Abstract
The aim of this work is to discuss the necessity to strongly modify the powerful well-acknowledged cell theory by taking into account the recently discovered universal cell-derived extracellular vesicles (EVs). In a great breakthrough, EVs are now known to mediate important cell interconnections, with many still unknown mechanisms. There is a missing step between the accumulated biological knowledge about EVs during the past two decades and the many recent preclinical searches, dealing with a few human patients compared to controls, for the applications of EVs in oncology. In this case, the huge amount of different cell-derived EVs generates an inextricable complexity. To evidence unknown EV-mediated mechanisms, a simple cell model would be much more convenient. The microorganism Dictyostelium discoideum (Dd) is ideal to achieve this goal as a wonderful eukaryotic in vitro and in vivo cell model. In 1998, we discovered Dd EVs to be involved in mediating a new multidrug resistance mechanism, and also the normal and physiological release of different EVs during the well-separated growth and starvation-induced differentiation of Dd cells. Moreover, Dd cells have many other advantageous characteristics. Axenic Dd cells are very well suited for conditioned-medium experiments to study the influence of specifically generated Dd EVs upon naive Dd cells, as will be shown in this presentation.
Funding
This research received no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The author declares no conflict of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).