Open AccessReview
Galectin-3: A Multitasking Protein Linking Cardiovascular Diseases, Immune Disorders and Beyond
by
Mariarosaria Morello, Gisella Titolo, Saverio D’Elia, Silvia Caiazza, Ettore Luisi, Achille Solimene, Chiara Serpico, Andrea Morello, Francesco Natale, Paolo Golino, Plinio Cirillo and Giovanni Cimmino
Targets 2025, 3(4), 34; https://doi.org/10.3390/targets3040034 (registering DOI) - 15 Nov 2025
Abstract
In recent decades, the novel role of Galectin-3 (Gal-3) in both physiological and pathological conditions has emerged. Gal-3 is a key protein involved in immunity, inflammation, cell adhesion, proliferation, differentiation, and apoptosis. Its physiological role is crucial for the regulation of these cellular
[...] Read more.
In recent decades, the novel role of Galectin-3 (Gal-3) in both physiological and pathological conditions has emerged. Gal-3 is a key protein involved in immunity, inflammation, cell adhesion, proliferation, differentiation, and apoptosis. Its physiological role is crucial for the regulation of these cellular functions. In pathological settings, elevated levels of Gal-3 are associated with diseases such as cancer, heart failure, and fibrotic diseases, making it an important diagnostic and prognostic biomarker in these conditions. It seems that Gal-3 acts as a bridge between different diseases. Because of its pro-inflammatory and pro-tumorigenic properties, it connects atherosclerosis and cancer, regulating inflammation, cell proliferation, immune evasion, angiogenesis and survival in both diseases. Specifically, in atherosclerosis, Gal-3 promotes plaque formation by driving inflammation, oxidative stress, lipid deposition, and vascular cell migration. In cancer, Gal-3 influences tumor growth and metastasis by modulating an immunosuppressive tumor microenvironment, increasing cell survival, and enhancing cell–matrix and cell–cell interactions. Moreover, by stimulating fibroblasts, Gal-3 favors matrix deposition and tissue fibrosis that together with the inflammatory properties contributes to adverse ventricular remodeling leading to heart failure. Finally, taking into account its role in pathogen recognition and immune cells (B and T cells) modulation, Gal-3 might be a critical factor in host defense, disease progression, and the development of autoimmune conditions. Thus, targeting Gal-3 might be a promising therapeutic strategy to pursue for management of different pathological scenarios.
Full article
►▼
Show Figures