ultrasound in the Diagnosis of Gout in a Multicenter Study: Comparison With Monosodium Urate Monohydrate Crystal Analysis as the Gold Standard. Arthritis Rheumatol. 2017, 69, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Puig, J.G.; de Miguel, E.; Castillo, M.C.; Rocha, A.L.; Martínez, M.A.; Torres, R.J. Asymptomatic Hyperuricemia: Impact of Ultrasonography. Nucleosides Nucleotides Nucleic Acids 2008, 27, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Pascual, E.; Sivera, F. Time Required for Disappearance of Urate Crystals from Synovial Fluid after Successful Hypouricaemic Treatment Relates to the Duration of Gout. Ann. Rheum. Dis. 2007, 66, 1056–1058. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Calabozo, M.; Pijoan, J.I.; Herrero-Beites, A.M.; Ruibal, A. Effect of Urate-Lowering Therapy on the Velocity of Size Reduction of Tophi in Chronic Gout. Arthritis Rheum. 2002, 47, 356–360. [Google Scholar] [CrossRef]
- Loeb, J.N. The Influence of Temperature on the Solubility of Monosodium Urate. Arthritis Rheum. 1972, 15, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Wopenka, B.; Pasteris, J.D. A Mineralogical Perspective on the Apatite in Bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Nudelman, F. Nacre Biomineralisation: A Review on the Mechanisms of Crystal Nucleation. Semin. Cell Dev. Biol. 2015, 46, 2–10. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, A.B.; Checa, A.; Willinger, M.-G.; Bolmaro, R.; Bonarski, J. Crystallographic Relationships in the Crossed Lamellar Microstructure of the Shell of the Gastropod Conus Marmoreus. Acta Biomater. 2012, 8, 830–835. [Google Scholar] [CrossRef]
- Athanasiadou, D.; Jiang, W.; Goldbaum, D.; Saleem, A.; Basu, K.; Pacella, M.S.; Böhm, C.F.; Chromik, R.R.; Hincke, M.T.; Rodríguez-Navarro, A.B.; et al. Nanostructure, Osteopontin, and Mechanical Properties of Calcitic Avian Eggshell. Sci. Adv. 2018, 4, eaar3219. [Google Scholar] [CrossRef]
- Paul, H.; Reginato, A.J.; Schumacher, H.R. Morphological Characteristics of Monosodium Urate: A Transmission Electron Microscopic Study of Intact Natural and Synthetic Crystals. Ann. Rheum. Dis. 1983, 42, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. Chemistry 2006, 12, 980–987. [Google Scholar] [CrossRef]
- Seto, J.; Ma, Y.; Davis, S.A.; Meldrum, F.; Gourrier, A.; Kim, Y.-Y.; Schilde, U.; Sztucki, M.; Burghammer, M.; Maltsev, S.; et al. Structure-Property Relationships of a Biological Mesocrystal in the Adult Sea Urchin Spine. Proc. Natl. Acad. Sci. USA 2012, 109, 3699–3704. [Google Scholar] [CrossRef]
- Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater. 2003, 15, 959–970. [Google Scholar] [CrossRef]
- Nudelman, F.; Sommerdijk, N.A.J.M. Biomineralization as an Inspiration for Materials Chemistry. Angew. Chem. Int. Ed. 2012, 51, 6582–6596. [Google Scholar] [CrossRef]
- Gilbert, P.U.P.A.; Bergmann, K.D.; Boekelheide, N.; Tambutté, S.; Mass, T.; Marin, F.; Adkins, J.F.; Erez, J.; Gilbert, B.; Knutson, V.; et al. Biomineralization: Integrating Mechanism and Evolutionary History. Sci. Adv. 2022, 8, eabl9653. [Google Scholar] [CrossRef] [PubMed]




| Age, in years, median (IQR) | 60.0 (54.0–72.3) |
| Males | 26 (92.9) |
| 2-years serum urate, in mg/dL, median (IQR) [n = 27] | 7.5 (7.1–8.9) |
| Index joint | |
| Knee | 14 (50.0) |
| MTP1 | 6 (21.4) |
| Ankle | 5 (17.9) |
| Wrist | 1 (3.6) |
| Others | 2 (7.2) |
| Disease state at enrolment | |
| Flare | 26 (92.9) |
| Intercritical period | 2 (7.1) |
| Subcutaneous tophi | 9 (32.1) |
| Prior oligo-polyarticular flares | 12 (42.9) |
| Chronic kidney disease | 8 (28.6) |
| Use of diuretics | 11 (39.3) |
| Use of urate-lowering therapy | 8 (28.6) |
| Ultrasound findings | |
| Double-contour sign | |
| Grade 0 | 15 (53.6) |
| Grade 1 | 5 (17.9) |
| Grade 2 | 5 (17.9) |
| Grade 3 | 3 (10.7) |
| Tophi | |
| Grade 0 | 16 (57.1) |
| Grade 1 | 1 (3.6) |
| Grade 2 | 6 (21.4) |
| Grade 3 | 5 (17.9) |
| Aggregates | |
| Grade 0 | 15 (53.6) |
| Grade 1 | 3 (10.7) |
| Grade 2 | 6 (21.4) |
| Grade 3 | 4 (14.3) |
| Model 1 | 20 (71.4) |
| Model 2 | 15 (53.6) |
| Power Doppler signal | |
| Grade 0 | 17 (60.7) |
| Grade 1 | 7 (25.0) |
| Grade 2 | 2 (7.1) |
| Grade 3 | 2 (7.1) |
| G2–3 DC Sign | G2–3 Tophi | G2–3 Aggregates | (+) Power Doppler Signal | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No | Yes | p | No | Yes | p | No | Yes | p | No | Yes | p | |
| Crystal length, in µm | 21.7 (16.9–25.3) | 24.1 (21.5–29.7) | 0.237 | 22.3 (16.9–25.2) | 22.3 (16.9–32.3) | 0.430 | 21.7 (16.9–23.8) | 25.2 (17.9–33.2) | 0.245 | 22.8 (18.3–27.5) | 21.2 (15.9–26.5) | 0.404 |
| # of long crystals-P66 | 5.0 (2.0–16.8) | 16.0 (7.3–29.3) | 0.055 | 5.0 (2.0–17.0) | 14.0 (3.0–27.0) | 0.225 | 5.0 (2.8–18.8) | 12.5 (4.3–27.0) | 0.408 | 11.0 (3.0–24.0) | 5.0 (2.0–17.0) | 0.547 |
| % of long crystals-P66 | 24.8 (8.7–32.5) | 34.2 (25.5–52.6) | 0.079 | 26.3 (5.8–33.3) | 33.3 (13.5–54.5) | 0.244 | 24.8 (10.2–35.0) | 30.1 (16.2–59.3) | 0.382 | 30.0 (15.4–44.2) | 22.9 (9.7–33.3) | 0.329 |
| # of long crystals-P75 | 3.5 (0.3–12.0) | 10.0 (3.3–21.0) | 0.123 | 4.0 (1.0–10.0) | 9.0 (1.0–21.0) | 0.378 | 3.0 (0.8–12.0) | 8.0 (3.5–21.8) | 0.160 | 7.0 (1.0–18.0) | 4.0 (1.0–13.0) | 0.578 |
| % of long crystals-P75 | 14.0 (6.8–21.3) | 21.4 (9.9–40.0) | 0.123 | 15.5 (3.1–20.7) | 22.5 (3.2–45.5) | 0.378 | 14.0 (2.0–20.6) | 21.8 (9.4–48.2) | 0.121 | 20.0 (7.0–28.2) | 8.1 (3.2–25.5) | 0.487 |
| # of long crystals-P90 | 1.0 (0.0–4.5) | 1.0 (0.0–9.5) | 0.746 | 1.0 (0.0–3.5) | 1.0 (0.0–11.0) | 0.404 | 1.0 (0.0–5.0) | 1.5 (0.0–12.3) | 0.286 | 1.0 (0.0–6.0) | 1.0 (0.0–5.0) | 0.677 |
| % of long crystals-P90 | 2.2 (0.0–7.9) | 1.7 (0.0–18.5) | 0.901 | 1.8 (0.0–6.7) | 2.7 (0.0–22.0) | 0.458 | 1.7 (0.0–8.2) | 4.9 (0.0–27.6) | 0.286 | 1.7 (0.0–9.0) | 2.7 (0.0–8.6) | 0.643 |
| 2-Year Serum Urate | ||
|---|---|---|
| Rho | p | |
| Crystal length | +0.26 | 0.184 |
| # of long crystals-P66 | +0.35 | 0.076 |
| % of long crystals-P66 | +0.36 | 0.065 |
| # of long crystals-P75 | +0.36 | 0.068 |
| % of long crystals-P75 | +0.37 | 0.061 |
| # of long crystals-P90 | +0.30 | 0.129 |
| % of long crystals-P90 | +0.29 | 0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansano-Muñoz, E.; López-González, M.-d.-C.; Rodríguez-Alvear, C.; Calabuig, I.; Martínez-Sanchis, A.; Rodríguez-Navarro, C.; Pascual, E.; Andrés, M. Length of Monosodium Urate Crystals in Synovial Fluid Based on Ultrasound Articular Deposits: Advancements in Crystallization Process. Gout Urate Cryst. Depos. Dis. 2025, 3, 21. https://doi.org/10.3390/gucdd3040021
Sansano-Muñoz E, López-González M-d-C, Rodríguez-Alvear C, Calabuig I, Martínez-Sanchis A, Rodríguez-Navarro C, Pascual E, Andrés M. Length of Monosodium Urate Crystals in Synovial Fluid Based on Ultrasound Articular Deposits: Advancements in Crystallization Process. Gout, Urate, and Crystal Deposition Disease. 2025; 3(4):21. https://doi.org/10.3390/gucdd3040021
Chicago/Turabian StyleSansano-Muñoz, Elena, María-del-Carmen López-González, Cristina Rodríguez-Alvear, Irene Calabuig, Agustín Martínez-Sanchis, Carlos Rodríguez-Navarro, Eliseo Pascual, and Mariano Andrés. 2025. "Length of Monosodium Urate Crystals in Synovial Fluid Based on Ultrasound Articular Deposits: Advancements in Crystallization Process" Gout, Urate, and Crystal Deposition Disease 3, no. 4: 21. https://doi.org/10.3390/gucdd3040021
APA StyleSansano-Muñoz, E., López-González, M.-d.-C., Rodríguez-Alvear, C., Calabuig, I., Martínez-Sanchis, A., Rodríguez-Navarro, C., Pascual, E., & Andrés, M. (2025). Length of Monosodium Urate Crystals in Synovial Fluid Based on Ultrasound Articular Deposits: Advancements in Crystallization Process. Gout, Urate, and Crystal Deposition Disease, 3(4), 21. https://doi.org/10.3390/gucdd3040021

