Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation
Abstract
1. Introduction
2. Interactions Between Microorganisms and Plants in the Rhizosphere
3. Roles and Benefits of Microbial Inoculants
3.1. Enhanced Nutrient Availability
3.1.1. Nitrogen Fixation (Symbiotic and Free-Living)
3.1.2. Phosphorus Solubilization
3.1.3. Potassium Mobilization
3.2. Phytohormone Production
3.3. Vitamin and Enzyme Production
3.4. Disease Suppression and Plant Health
3.5. Soil Health and Structural Improvement
3.6. Stress Tolerance Enhancement
4. Types of Microbial Inoculants
5. Microbial Bioremediation: Restoring Soil Health
5.1. Degradation of Organic Pollutants
5.2. Detoxification of Heavy Metals Through Biosorption and Bioaccumulation
5.3. Transformation of Persistent Organic Pollutants (POPs)
6. Applications for Bioremediation in Agricultural Soils
6.1. Cleaning up Pesticide-Contaminated Soils
6.2. Managing Industrial Effluents and Wastewater in Agroecosystems
6.3. Role in Reducing Greenhouse Gas Emissions
6.4. Integration of Microbial Solutions into Agroecosystems
6.5. Combining Bio-Inoculants and Bioremediation for Holistic Soil Management
6.6. Strategies for Incorporating Microbial Products into Integrated Pest and Nutrient Management Systems
6.7. Synergistic Effects of Diverse Microbial Communities over Single Strains
7. Advances in Soil Microbiome Research and Technology
7.1. Metagenomics and Microbial Ecology
7.2. Biotechnology in Microbial Product Development
7.3. Monitoring and Assessment Tools
8. Challenges and Future Perspectives
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PGPB | Plant growth-promoting bacteria |
C | Carbon |
N | Nitrogen |
P | Phosphorus |
AMF | Arbuscular mycorrhizal fungus |
ISR | Induced systemic resistance |
IAA | Indole-3-acetic acid |
NH3 | Ammonia |
N2 | Nitrogen |
PSB | Phosphorus-solubilizing bacteria |
H+ | Protons |
HSPs | Heat shock proteins |
CO2 | Carbon dioxide |
Pb | Lead |
Cd | Cadmium |
Hg | Mercury |
POPs | Persistent organic pollutants |
DDT | Dichloro-diphenyl-trichloroethane |
CH4 | Methane |
N2O | Nitrous oxide |
GHGs | Greenhouse gases |
IPM | Integrated pest management |
References
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M. Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef]
- Pan, S.Y.; Dong, C.D.; Su, J.F.; Wang, P.Y.; Chen, C.W.; Chang, J.S.; Kim, H.; Huang, C.P.; Hung, C.M. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability 2021, 13, 5612. [Google Scholar] [CrossRef]
- He, X.; Abs, E.; Allison, S.D.; Tao, F.; Huang, Y.; Manzoni, S.; Abramoff, R.; Bruni, E.; Bowring, S.P.; Chakrawal, A.; et al. Emerging multiscale insights on microbial carbon use efficiency in the land carbon cycle. Nat. Commun. 2024, 15, 8010. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Mandal, S. Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India). Ecol. Indic. 2021, 123, 107369. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; Van De Ven, G.; Schut, A.G.; Van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Shukla, A.K.; Behera, S.K.; Dubey, S.K.; Sharma, S.; Randhawa, M.K.; Kaur, G.; Toor, A.S. Impact of fertilization and tillage practices on transformations of carbon, essential plant nutrients and microbial biota composition in soils: A review. Technol. Agron. 2024, 4, e003. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P. Role of arbuscular Mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Stockdale, E.A.; Watson, C.A. Biological indicators of soil quality in organic farming systems. Renew. Agric. Food Syst. 2009, 24, 308–318. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Radzikowski, P.; Stalenga, J.; Matyka, M. Comparison of the effect of perennial energy crops and arable crops on earthworm populations. Agronomy 2019, 9, 675. [Google Scholar] [CrossRef]
- Shah, K.K.; Tripathi, S.; Tiwari, I.; Shrestha, J.; Modi, B.; Paudel, N.; Das, B.D. Role of soil microbes in sustainable crop production and soil health: A review. Agric. Sci. Technol. 2021, 13, 109–118. [Google Scholar] [CrossRef]
- Silva, E.M.; Vieira, E.T.; Tashima, L.D.; Guilherme, D.D. A sustainability rereading of agrarian production systems. Interações 2017, 18, 43–54. [Google Scholar] [CrossRef]
- Saha, M.; Bandyopadhyay, P.K.; Sarkar, A.; Nandi, R.; Singh, K.C.; Sanyal, D. Understanding the impacts of sowing time and tillage in optimizing the micro-environment for rainfed lentil (Lens culinaris Medik) production in the lower Indo-Gangetic Plain. J. Soil Sci. Plant Nutr. 2020, 20, 2536–2551. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Butterworth-Heinemann: Waltham, MA, USA, 2020; pp. 25–54. [Google Scholar]
- Andrey, F.; Lenar, A.; Irina, P.; Inna, S. Removal of oil spills in temperate and cold climates of Russia experience in the creation and use of biopreparations based on effective microbial consortia. In Biodegradation, Pollutants and Bioremediation Principles; CRC Press: Boca Raton, FL, USA, 2021; pp. 137–159. [Google Scholar]
- Gupta, N.; Wijenayake, W.P.T.; Roy, D.; Kumar, R.; Rangot, M.; Chugh, P.; Santoyo, G.; Chattaraj, S.; Bhaskar, S.S.; Andjelković, S.; et al. Smart Recycling and Sustainable Lignocellulosic Waste Management. In Value Addition and Utilization of Lignocellulosic Biomass: Through Novel Technological Interventions; Springer Nature: Singapore, 2025; pp. 221–250. [Google Scholar]
- Verstraete, W.; Yanuka-Golub, K.; Driesen, N.; De Vrieze, J. Engineering microbial technologies for environmental sustainability: Choices to make. Microb. Biotechnol. 2022, 15, 215–227. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- Ren, B.; Hu, Y.; Chen, B.; Zhang, Y.; Thiele, J.; Shi, R.; Liu, M.; Bu, R. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci. Rep. 2018, 8, 5619. [Google Scholar] [CrossRef]
- Dai, Z.; Xiong, X.; Zhu, H.; Xu, H.; Leng, P.; Li, J.; Tang, C.; Xu, J. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 2021, 3, 239–254. [Google Scholar] [CrossRef]
- Doytchinov, V.V.; Dimov, S.G. Microbial community composition of the Antarctic ecosystems: Review of the bacteria, fungi, and archaea identified through an NGS-based metagenomics approach. Life 2022, 12, 916. [Google Scholar] [CrossRef]
- Soumare, A.; Djibril, S.A.; Diédhiou, A.G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere 2023, 33, 105–115. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Sharma, R.; Sindhu, S.; Sehrawat, A. Soil fertility improvement by symbiotic rhizobia for sustainable agriculture. Soil Fertil. Manag. Sustain. Dev. 2019, 1, 101–166. [Google Scholar]
- Olowe, O.M.; Akanmu, A.O.; Asemoloye, M.D. Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Ann. Appl. Biol. 2020, 177, 282–293. [Google Scholar] [CrossRef]
- Boamah, S.; Ojangba, T.; Zhang, S.; Zhu, N.; Osei, R.; John Tiika, R.; Boakye, T.A.; Khurshid, A.; Inayat, R.; Effah, Z.; et al. Evaluation of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated plants under salinity and Fusarium stresses. A Review. Eur. J. Plant Pathol. 2023, 166, 259–274. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.D.; Glick, B.R. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Sharma, S.; Sharma, V.; Singh, A.K.; Sharma, A.; Kumar, A.; Singh, J.; Sharma, A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. Chemosphere 2024, 362, 142678. [Google Scholar] [CrossRef]
- Sonbarse, P.P.; Kiran, K.; Sharma, P.; Parvatam, G. Biochemical and molecular insights of PGPR application for the augmentation of carotenoids, tocopherols, and folate in the foliage of Moringa oleifera. Phytochemistry 2020, 179, 112506. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia, U.l.; Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; et al. Arbuscular Mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Sharma, R. Ectomycorrhizal mushrooms: Their diversity, ecology and practical applications. Mycorrhiza-Funct. Divers. State Art 2017, 4, 99–131. [Google Scholar]
- Sathiyadash, K.; Muthukumar, T.; Karthikeyan, V.; Rajendran, K. Orchid Mycorrhizal fungi: Structure, function, and diversity. Orchid Biol. Recent Trends Chall. 2020, 1, 239–280. [Google Scholar]
- Khan, Y.; Shah, S.; Tian, H. The roles of arbuscular Mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops—A review. Agronomy 2022, 12, 2191. [Google Scholar] [CrossRef]
- Bhantana, P.; Rana, M.S.; Sun, X.C.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Hu, C.X. Arbuscular Mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Beslemes, D.; Tigka, E.; Roussis, I.; Kakabouki, I.; Mavroeidis, A.; Vlachostergios, D. Effect of arbuscular Mycorrhizal fungi on nitrogen and phosphorus uptake efficiency and crop productivity of two-rowed barley under different crop production systems. Plants 2023, 12, 1908. [Google Scholar] [CrossRef]
- Visconti, F.; López, R.; Olego, M.Á. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Al-Amri, S.M.; El-Enany, A.W. Enhancing rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture 2023, 13, 2092. [Google Scholar] [CrossRef]
- Sánchez-de Prager, M.; Cisneros-Rojas, C.A. Organic acids production by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization. Acta Agronómica 2017, 66, 241–247. [Google Scholar]
- Markos, D.; Yoseph, T. Revitalizing maize production through managing biological N fixation, soil acidification and nitrous oxide emission from legumes in tropics. Afr. J. Environ. Sci. Technol 2024, 18, 21–40. [Google Scholar]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef]
- Genetu, G.; Yli-Halla, M.; Asrat, M.; Alemayehu, M. Rhizobium inoculation and chemical fertilisation improve faba bean yield and yield components in Northwestern Ethiopia. Agriculture 2021, 11, 678. [Google Scholar] [CrossRef]
- Arif, M.S.; Shahzad, S.M.; Yasmeen, T.; Riaz, M.; Ashraf, M.; Ashraf, M.A.; Mubarik, M.S.; Kausar, R. Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria. Essent. Plant Nutr. Uptake Use Effic. Manag. 2017, 1, 513–556. [Google Scholar]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Olaniyan, F.T.; Alori, E.T.; Adekiya, A.O.; Ayorinde, B.B.; Daramola, F.Y.; Osemwegie, O.O.; Babalola, O.O. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann. Microbiol. 2022, 72, 45. [Google Scholar] [CrossRef]
- Basak, B.B.; Maity, A.; Ray, P.; Biswas, D.R.; Roy, S. Potassium supply in agriculture through biological potassium fertilizer: A promising and sustainable option for developing countries. Arch. Agron. Soil Sci. 2022, 68, 101–114. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Kumar, R.; Gunsola, D.; Živković, S.; Vasić, T.; Chattaraj, S.; Mitra, D. Strigolactones and Control of Parasitic Weeds. Strigolactones Emerg. Plant Horm. 2025, 1, 261–279. [Google Scholar]
- Iqbal, M.; Naveed, M.; Sanaullah, M.; Brtnicky, M.; Hussain, M.I.; Kucerik, J.; Holatko, J.; Mustafa, A. Plant microbe mediated enhancement in growth and yield of canola (Brassica napus L.) plant through auxin production and increased nutrient acquisition. J. Soils Sediments 2023, 23, 1233–1249. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Mosber, G.; Milton, A.H.; Alatürk, F.; Ali, B. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Curr. Microbiol. 2020, 77, 564–577. [Google Scholar] [CrossRef]
- Shaida, B.; Singh, V.; Alavudeen, S.S.; Ahmad, M.F.; Akhtar, M.S. Microbial vitamins in nutrition and healthcare. In Microbial Vitamins and Carotenoids in Food Biotechnology; Academic Press: Cambridge, MA, USA, 2024; pp. 223–260. [Google Scholar]
- Mohamed, B.F.; Sallam, N.M.; Alamri, S.A.; Abo-Elyousr, K.A.; Mostafa, Y.S.; Hashem, M. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt. J. Biol. Pest Control 2020, 30, 61. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Hashem, A.H.; El-Sayyad, G.S.; El-Wakil, D.A.; Selim, S.; Alkhalifah, D.H.; Attia, M.S. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop. Plant Pathol. 2023, 48, 105–127. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Asad, S.A. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Pan, R.; Martinez, A.; Brito, T.; Seidel, E. Processes of soil infiltration and water retention and strategies to increase their capacity. J. Exp. Agric. Int. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Kaur, R.; Page, K.L.; Dalal, R.C.; Menzies, N.W.; Dang, Y.P. Can molecular genetic techniques improve our understanding of the role the microbial biomass plays in soil aggregation? Eur. J. Soil Sci. 2022, 73, e13307. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Miller, T.; Kisiel, A.; Cembrowska-Lech, D.; Mikiciuk, M.; Łobodzińska, A.; Bokszczanin, K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture 2024, 14, 2228. [Google Scholar] [CrossRef]
- Ha-Tran, D.M.; Nguyen, T.T.; Hung, S.H.; Huang, E.; Huang, C.C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Amruthesh, K.N.; Murali, M.; Poczai, P.; Gafur, A.; et al. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef]
- Lindström, K.; Mousavi, S.A. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol. 2020, 13, 1314–1335. [Google Scholar] [CrossRef]
- Naqqash, T.; Malik, K.A.; Imran, A.; Hameed, S.; Shahid, M.; Hanif, M.K.; Majeed, A.; Iqbal, M.J.; Qaisrani, M.M.; van Elsas, J.D. Inoculation with Azospirillum spp. acts as the liming source for improving growth and nitrogen use efficiency of potato. Front. Plant Sci. 2022, 13, 929114. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, X.; He, X.; Zhao, W.; Cao, Y.; Guo, T.; Li, T.; Ni, H.; Tang, X. Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J. Plant Growth Regul. 2019, 38, 1314–1324. [Google Scholar] [CrossRef]
- de Sousa, S.M.; de Oliveira, C.A.; Andrade, D.L.; de Carvalho, C.G.; Ribeiro, V.P.; Pastina, M.M.; Marriel, I.E.; de Paula Lana, U.G.; Gomes, E.A. Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J. Plant Growth Regul. 2021, 40, 867–877. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Kamruzzaman, M.; Sarder, M.P.; Amin, M.S.; Joardar, J.C.; Islam, M.S.; Nasrin, S.; Islam, M.U.; Islam, F.; Rabbi, S.; et al. Mycorrhizal fungi increase plant nutrient uptake, aggregate stability and microbial biomass in the clay soil. Symbiosis 2024, 93, 163–176. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms—A review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; Zhou, J.; Yu, X. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. Sci. Total Environ. 2020, 715, 136912. [Google Scholar] [CrossRef]
- Meena, V.S.; Bahadur, I.; Maurya, B.R.; Kumar, A.; Meena, R.K.; Meena, S.K.; Verma, J.P. Potassium-solubilizing microorganism in evergreen agriculture: An overview. Potassium Solubilizing Microorg. Sustain. Agric. 2016, 1, 1–20. [Google Scholar]
- Fouad, F.A.; Youssef, D.G.; Shahat, F.M.; Abd El-Ghany, M.N. Role of microorganisms in biodegradation of pollutants. In Handbook of Biodegradable Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–40. [Google Scholar]
- Efremenko, E.; Stepanov, N.; Senko, O.; Aslanli, A.; Maslova, O.; Lyagin, I. Using fungi in artificial microbial consortia to solve bioremediation problems. Microorganisms 2024, 12, 470. [Google Scholar] [CrossRef]
- Baig, Z.T.; Abbasi, S.A.; Memon, A.G.; Naz, A.; Soomro, A.F. Assessment of degradation potential of Pseudomonas species in bioremediating soils contaminated with petroleum hydrocarbons. J. Chem. Technol. Biotechnol. 2022, 97, 455–465. [Google Scholar] [CrossRef]
- Kumar, R.; Kamboj, N.; Mitra, D. Microbial innovations in agriculture: Interdisciplinary approaches to leveraging microbes for food sustainability and security. Indian J. Microbiol. Res. 2024, 11, 129–139. [Google Scholar]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, X.; Lian, B. The degradation of dimethoate and the mineral immobilizing function for Cd2+ by Pseudomonas putida. Geomicrobiol. J. 2017, 34, 346–354. [Google Scholar] [CrossRef]
- Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar]
- Elangovan, S.; Pandian, S.B.; SJ, G.; Joshi, S.J. Polychlorinated biphenyls (PCBs): Environmental fate, challenges and bioremediation. Microb. Metab. Xenobiotic Compd. 2019, 1, 165–188. [Google Scholar]
- Matturro, B.; Frascadore, E.; Rossetti, S. High-throughput sequencing revealed novel Dehalococcoidia in dechlorinating microbial enrichments from PCB-contaminated marine sediments. FEMS Microbiol. Ecol. 2017, 93, fix134. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, R.; Prakash, O.; Rawat, A.; Pant, A.K. Impact of insecticides on soil and environment and their management strategies. In Agrochemicals in Soil and Environment: Impacts and Remediation; Springer Nature: Singapore, 2022; pp. 213–230. [Google Scholar]
- Gangola, S.; Bhatt, P.; Kumar, A.J.; Bhandari, G.; Joshi, S.; Punetha, A.; Bhatt, K.; Rene, E.R. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere 2022, 296, 133916. [Google Scholar] [CrossRef] [PubMed]
- Cycoń, M.; Wójcik, M.; Piotrowska-Seget, Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 2009, 76, 494–501. [Google Scholar] [CrossRef]
- Tunlid, A.; White, D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In Soil Biochemistry; CRC Press: Boca Raton, FL, USA, 2021; pp. 229–262. [Google Scholar]
- Ducklow, H. Bacterial production and biomass in the oceans. Microb. Ecol. Ocean. 2000, 1, 85–120. [Google Scholar]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Yarwood, S.A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: A critical review. FEMS Microbiol. Ecol. 2018, 94, fiy175. [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 2019, 94, 2101–2137. [Google Scholar] [CrossRef]
- Baker, B.J.; De Anda, V.; Seitz, K.W.; Dombrowski, N.; Santoro, A.E.; Lloyd, K.G. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 2020, 5, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Hejran, A.B.; Alimyar, O.; Afghan, R.; Niazi, P. Exploring the Multifaceted Role of Viruses in Sustaining Biodiversity: Mechanisms, Implications, and Contributions to Ecosystems Stability. Sci. Technol. Sci. Soc. 2024, 1, 35–49. [Google Scholar] [CrossRef]
- Martins, S.J.; Taerum, S.J.; Triplett, L.; Emerson, J.B.; Zasada, I.; de Toledo, B.F.; Kovac, J.; Martin, K.; Bull, C.T. Predators of soil bacteria in plant and human health. Phytobiomes J. 2022, 6, 184–200. [Google Scholar] [CrossRef]
- Sharma, R.; Salwan, R.; Sharma, V. Biology of nitrogen fixation in Frankia. In The Chemical Dialogue Between Plants and Beneficial Microorganisms; Academic Press: Cambridge, MA, USA, 2023; pp. 271–281. [Google Scholar]
- Condron, L.; Stark, C.; O’Callaghan, M.; Clinton, P.; Huang, Z. The role of microbial communities in the formation and decomposition of soil organic matter. Soil Microbiol. Sustain. Crop Prod. 2010, 1, 81–118. [Google Scholar]
- Bhanwaria, R.; Singh, B.; Musarella, C.M. Effect of organic manure and moisture regimes on soil physiochemical properties, microbial biomass Cmic: Nmic: Pmic turnover and yield of mustard grains in arid climate. Plants 2022, 11, 722. [Google Scholar] [CrossRef]
- Emami-Karvani, Z.; Chitsaz-Esfahani, Z. Phosphorus solubilization: Mechanisms, recent advancement and future challenge. In Soil Microbiomes for Sustainable Agriculture: Functional Annotation; Springer International Publishing: Cham, Switzerland, 2021; pp. 85–131. [Google Scholar]
- Ali, N.; Abbas, S.A.; Sharif, L.; Shafiq, M.; Kamran, Z.; Haseeb, M.; Shahid, M.A. Microbial extracellular polymeric substance and impacts on soil aggregation. In Bacterial Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2024; pp. 221–237. [Google Scholar]
- Nwokolo, N.L.; Enebe, M.C.; Chigor, C.B.; Chigor, V.N.; Dada, O.A. The contributions of biotic lines of defence to improving plant disease suppression in soils: A review. Rhizosphere 2021, 19, 100372. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A.; et al. Phytohormones as growth regulators during abiotic stress tolerance in plants. Front. Agron. 2022, 4, 765068. [Google Scholar] [CrossRef]
- Tariq, A.; Mushtaq, A. Untreated wastewater reasons and causes: A review of most affected areas and cities. Int. J. Chem. Biochem. Sci 2023, 23, 121–143. [Google Scholar]
- Kumar, R.; Kamboj, N.; Mitra, D.; Ray, A. Strengthening Local Communities Through Advanced Recycling Technology for Sustainable Growth. In AI Technologies for Enhancing Recycling Processes; Mitra, D., Choudhury, T., Madan, A., Chattaraj, S., Pellegrini, M., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 393–420. [Google Scholar]
- Kumar, R.; Kamboj, N.; Mitra, D.; Verma, D.; Choudhury, T. Bacterial Strategies: Novel Pathways for Sustainable Development Through Wastewater. In AI Technologies for Enhancing Recycling Processes; Mitra, D., Choudhury, T., Madan, A., Chattaraj, S., Pellegrini, M., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 421–440. [Google Scholar]
- Mekonnen, B.A.; Aragaw, T.A.; Genet, M.B. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Front. Environ. Sci. 2024, 12, 1354422. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, G.; Hussain, A.; Rani, A.; Thapliyal, A.; Gunsola, D.; Mitra, D. Pioneering zero-waste technologies utilization and its framework on sustainable management: International, national and state level. Discov. Appl. Sci. 2025, 7, 224. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Ranatunga, T.; Hiramatsu, K.; Onishi, T.; Ishiguro, Y. Process of denitrification in flooded rice soils. Rev. Agric. Sci. 2018, 6, 21–33. [Google Scholar] [CrossRef]
- Olawepo, G.K.; Kolawole, O.S.; Isah, J.O. Enhancing Soil Carbon Sequestration in the Global South: The Roles of Microbes and Biological Matter. In Sustainable Soil Systems in Global South; Springer Nature: Singapore, 2024; pp. 395–425. [Google Scholar]
- Koskey, G.; Mburu, S.W.; Awino, R.; Njeru, E.M.; Maingi, J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front. Sustain. Food Syst. 2021, 5, 606308. [Google Scholar] [CrossRef]
- Goud, B.R.; Raghavendra, M.; Prasad, P.S.; Hatti, V.; Halli, H.M.; Nayaka, G.V.; Suresh, G.; Maheshwari, K.S.; Adilakshmi, G.; Reddy, G.P.; et al. Sustainable management and restoration of the fertility of damaged soils. Agric. Issues Policies 2022, 1, 113. [Google Scholar]
- Maitra, S.; Brestic, M.; Bhadra, P.; Shankar, T.; Praharaj, S.; Palai, J.B.; Shah, M.M.; Barek, V.; Ondrisik, P.; Skalický, M.; et al. Bioinoculants—Natural biological resources for sustainable plant production. Microorganisms 2021, 10, 51. [Google Scholar] [CrossRef]
- Aslam, A.A.; Shamim, M.; Nazir, M.S.; Ishtaiq, M.; Akhtar, M.N.; Ali, Z.; Tahir, Z.; Abdullah, M.A. Applications of microbes in soil health maintenance for agricultural applications. Appl. Microbes Environ. Microb. Biotechnol. 2022, 1, 365–399. [Google Scholar]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lakhera, A.; Gulati, M.; Rani, A.; Thapliyal, A.; Gunsola, D.; Mitra, D. Genome Mining of Biocontrol Agents for Bioprospecting Action Modes. In Bio-Control Agents for Sustainable Agriculture; Mitra, D., de los Santos Villalobos, S., Rani, A., Elena Guerra Sierra, B., Andjelković, S., Eds.; Springer: Singapore, 2025. [Google Scholar]
- Daraban, G.M.; Hlihor, R.M.; Suteu, D. Pesticides vs. biopesticides: From pest management to toxicity and impacts on the environment and human health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [Google Scholar] [CrossRef]
- Kamboj, N.; Chugh, P.; Wijenayake, W.P.T.; Mitra, D.; Panneerselvam, P.; Kumar, R. Multifunctionality and Diversity of Antagonistic Potential Fungi as Biocontrol Agent. In Bio-Control Agents for Sustainable Agriculture; Mitra, D., de los Santos Villalobos, S., Rani, A., Elena Guerra Sierra, B., Andjelković, S., Eds.; Springer: Singapore, 2025. [Google Scholar]
- Samal, S.; Kumar, R.; Thapliyal, M.; Gunsola, D.; Apaarna; Mondal, S.; Khoshru, B.; Knezevic, M.; Dodiya, R.D.; Mitra, D. Insight into an Effective Development of Biocontrol Agent Formulation for Commercial Production. In Bio-Control Agents for Sustainable Agriculture; Mitra, D., de los Santos Villalobos, S., Rani, A., Elena Guerra Sierra, B., Andjelković, S., Eds.; Springer: Singapore, 2025. [Google Scholar]
- Harman, G.E.; Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019, 2019, 9106395. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, E.; Paço, A. Is the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable crops. Life 2020, 10, 24. [Google Scholar] [CrossRef]
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.R.; Sederoff, H.; Chiang, V.L.; Borriss, R. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef]
- Riesenfeld, C.S.; Schloss, P.D.; Handelsman, J. Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet 2004, 38, 525–552. [Google Scholar] [CrossRef]
- Ortiz-Estrada, Á.M.; Gollas-Galván, T.; Martínez-Córdova, L.R.; Martínez-Porchas, M. Predictive functional profiles using metagenomic 16S rRNA data: A novel approach to understanding the microbial ecology of aquaculture systems. Rev. Aquac. 2019, 11, 234–245. [Google Scholar] [CrossRef]
- Haggag, W.M.; Abouziena, H.F.; Abd-El-Kreem, F.; El Habbasha, S. Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res 2015, 7, 882–889. [Google Scholar]
- Nichio, B.T.D.L.; Chaves, R.B.R.; Pedrosa, F.D.O.; Raittz, R.T. Exploring diazotrophic diversity: Unveiling Nif core distribution and evolutionary patterns in nitrogen-fixing organisms. BMC Genom. 2025, 26, 81. [Google Scholar] [CrossRef]
- Samantaray, A.; Chattaraj, S.; Mitra, D.; Ganguly, A.; Kumar, R.; Gaur, A.; Thatoi, H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Curr. Res. Microb. Sci. 2024, 7, 100251. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Rai, A.K.; Stal, L.J. Cyanobacteria: An Economic Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fani, R.; Gallo, R.; Liò, P. Molecular evolution of nitrogen fixation: The evolutionary history of the nifD, nifK, nifE, and nifN genes. J. Mol. Evol. 2000, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Koirala, A.; Brözel, V.S. Phylogeny of nitrogenase structural and assembly components reveals new insights into the origin and distribution of nitrogen fixation across bacteria and archaea. Microorganisms 2021, 9, 1662. [Google Scholar] [CrossRef] [PubMed]
- Addo, M.A.; Dos Santos, P.C. Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem 2020, 21, 1749–1759. [Google Scholar] [CrossRef]
- Naorem, A.; Tilgam, J.; Priyadarshini, P.; Tak, Y.; Bharati, A.; Patel, A. Nitrogenase Enzyme Complex: Functions, Regulation, and Biotechnological Applications. In Advances in Plant Nitrogen Metabolism; CRC Press: Boca Raton, FL, USA, 2022; pp. 142–154. [Google Scholar]
- Li, Q.; Chen, S. Transfer of nitrogen fixation (nif) genes to non-diazotrophic hosts. Chembiochem 2020, 21, 1717–1722. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Huang, K.; Wang, F.; Mei, Z. Molecular mechanism and agricultural application of the NifA–NifL system for nitrogen fixation. Int. J. Mol. Sci. 2023, 24, 907. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Liu, Z.; Zhao, D.; Liu, X.; Zhang, B.; Li, J. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet. 2013, 9, e1003865. [Google Scholar] [CrossRef]
- Wongdee, J.; Boonkerd, N.; Teaumroong, N.; Tittabutr, P.; Giraud, E. Regulation of nitrogen fixation in Bradyrhizobium sp. strain DOA9 involves two distinct NifA regulatory proteins that are functionally redundant during symbiosis but not during free-living growth. Front. Microbiol. 2018, 9, 1644. [Google Scholar] [CrossRef]
- Schmitz, R.A.; Klopprogge, K.; Grabbe, R. Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol. Biotechnol. 2002, 4, 235–242. [Google Scholar]
- Rasul, M.; Yasmin, S.; Suleman, M.; Zaheer, A.; Reitz, T.; Tarkka, M.T.; Mirza, M.S. Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiol. Res. 2019, 223, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Gong, Z.; Xu, W.; Mou, Z. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 2019, 16, 1. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Cui, Z.; Peng, L.; Cao, C. Dynamics of phoD-and gcd-harboring microbial communities across an age sequence of biological soil crusts under sand-fixation plantation. Front. Microbiol. 2022, 13, 831888. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, X.; Ding, G.; Xu, F. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS ONE 2013, 8, e60801. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chanderman, A.; Makolomakwa, M.; Perumal, K.; Singh, S. Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit. Rev. Environ. Sci. Technol. 2016, 46, 556–591. [Google Scholar] [CrossRef]
- Negi, Y.K.; Pant, C.; Prabha, D.; Garg, S.K. Solubilization of Soil Insoluble Phosphate by Bacteria: Molecular Mechanism and Phosphorus Use Efficiency in Crop Plant. In Soil Bacteria: Biofertilization and Soil Health; Springer Nature: Singapore, 2024; pp. 179–205. [Google Scholar]
- Lin, W.; Zhao, D.; Luo, J. Distribution of alkaline phosphatase genes in cyanobacteria and the role of alkaline phosphatase on the acquisition of phosphorus from dissolved organic phosphorus for cyanobacterial growth. J. Appl. Phycol. 2018, 30, 839–850. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Zhao, J.; Liu, Y.; Chen, Z.; Tang, Z.; Zhang, J. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Sci. Total Environ. 2022, 821, 153406. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Y.; Ji, B.; Yan, Y.; Wang, Z.; Yang, M.; Yang, X. PhoD harboring microbial community and alkaline phosphatase as affected by long term fertilization regimes on a calcareous soil. Agronomy 2023, 13, 363. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Condron, L.M.; Dunfield, K.E.; Chen, Z.; Wang, J.; Chen, L. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 2019, 349, 36–44. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, R.; Xu, G.; Li, J.; Wang, Z.; Ci, E.; Gao, M. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under regimes of inorganic fertilizer reduction with straw. J. Soils Sediments 2021, 21, 388–402. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; Lv, G. Effects of Biochar on Soil Inorganic Phosphorus Components, Available Phosphorus, Enzyme Activities Related to Phosphorus Cycle, Microbial Functional Genes, and Seedling Growth of Populus euphratica under Different Water Conditions. Forests 2024, 15, 831. [Google Scholar] [CrossRef]
- Shah, G.; Fiaz, S.; Attia, K.A.; Khan, N.; Jamil, M.; Abbas, A.; Jumin, T. Indole pyruvate decarboxylase gene regulates the auxin synthesis pathway in rice by interacting with the indole-3-acetic acid–amido synthetase gene, promoting root hair development under cadmium stress. Front. Plant Sci. 2022, 13, 1023723. [Google Scholar] [CrossRef]
- Ryu, R.J.; Patten, C.L. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J. Bacteriol. 2008, 190, 7200–7208. [Google Scholar] [CrossRef]
- Shao, J.; Li, S.; Zhang, N.; Cui, X.; Zhou, X.; Zhang, G.; Zhang, R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb. Cell Factories 2015, 14, 130. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, T.; Kumar Sahu, S.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules 2019, 24, 1411. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Zhang, L.; Mu, J.; Jiang, Y.; Fu, H.; Ye, Z. Biosynthetic pathways and functions of indole-3-acetic acid in microorganisms. Microorganisms 2023, 11, 2077. [Google Scholar] [CrossRef]
- Liu, W.H.; Chen, F.F.; Wang, C.E.; Fu, H.H.; Fang, X.Q.; Ye, J.R.; Shi, J.Y. Indole-3-acetic acid in Burkholderia pyrrocinia JK-SH007: Enzymatic identification of the indole-3-acetamide synthesis pathway. Front. Microbiol. 2019, 10, 2559. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, X.; Aoi, Y.; Takebayashi, Y.; Yang, L.; Guo, X.; Zhao, Y. Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. J. Genet. Genom. 2020, 47, 157–165. [Google Scholar] [CrossRef]
- Laird, T.S.; Flores, N.; Leveau, J.H. Bacterial catabolism of indole-3-acetic acid. Appl. Microbiol. Biotechnol. 2020, 104, 9535–9550. [Google Scholar] [CrossRef]
- Abu-Zaitoon, Y.M.; Abu-Zaiton, A.; Tawaha, A.R.A.; Fandi, K.G.; Alnaimat, S.M.; Pati, S.; Almomani, F.A. Evidence from co-expression analysis for the involvement of amidase and INS in the tryptophan-independent pathway of IAA synthesis in Arabidopsis. Appl. Biochem. Biotechnol. 2022, 194, 4673–4682. [Google Scholar] [CrossRef]
- Mano, Y.; Nemoto, K.; Suzuki, M.; Seki, H.; Fujii, I.; Muranaka, T. The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J. Exp. Bot. 2010, 61, 25–32. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Zhang, X.; Xiao, Z.; Jiao, J.; Zhang, H.; Xu, L. Auxin signaling related to H+-ATPase synthesis and antioxidant enzyme activities regulates fluoranthene uptake by ryegrass roots. Ecotoxicol. Environ. Saf. 2025, 291, 117840. [Google Scholar] [CrossRef]
- Duan, X.; Chen, L.; Liu, Y.; Chen, H.; Wang, F.; Hu, Y. Integrated physicochemical, hormonal, and transcriptomic analysis reveals the underlying mechanism of callus formation in Pinellia ternata hydroponic cuttings. Front. Plant Sci. 2023, 14, 1189499. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, S.K.; Singh, M.; Singh, M.P.; Chinnusamy, V. Genome wide identification and characterization of Isopentenyl transferase (IPT) gene family associated with cytokinin synthesis in rice. Plant Physiol. Rep. 2024, 29, 207–225. [Google Scholar] [CrossRef]
- Wei, X.; Moreno-Hagelsieb, G.; Glick, B.R.; Doxey, A.C. Comparative analysis of adenylate isopentenyl transferase genes in plant growth-promoting bacteria and plant pathogenic bacteria. Heliyon 2023, 9, e13955. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Lai, N.; Kisiala, A.B.; Emery, R.N. Isopentenyltransferases as master regulators of crop performance: Their function, manipulation, and genetic potential for stress adaptation and yield improvement. Plant Biotechnol. J. 2021, 19, 1297–1313. [Google Scholar] [CrossRef]
- Yang, M.; Liu, G.; Yamamura, Y.; Chen, F.; Fu, J. Divergent evolution of the diterpene biosynthesis pathway in tea plants (Camellia sinensis) caused by single amino acid variation of ent-kaurene synthase. J. Agric. Food Chem. 2020, 68, 9930–9939. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, W.; Ding, Y.; Wu, Y.; Jiang, Q.; Wang, Y. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. Planta 2024, 259, 146. [Google Scholar] [CrossRef]
- Bajguz, A.; Piotrowska-Niczyporuk, A. Biosynthetic pathways of hormones in plants. Metabolites 2023, 13, 884. [Google Scholar] [CrossRef]
- Su, P.; Tong, Y.; Cheng, Q.; Hu, Y.; Zhang, M.; Yang, J.; Huang, L. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci. Rep. 2016, 6, 23057. [Google Scholar] [CrossRef]
- He, H.; Liang, G.; Lu, S.; Wang, P.; Liu, T.; Ma, Z.; Mao, J. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.). Genes 2019, 10, 680. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, N.; Bai, S.; Zeng, F.; Liu, C.; Zhang, Y.; Gai, W. Evolutionary and integrative analysis of the gibberellin 20-oxidase, 3-oxidase, and 2-oxidase gene family in Paeonia ostii: Insight into their roles in flower senescence. Agronomy 2024, 14, 590. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, L.; Wang, P.; Liao, Y.; Duan, L.; Lin, K.; Ni, J. Transcriptome-based construction of the gibberellin metabolism and signaling pathways in Eucalyptus grandis × E. urophylla, and functional characterization of GA20ox and GA2ox in regulating plant development and abiotic stress adaptations. Int. J. Mol. Sci. 2023, 24, 7051. [Google Scholar] [CrossRef]
- Gamalero, E.; Lingua, G.; Glick, B.R. Ethylene, ACC, and the plant growth-promoting enzyme ACC deaminase. Biology 2023, 12, 1043. [Google Scholar] [CrossRef]
- Naing, A.H.; Jeong, H.Y.; Jung, S.K.; Kim, C.K. Overexpression of 1-Aminocyclopropane-1-carboxylic acid Deaminase (acdS) gene in Petunia hybrida improves tolerance to abiotic stresses. Front. Plant Sci. 2021, 12, 737490. [Google Scholar] [CrossRef]
- Bomle, D.V.; Kiran, A.; Kumar, J.K.; Nagaraj, L.S.; Pradeep, C.K.; Ansari, M.A.; Niranjana, S.R. Plants saline environment in perception with rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Int. J. Mol. Sci. 2021, 22, 11461. [Google Scholar] [CrossRef]
- Rawal, H.; Nautiyal, Y.; Sharma, B.; Tiwari, S. Microbial Inoculants and Their Role in Abiotic Stress Management. In Microbial Inoculants: Applications for Sustainable Agriculture; Springer Nature: Singapore, 2024; pp. 163–201. [Google Scholar]
- Xavier, G.R.; Jesus, E.D.; Dias, A.; Coelho, M.R.; Molina, Y.C.; Rumjanek, N.G. Contribution of biofertilizers to pulse crops: From single-strain inoculants to new technologies based on microbiomes strategies. Plants 2023, 12, 954. [Google Scholar] [CrossRef]
- Bilal, M.; Munir, H.; Khan, M.I.; Khurshid, M.; Rasheed, T.; Rizwan, K.; Franco, M.; Iqbal, H.M. Gums-based engineered bio-nanostructures for greening the 21st-century biotechnological settings. Crit. Rev. Food Sci. Nutr. 2022, 62, 3913–3929. [Google Scholar] [CrossRef]
- Hariharan, G.; Prasannath, K. Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Front. Cell. Infect. Microbiol. 2021, 10, 600234. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Djemiel, C.; Dequiedt, S.; Karimi, B.; Cottin, A.; Horrigue, W.; Bailly, A.; Boutaleb, A.; Sadet-Bourgeteau, S.; Maron, P.A.; Chemidlin Prévost-Bouré, N.; et al. Potential of meta-omics to provide modern microbial indicators for monitoring soil quality and securing food production. Front. Microbiol. 2022, 13, 889788. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Tan, W.; Zhang, Z. Microplastics as an emerging environmental pollutant in agricultural soils: Effects on ecosystems and human health. Front. Environ. Sci. 2022, 10, 855292. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Xiong, C.; Egidi, E.; Singh, B.K. Formulation challenges associated with microbial biofertilizers in sustainable agriculture and paths forward. J. Sustain. Agric. Environ. 2024, 3, e70006. [Google Scholar] [CrossRef]
- Rogers, P.M.; Fridahl, M.; Yanda, P.; Hansson, A.; Pauline, N.; Haikola, S. Socio-economic determinants for biochar deployment in the southern highlands of Tanzania. Energies 2021, 15, 144. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Nagpal, S.; Sharma, P. Present scenario of bio-fertilizer production and marketing around the globe. In Biofertilizers; Woodhead Publishing: Oxford, UK, 2021; pp. 389–413. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, V.; Kumar, A.; Sayyed, R.Z.; Hesham, A.E.; Dhaliwal, H.S.; Saxena, A.K. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Rhizobacteria in Abiotic Stress Management; Springer: Singapore, 2019; Volume 1, pp. 255–308. [Google Scholar]
Microbial Inoculum | Effect | Details of Effects | References |
---|---|---|---|
Rhizobium Nitrogen-Fixing Bacteria | Nitrogen fixation in legumes | Increase nitrogen fixation and crop yields | [64] |
Azospirillum Nitrogen-Fixing Bacteria | Nitrogen fixation and plant growth | Increase nitrogen uptake and enhance root biomass | [65] |
Pseudomonas (PGPB) | Phosphorus solubilization and plant growth | Increase phosphorus availability and yield | [66] |
Bacillus (PGPB) | Phytohormone production and growth promotion | Increase root biomass and improve nutrient uptake | [67] |
Trichoderma Fungal Inoculant | Disease suppression and growth promotion | Reduce root rot and other diseases by enhancing growth in stress conditions | [68] |
Mycorrhizal fungi (AMF) | Phosphorus uptake and soil structure | Increase phosphorus uptake and improve soil aggregation | [69] |
Bacillus (PGPB) | Disease suppression via ISR | Reduce disease severity and enhance resistance to fungal and bacterial diseases | [70] |
Cellulolytic Bacteria | Organic matter decomposition | Accelerate decomposition and improve nutrient cycling and soil fertility | [71] |
Potassium-Solubilizing Microbes | Potassium mobilization | Increase potassium uptake in potassium-deficient soils | [72] |
Cellulolytic Bacteria | Organic matter decomposition | Accelerate decomposition and improve nutrient cycling and soil fertility | [71] |
Potassium-Solubilizing Microbes | Potassium mobilization | Increase potassium uptake in potassium-deficient soils | [72] |
Microbiomes | Functions/Details | References |
---|---|---|
Microbial Biomass | Soil contains between 107 and 109 microbial cells per gram of soil. | [86] |
Bacterial Biomass | Bacteria make up most of the total microbial biomass in the soil. | [87] |
Fungal Biomass | Microbial biomass. | [88] |
Bacterial Phyla | Proteobacteria: Dominant in nutrient cycling and organic matter degradation. Firmicutes: Important for breaking down complex organic molecules. Actinobacteria: Significant in organic matter decomposition and antibiotic production. Acidobacteria: Key players in acidic soil environment and nutrient cycling. Bacteroidetes: Degrade complex organic compounds. | [89] |
Fungal Phyla | Ascomycota: Important in decomposing plant material. Basidiomycota: Key in forming mycorrhizal associations and decaying complex materials. Zygomycota: Important for nutrient cycling and plant symbiosis. | [90] |
Archaea | Archaea represent a smaller portion but are critical in methanogenesis and ammonia oxidation. | [91] |
Viruses in Soil | Viruses can outnumber bacteria by a ratio of 10:1 and regulate microbial diversity. | [92] |
Protozoa and Nematodes | Protozoa and nematodes are important predators of soil bacteria and fungi. | [93] |
Microbial Contributions to Soil Health and Nutrient Cycling | ||
Microbial Role in Nitrogen Fixation | Nitrogen fixation bacteria, e.g., Rhizobium, Frankia, contribute most of total nitrogen input. | [94] |
Organic Matter Decomposition Rate | Microbial decomposition rates in temperate soils. | [95] |
Soil Carbon Storage | Total soil organic carbon. | [96] |
Phosphorus Cycling | Phosphorus-solubilizing bacteria, e.g., Pseudomonas, help convert insoluble phosphorus into bioavailable forms. | [97] |
Soil Aggregate Formation | Fungi produce extracellular polysaccharides to bind soil particles, improving soil aggregation. | [98] |
Soil Disease Suppression | Beneficial microbes can produce antibiotics or enzymes that suppress soil-borne pathogens. | [99] |
Plant Growth Promotion | Plant growth-promoting bacteria (PGPB) produce phytochromes, e.g., auxins, cytokinins, that enhance root growth. | [100] |
Gene | Full Name | Function | Notes | References |
---|---|---|---|---|
Nitrogen fixation genes | ||||
nifH | Nitrogenase iron protein gene | Encodes dinitrogenase reductase, essential for nitrogen fixation | Common marker gene for diazotrophs (N2-fixing bacteria); widely used in metagenomic studies | [126,127,128] |
nifD | Nitrogenase alpha subunit gene | Encodes one of the catalytic components of nitrogenase | Works with nifK to form dinitrogenase | [129,130,131] |
nifK | Nitrogenase beta subunit gene | Encodes another catalytic subunit of nitrogenase | Required for the full nitrogenase complex function | [130,132,133] |
nifA | Nitrogen fixation regulatory protein A | Activates transcription of nitrogen fixation genes | Regulates nif gene cluster expression under low nitrogen | [134,135,136] |
nifL | Nitrogen fixation regulatory protein L | Acts as a negative regulator of nif genes in the presence of oxygen or ammonia | Balances nitrogen fixation activity with environmental conditions | [134,137] |
Phosphate solubilization genes | ||||
gcd | Glucose dehydrogenase gene | Oxidizes glucose to gluconic acid | Gluconic acid solubilizes insoluble phosphates in the soil | [138,139,140] |
phyA/appA | Phytase genes | Hydrolyze phytic acid to release inorganic phosphate | Important in mobilizing organic phosphorus | [141,142,143] |
phoA | Alkaline phosphatase gene | Hydrolyzes organic phosphates under alkaline conditions | Enhances phosphate availability | [144,145,146] |
phoD | Alkaline phosphatase D gene | Another alkaline phosphatase with high activity in soils | Frequently found in plant rhizospheres; good marker for phosphorus cycling potential | [147,148,149] |
Hormone production genes | ||||
ipdC | Indole-3-pyruvate decarboxylase gene | Catalyzes conversion of indole-3-pyruvate to indole-3-acetaldehyde in IAA biosynthesis | Key gene in the tryptophan-dependent IAA pathway in PGPR | [150,151,152] |
iaaM | Tryptophan monooxygenase gene | Converts tryptophan to indole-3-acetamide | Part of the IAM (indole-3-acetamide) pathway in IAA synthesis | [153,154,155] |
iaaH | Indole-3-acetamide hydrolase gene | Converts indole-3-acetamide to IAA | Works in tandem with iaaM | [153,156,157] |
amiE | Amidase gene | Involved in auxin (IAA) biosynthesis | Associated with tryptophan metabolism | [158,159,160,161] |
Ipt | Isopentenyl transferase gene | Involved in cytokinin biosynthesis | Catalyzes the first step in cytokinin formation; often found in endophytes | [162,163,164] |
cps | Copalyl diphosphate synthase gene | Involved in gibberellin biosynthesis | Key enzyme in diterpenoid hormone production like GA | [165,166,167] |
ks | ent-Kaurene synthase gene | Converts CPP to ent-kaurene, a GA precursor | Works with cps in GA biosynthetic pathway | [165,168] |
ga20ox | Gibberellin 20-oxidase gene | Catalyzes formation of bioactive gibberellins | Important for growth regulation | [169,170,171] |
acdS | 1-Aminocyclopropane-1-carboxylate deaminase gene | Breaks down ACC, a precursor to ethylene | Reduces stress ethylene in plants, promoting root elongation and stress tolerance | [172,173,174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Farda, B.; Mignini, A.; Djebaili, R.; Koolman, L.; Paul, A.; Mondal, S.; Joel, J.M.; Pandit, A.; Panneerselvam, P.; et al. Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation. Bacteria 2025, 4, 28. https://doi.org/10.3390/bacteria4030028
Kumar R, Farda B, Mignini A, Djebaili R, Koolman L, Paul A, Mondal S, Joel JM, Pandit A, Panneerselvam P, et al. Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation. Bacteria. 2025; 4(3):28. https://doi.org/10.3390/bacteria4030028
Chicago/Turabian StyleKumar, Rahul, Beatrice Farda, Amedeo Mignini, Rihab Djebaili, Leonard Koolman, Alivia Paul, Subhankar Mondal, Joy M. Joel, Aditi Pandit, Periyasamy Panneerselvam, and et al. 2025. "Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation" Bacteria 4, no. 3: 28. https://doi.org/10.3390/bacteria4030028
APA StyleKumar, R., Farda, B., Mignini, A., Djebaili, R., Koolman, L., Paul, A., Mondal, S., Joel, J. M., Pandit, A., Panneerselvam, P., Pellegrini, M., & Mitra, D. (2025). Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation. Bacteria, 4(3), 28. https://doi.org/10.3390/bacteria4030028