Photothermal Bacterial Clearance Using Gold Nanoshells Grown on Chitosan Nanoparticles Dielectric Templates
Abstract
1. Introduction
2. Results
2.1. Chitosan Modification and Synthesis of Chitosan Nanoparticles (TCNP)
2.1.1. Chitosan Modification
2.1.2. Synthesis of TCNPs
2.2. Core-Shell Chitosan-Gold Nanoparticles
Photothermal Conversion Efficiency of TCNP@Au
2.3. Photothermal Effect of TCNP@Au on the Viability of Gram-Positive and Gram-Negative Bacteria
3. Materials and Methods
3.1. Thiolated Chitosan (TCs)
3.2. Synthesis of Thiolated Chitosan Nanoparticles (TCsNp)
3.3. Synthesis of Gold-Shell on TCSNPs
3.4. Characterization
3.4.1. Nanoparticles Hydrodynamic Size (DH) and Zeta Potential (ζP)
3.4.2. Atomic Force Microscopy
3.4.3. UV-Vis Spectroscopy
3.5. Photothermal Conversion of TCNP@Au
3.6. Photothermal Effect on the Bacterial Growth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cs | Chitosan |
TPP | Sodium Triphosphate Pentabasic |
3-MPA | 3-mercaptopropionic acid |
EDAC | N-(3-Dimethylaninopropyl)-N-ethylcarbodiimide hydrochloride |
NHS | N-Hydroxysuccinimide |
DMF | N,N-Dimethylformamide |
NaBH4 | Sodium borohydride |
TCs | Thiolated Chitosan |
FTIR-ATR | Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance |
TCsNPs | Thiolated Chitosan Nanoparticles |
TCs@AuNp | Core-Shell Chitosan-Gold Nanoparticles |
AFM | Atomic Force Microscopy |
AuSD | Gold Seeds |
AA | Ascorbic Acid |
LSPR | Localized Surface Plasmonic Resonance |
PDI | Polydispersity Index |
References
- Karnwal, A.; Jassim, A.Y.; Mohammed, A.A.; Mohammad Said Al-Tawaha, A.R.; Selvaraj, M.; Malik, T. Addressing the global challenge of bacterial drug resistance: Insights, strategies, and future directions. Front. Microbiol. 2025, 16, 1517772. [Google Scholar] [CrossRef] [PubMed]
- Ajulo, S.; Awosile, B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, A.; Countryman, A.; Laurence, T.; Gulliver, S.; Drake, T.; Edwards, S.; Kenny, C.; Lamberti, O.; Morton, A.; Shafira, A.; et al. Forecasting the Fallout from AMR: Economic Impacts of Antimicrobial Resistance in Humans; World Organisation for Animal Health and World Bank: Paris, France; Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Sharma, P.; Hasan, M.R.; Singh, S.; Thakur, D.; Narang, J. Gold nanomaterials—The golden approach from synthesis to applications. Mater. Sci. Energy Technol. 2022, 5, 375–390. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Lim, D.K. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023, 15, 2349. [Google Scholar] [CrossRef]
- Milan, J.; Niemczyk, K.; Kus-Liśkiewicz, M. Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. Materials 2022, 15, 3355. [Google Scholar] [CrossRef]
- Tatsuno, I.; Niimi, Y.; Tomita, M.; Terashima, H.; Hasegawa, T.; Matsumoto, T. Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Sci. Rep. 2021, 11, 22310. [Google Scholar] [CrossRef]
- Cole, J.R.; Mirin, N.A.; Knight, M.W.; Goodrich, G.P.; Halas, N.J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 2009, 113, 12090–12094. [Google Scholar] [CrossRef]
- Topete, A.; Alatorre-Meda, M.; Villar-Álvarez, E.M.; Cambón, A.; Barbosa, S.; Taboada, P.; Mosquera, V. Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method. ACS Appl. Mater. Interfaces 2014, 6, 11142–11157. [Google Scholar] [CrossRef]
- Liu, Y.; Kangas, J.; Wang, Y.; Khosla, K.; Pasek-Allen, J.; Saunders, A.; Oldenburg, S.; Bischof, J. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 2020, 12, 12346–12356. [Google Scholar] [CrossRef]
- De Torre-miranda, N.; Reilly, L.; Eloy, P.; Poleunis, C.; Hermans, S. Thiol functionalized activated carbon for gold thiosulfate recovery, an analysis of the interactions between gold and sulfur functions. Carbon N. Y. 2023, 204, 254–267. [Google Scholar] [CrossRef]
- Inkpen, M.S.; Liu, Z.-F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Skwarczynska, A.; Kaminska, M.; Owczarz, P.; Bartoszek, N.; Walkowiak, B.; Modrzejewska, Z. The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. J. Appl. Polym. Sci. 2018, 135, 46459. [Google Scholar] [CrossRef]
- El-araby, A.; El Ghadraoui, L.; Errachidi, F. Usage of biological chitosan against the contamination of post-harvest treatment of strawberries by Aspergillus niger. Front. Sustain. Food Syst. 2022, 6, 881434. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, H.; Huang, J.; Zhao, J.; Yan, B.; Ma, S.; Zhang, H.; Fan, D. The physicochemical properties of chitosan prepared by microwave heating. Food Sci. Nutr. 2020, 8, 1987–1994. [Google Scholar] [CrossRef]
- Hussein, M.A.M.; Grinholc, M.; Dena, A.S.A.; El-Sherbiny, I.M.; Megahed, M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef]
- Pan, C.; Qian, J.; Zhao, C.; Yang, H.; Zhao, X.; Guo, H. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr. Polym. 2020, 241, 116349. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Algharib, S.A.; Dawood, A.; Zhou, K.; Chen, D.; Li, C.; Meng, K.; Zhang, A.; Luo, W.; Ahmed, S.; Huang, L.; et al. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. J. Mol. Struct. 2022, 1252, 132129. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Cruz-Romero, M.; Collins, T.; Cummins, E.; Kerry, J.P.; Morris, M.A. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll. 2018, 83, 355–364. [Google Scholar] [CrossRef]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313–353. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, A.B. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Futur. J. Pharm. Sci. 2021, 7, 200. [Google Scholar] [CrossRef]
- Ha Pham, T.T.; Vu, X.H.; Dien, N.D.; Trang, T.T.; Van Truong, N.; Thanh, T.D.; Tan, P.M.; Ca, N.X. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application. RSC Adv. 2020, 10, 24577–24594. [Google Scholar] [CrossRef] [PubMed]
- Dikkumbura, A.S.; Hamal, P.; Chen, M.; Babayode, D.A.; Ranasinghe, J.C.; Lopata, K.; Haber, L.H. Growth Dynamics of Colloidal Silver-Gold Core-Shell Nanoparticles Studied by in Situ Second Harmonic Generation and Extinction Spectroscopy. J. Phys. Chem. C 2021, 125, 25615–25623. [Google Scholar] [CrossRef] [PubMed]
- Alwhibi, M.S.; Ortashi, K.M.O.; Hendi, A.A.; Awad, M.A.; Soliman, D.A.; El-Zaidy, M. Green synthesis, characterization and biomedical potential of Ag@Au core–shell noble metal nanoparticles. J. King Saud Univ.—Sci. 2022, 34, 102000. [Google Scholar] [CrossRef]
- Gordel-Wójcik, M.; Pietrzak, M.; Kołkowski, R.; Zych, E. Silica-coated gold nanoshells: Surface chemistry, optical properties and stability. J. Lumin. 2024, 270, 120565. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Hwang, S.; Park, S.-J. Gold nanoshells with varying morphologies through templated surfactant-assisted seed-growth method. Bull. Korean Chem. Soc. 2023, 45, 486–494. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Mehrdel, B. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications. Chin. J. Phys. 2020, 64, 305–325. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baró, A.M. WsxM 5.0. Rev. Sci. Instrum 2007, 78, 13705. [Google Scholar] [CrossRef]
- Liu, H.; Chen, D.; Tang, F.; Du, G.; Li, L.; Meng, X.; Liang, W.; Zhang, Y.; Teng, X.; Li, Y. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 2008, 19, 455101. [Google Scholar] [CrossRef]
- Sood, A.; Arora, V.; Shah, J.; Kotnala, R.K.; Jain, T.K. Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J. Exp. Nanosci. 2016, 11, 370–382. [Google Scholar] [CrossRef]
- Grabowska-Jadach, I.; Kalinowska, D.; Drozd, M.; Pietrzak, M. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy—New particles for theranostics. Biomed. Pharmacother. 2019, 111, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Pattani, V.P.; Tunnell, J.W. Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types. Lasers Surg. Med. 2012, 44, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Savchuk, O.A.; Carvajal, J.J.; Massons, J.; Aguiló, M.; Díaz, F. Determination of photothermal conversion efficiency of graphene and graphene oxide through an integrating sphere method. Carbon N. Y. 2016, 103, 134–141. [Google Scholar] [CrossRef]
- Ayala-orozco, C.; Urban, C.; Knight, M.W.; Urban, A.S.; Neumann, O.; Bishnoi, S.W.; Mukherjee, S.; Goodman, A.M.; Charron, H.; Mitchell, T.; et al. Au Nanomatryoshkas as E ffi cient Transducers for Cancer Treatment: Benchmarking against Nanoshells. ACS Nano 2014, 8, 6372–6381. [Google Scholar] [CrossRef]
- Hassan, H.; Iskandar, C.F.; Hamzeh, R.; Malek, N.J.; El Khoury, A.; Abiad, M.G. Heat resistance of Staphylococcus aureus, Salmonella sp., and Escherichia coli isolated from frequently consumed foods in the Lebanese market. Int. J. Food Prop. 2022, 25, 2435–2444. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Z.; Li, F.; Xiao, Y.; Zhang, Y.; Bu, T.; Jia, P.; Zhe, T.; Wang, L. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS Appl. Mater. Interfaces 2019, 11, 31649–31660. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Q.; Wang, F.; Xiao, Z.; He, L.; He, D.; Deng, L. Gold-Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy. ACS Appl. Mater. Interfaces 2021, 13, 37535–37544. [Google Scholar] [CrossRef]
- Mao, C.; Xiang, Y.; Liu, X.; Zheng, Y.; Yeung, K.W.K.; Cui, Z.; Yang, X.; Li, Z.; Liang, Y.; Zhu, S.; et al. Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane to Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Appl. Mater. Interfaces 2019, 11, 17902–17914. [Google Scholar] [CrossRef]
- Millenbaugh, N.J.; Baskin, J.B.; DeSilva, M.N.; Elliott, W.R.; Glickman, R.D. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int. J. Nanomed. 2015, 10, 1953–1960. [Google Scholar] [CrossRef]
- Uusitalo, M.; Eriksson, G.; Hulander, M.; Andersson, M. Gold Nanorods as Photothermal Antibacterial Materials. ACS Appl. Nano Mater. 2025, 8, 3661–3670. [Google Scholar] [CrossRef]
- Ma, K.; Li, Y.; Wang, Z.; Chen, Y.; Zhang, X.; Chen, C.; Yu, H.; Huang, J.; Yang, Z.; Wang, X.; et al. Core-Shell Gold Nanorod@Layered Double Hydroxide Nanomaterial with Highly Efficient Photothermal Conversion and Its Application in Antibacterial and Tumor Therapy. ACS Appl. Mater. Interfaces 2019, 11, 29630–29640. [Google Scholar] [CrossRef] [PubMed]
- Manivasagan, P.; Khan, F.; Hoang, G.; Mondal, S.; Kim, H.; Hoang Minh Doan, V.; Kim, Y.M.; Oh, J. Thiol chitosan-wrapped gold nanoshells for near-infrared laser-induced photothermal destruction of antibiotic-resistant bacteria. Carbohydr. Polym. 2019, 225, 115228. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.B.; Cho, H.Y.; Kim, T.H.; Yea, C.H.; Choi, J.W. Cell chip with a thiolated chitosan self-assembled monolayer to detect the effects of anticancer drugs on breast normal and cancer cells. Colloids Surfaces B Biointerfaces 2013, 112, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; Approved Standard; CLSI: Wayne, PA, USA, 2012; Volume 32, ISBN 1562387839. [Google Scholar]
- Topete, A.; Alatorre-Meda, M.; Iglesias, P.; Villar-Alvarez, E.M.; Barbosa, S.; Costoya, J.A.; Taboada, P.; Mosquera, V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 2014, 8, 2725–2738. [Google Scholar] [CrossRef]
- Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641. [Google Scholar] [CrossRef]
pH | Ratio TPP:TCS | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
4.5 | 1.2:1 | 298 ± 84 | 0.228 | +15 ± 1.2 |
1:1 | 248 ± 82 | 0.381 | +16 ± 1.3 | |
0.8:1 0.6:1 | 215 ± 63 204 ± 31 | 0.460 0.481 | +20 ± 1.5 +25 ± 2 | |
4.8 | 1.2:1 1:1 0.8:1 0.6:1 | 691 ± 142 236 ± 7 178 ± 3 205 ± 34 | 0.377 0.173 0.208 0.365 | +14 ± 1.1 +17 ± 1.3 +14 ± 0.5 +24 ± 1.9 |
5.0 | 1.2:1 | 1079 ± 123 | 0.390 | +12 ± 0.4 |
1:1 | 382 ± 6 | 0.247 | +14 ± 0.3 | |
0.8:1 0.6:1 | 215 ± 36 167 ± 4 | 0.280 0.423 | +15 ± 0.3 +17 ± 1 | |
5.2 | 1.2:1 | 3501 ± 439 | 0.407 | +11 ± 1.5 |
1:1 0.8:1 0.6:1 | 1616 ± 248 201 ± 25 166 ± 6 | 0.853 0.219 0.325 | +12 ± 0.6 +14 ± 1.2 +17 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Flores, P.D.; Gastelum-Cabrera, M.; Ballesteros-Monrreal, M.G.; Mendez-Pfeiffer, P.; Lopez-Mata, M.A.; García-González, G.; Rodea-Montealegre, G.E.; Juárez, J. Photothermal Bacterial Clearance Using Gold Nanoshells Grown on Chitosan Nanoparticles Dielectric Templates. Drugs Drug Candidates 2025, 4, 18. https://doi.org/10.3390/ddc4020018
Martinez-Flores PD, Gastelum-Cabrera M, Ballesteros-Monrreal MG, Mendez-Pfeiffer P, Lopez-Mata MA, García-González G, Rodea-Montealegre GE, Juárez J. Photothermal Bacterial Clearance Using Gold Nanoshells Grown on Chitosan Nanoparticles Dielectric Templates. Drugs and Drug Candidates. 2025; 4(2):18. https://doi.org/10.3390/ddc4020018
Chicago/Turabian StyleMartinez-Flores, Patricia Dolores, Marisol Gastelum-Cabrera, Manuel G. Ballesteros-Monrreal, Pablo Mendez-Pfeiffer, Marco Antonio Lopez-Mata, Gerardo García-González, Gerardo Erbey Rodea-Montealegre, and Josué Juárez. 2025. "Photothermal Bacterial Clearance Using Gold Nanoshells Grown on Chitosan Nanoparticles Dielectric Templates" Drugs and Drug Candidates 4, no. 2: 18. https://doi.org/10.3390/ddc4020018
APA StyleMartinez-Flores, P. D., Gastelum-Cabrera, M., Ballesteros-Monrreal, M. G., Mendez-Pfeiffer, P., Lopez-Mata, M. A., García-González, G., Rodea-Montealegre, G. E., & Juárez, J. (2025). Photothermal Bacterial Clearance Using Gold Nanoshells Grown on Chitosan Nanoparticles Dielectric Templates. Drugs and Drug Candidates, 4(2), 18. https://doi.org/10.3390/ddc4020018