Constraining the Inner Galactic DM Density Profile with H.E.S.S.
Abstract
1. Introduction
2. The Galactic Center
3. Spectral Modeling
4. Spatial Modeling
5. Results
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DM | Dark Matter |
CR | cosmic-ray |
H.E.S.S. | High Energy Stereoscopic System |
GC | Galactic Center |
DRAGON | Diffusion Reacceleration and Advection of Galactic cosmic-rays |
NFW | Navarro–Frenk–White |
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Benito, M.; Iocco, F.; Cuoco, A. Uncertainties in the Galactic Dark Matter distribution: An update. Phys. Dark Univ. 2021, 32, 100826. [Google Scholar] [CrossRef]
- Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. Astrophys. J. 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys. 2016, 57, 496–525. [Google Scholar] [CrossRef]
- Gammaldi, V. Multimessenger Multi-TeV Dark Matter. Front. Astron. Space Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Charles, E.; Sanchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G.A.; Meyer, M.; Tibaldo, L.; et al. Sensitivity Projections for Dark Matter Searches with the Fermi Large Area Telescope. Phys. Rep. 2016, 636, 1–46. [Google Scholar] [CrossRef]
- Delos, M.S.; Korsmeier, M.; Widmark, A.; Blanco, C.; Linden, T.; White, S.D.M. Limits on dark matter annihilation in prompt cusps from the isotropic gamma-ray background. arXiv 2023, arXiv:2307.13023. [Google Scholar]
- Zuriaga-Puig, J.; Gammaldi, V.; Gaggero, D.; Lacroix, T.; Sánchez-Conde, M.A. Multi-TeV dark matter density in the inner Milky Way halo: Spectral and dynamical constraints. J. Cosmol. Astropart. Phys. 2023, 11, 63. [Google Scholar] [CrossRef]
- Cembranos, J.A.R.; Gammaldi, V.; Maroto, A.L. Possible dark matter origin of the gamma ray emission from the Galactic Center observed by HESS. Phys. Rev. D Part. Fields Gravit. Cosmol. 2012, 86, 103506. [Google Scholar] [CrossRef]
- Cembranos, J.A.R.; Gammaldi, V.; Maroto, A.L. Spectral Study of the HESS J1745-290 Gamma-Ray Source as Dark Matter Signal. J. Cosmol. Astropart. Phys. 2013, 4, 51. [Google Scholar] [CrossRef]
- De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Fornieri, O.; Egberts, K.; Steppa, C.; Evoli, C. Galactic diffuse gamma rays meet the PeV frontier. Astron. Astrophys. 2023, 672, A58. [Google Scholar] [CrossRef]
- Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J.B.; Berge, D.; et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 2016, 531, 476. [Google Scholar] [CrossRef]
- Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Andersson, T.; Angüner, E.O.; Arakawa, M.; Arrieta, M.; Aubert, P.; et al. Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with H.E.S.S. Astron. Astrophys. 2018, 612, A9. [Google Scholar] [CrossRef]
- Abdallah, H.; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; et al. Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 2016, 117, 111301. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barnacka, A.; De Almeida, U.B.; Bazer-Bachi, A.R.; Becherini, Y.; Becker, J.; et al. Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. Phys. Rev. Lett. 2011, 106, 161301. [Google Scholar] [CrossRef]
- Abdalla, H.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Armand, C.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Martins, V.B.; Batzofin, R.; et al. Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey. Phys. Rev. Lett. 2022, 129, 111101. [Google Scholar] [CrossRef] [PubMed]
- Evans, N.W.; Ferrer, F.; Sarkar, S. A travel guide to the dark matter annihilation signal. Phys. Rev. D 2004, 69, 123501. [Google Scholar] [CrossRef]
- Cirelli, M.; Corcella, G.; Hektor, A.; Hütsi, G.; Kadastik, M.; Panci, P.; Raidal, M.; Sala, F.; Strumia, A. PPPC 4 DM ID: A poor particle physicist cookbook for dark matter indirect detection. J. Cosmol. Astropart. Phys. 2011, 3, 51. [Google Scholar] [CrossRef]
- Ciafaloni, P.; Comelli, D.; Riotto, A.; Sala, F.; Strumia, A.; Urbano, A. Weak Corrections are Relevant for Dark Matter Indirect Detection. J. Cosmol. Astropart. Phys. 2011, 3, 19. [Google Scholar] [CrossRef]
- Evoli, C.; Gaggero, D.; Grasso, D.; MacCione, L. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model. J. Cosmol. Astropart. Phys. 2008, 10, 018. [Google Scholar] [CrossRef]
- Evoli, C.; Gaggero, D.; Vittino, A.; Bernardo, G.D.; Mauro, M.D.; Ligorini, A.; Ullio, P.; Grasso, D. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients. J. Cosmol. Astropart. Phys. 2017, 2, 15. [Google Scholar] [CrossRef]
- Gaggero, D.; Grasso, D.; Marinelli, A.; Taoso, M.; Urbano, A. Diffuse cosmic rays shining in the Galactic center: A novel interpretation of H.E.S.S. and Fermi-LAT γ-ray data. Phys. Rev. Lett. 2017, 119, 031101. [Google Scholar] [CrossRef] [PubMed]
- Steigman, G.; Dasgupta, B.; Beacom, J.F. Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation. Phys. Rev. D 2012, 86, 023506. [Google Scholar] [CrossRef]
- McMillan, P.J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 2017, 465, 76–94. [Google Scholar] [CrossRef]
- Zhao, H. Analytical models for galactic nuclei. Mon. Not. Roy. Astron. Soc. 1996, 278, 488–496. [Google Scholar] [CrossRef]
- Gammaldi, V.; Avila-Reese, V.; Valenzuela, O.; Gonzalez-Morales, A.X. Analysis of the very inner Milky Way dark matter distribution and gamma-ray signals. Phys. Rev. D 2016, 94, 121301. [Google Scholar] [CrossRef]
- Abuter, R.; Aimar, N.; Amorim, A.; Ball, J.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Bourdarot, G.; Brander, W.; Cardoso, V.; et al. Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron. Astrophys. 2022, 657, L12. [Google Scholar] [CrossRef]
- Gondolo, P.; Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 1999, 83, 1719–1722. [Google Scholar] [CrossRef]
- Sadeghian, L.; Ferrer, F.; Will, C.M. Dark matter distributions around massive black holes: A general relativistic analysis. Phys. Rev. D 2013, 88, 063522. [Google Scholar] [CrossRef]
- Ciucă, I.; Kawata, D.; Ting, Y.S.; Grand, R.J.J.; Miglio, A.; Hayden, M.; Baba, J.; Fragkoudi, F.; Monty, S.; Buder, S.; et al. Chasing the impact of the Gaia-Sausage-Enceladus merger on the formation of the Milky Way thick disc. Mon. Not. R. Astron. Soc. Lett. 2023, 528, L122–L126. [Google Scholar] [CrossRef]
- Vasiliev, E.; Zelnikov, M. Dark matter dynamics in the galactic center. Phys. Rev. D 2008, 78, 083506. [Google Scholar] [CrossRef]
- Bertone, G.; Merritt, D. Dark matter dynamics and indirect detection. Mod. Phys. Lett. A 2005, 20, 1021–1036. [Google Scholar] [CrossRef]
Profile | ||||||
---|---|---|---|---|---|---|
DM-only | 1 | 1 | 3 | |||
GARR-I | 1 | |||||
GARR-I300 | 1 | |||||
GARR-II300 | ||||||
ERIS | 1 | 1 | 3 | |||
MOLL | ||||||
EAGLE | 1 | 3 | ||||
McMillan17 | 0– | 1 | 3 | – | – | – |
Benito20 | – | 1 | 3 | – | – | – |
Parameters | VIR | Ridge | Diffuse | Halo | IGS |
---|---|---|---|---|---|
() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuriaga-Puig, J. Constraining the Inner Galactic DM Density Profile with H.E.S.S. Astronomy 2024, 3, 114-121. https://doi.org/10.3390/astronomy3020008
Zuriaga-Puig J. Constraining the Inner Galactic DM Density Profile with H.E.S.S. Astronomy. 2024; 3(2):114-121. https://doi.org/10.3390/astronomy3020008
Chicago/Turabian StyleZuriaga-Puig, Jaume. 2024. "Constraining the Inner Galactic DM Density Profile with H.E.S.S." Astronomy 3, no. 2: 114-121. https://doi.org/10.3390/astronomy3020008
APA StyleZuriaga-Puig, J. (2024). Constraining the Inner Galactic DM Density Profile with H.E.S.S. Astronomy, 3(2), 114-121. https://doi.org/10.3390/astronomy3020008