Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime
Abstract
1. Introduction
2. Theory
2.1. Traditional Reservoir Computing
2.2. Nonlinear Dynamics of a Single Bubble
2.2.1. Keller–Miksis Equation
2.2.2. Physical Operating Regimes of Interest
2.3. Relevance of the Theoretical Framework to Experimental Realization
3. Bubble-Based Reservoir Computing
3.1. Physico-Computational Framework
3.2. Benchmarking Tasks
3.3. Computational Operating Regimes
4. Results and Discussion
4.1. Predictive Mode
4.2. Free-Running Mode
4.3. Classification Task
4.4. Impact of Training Data Noise
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
AR | autoregression |
LSTM | long short-term memory |
ML | machine learning |
NC | neuromorphic computing |
NMSE | normalized mean squared error |
PF | polynomial fitting |
RC | reservoir computing |
Appendix A. Energy Consumption Analysis and Comparative Evaluation with Non-Machine-Learning Methods and Long Short-Term Memory Model
Appendix A.1. Non-Machine-Learning-Based Methods
Appendix A.2. Long Short-Term Memory Model
Appendix A.3. Energy Consumption Analysis
Metric | Macro Bubble | Microfluidic | LSTM Model |
---|---|---|---|
Energy per run (J) | 10,000–500,000 | 150–1000 | 130 |
Volume | 10–100 | 10–100 μL | N/A |
Energy density (J/L) | 0.1–5 | 1–10 | N/A |
Run cost (USD) | 0.03–0.60 | 0.0001–0.003 | 0.000008 |
Repeatability | Moderate | High | Very High |
References
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Doan, N.A.K.; Polifke, W.; Magri, L. Short- and long-term predictions of chaotic flows and extreme events: A physics-constrained reservoir computing approach. Proc. R. Soc. A 2021, 477, 20210135. [Google Scholar] [CrossRef]
- Pfeffer, P.; Heyder, F.; Schumacher, J. Hybrid quantum-classical reservoir computing of thermal convection flow. Phys. Rev. Res. 2022, 4, 033176. [Google Scholar] [CrossRef]
- Perrusquía, A.; Guo, W. Reservoir computing for drone trajectory intent prediction: A physics informed approach. IEEE Trans. Cybern. 2024, 54, 4939–4948. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Salamin, Y.; Roques-Carmes, C.; Dangovski, R.; Luo, D.; Chen, Z.; Horodynski, M.; Sloan, J.; Uddin, S.Z.; Soljačić, M. Photonic probabilistic machine learning using quantum vacuum noise. Nat. Commun. 2024, 15, 7760. [Google Scholar] [CrossRef] [PubMed]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Newt. 2019, 115, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Fisher, I. Reservoir Computing; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Cucchi, M.; Abreu, S.; Ciccone, G.; Brunner, D.; Kleemann, H. Hands-on reservoir computing: A tutorial for practical implementation. Neuromorph. Comput. Eng. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Furuta, T.; Fujii, K.; Nakajima, K.; Tsunegi, S.; Kubota, H.; Suzuki, Y.; Miwa, S. Macromagnetic simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions. Phys. Rev. Appl. 2018, 10, 034063. [Google Scholar] [CrossRef]
- Watt, S.; Kostylev, M. Reservoir computing using a spin-wave delay-line active-ring resonator based on yttrium-iron-garnet film. Phys. Rev. Appl. 2020, 13, 034057. [Google Scholar] [CrossRef]
- Allwood, D.A.; Ellis, M.O.A.; Griffin, D.; Hayward, T.J.; Manneschi, L.; Musameh, M.F.K.; O’Keefe, S.; Stepney, S.; Swindells, C.; Trefzer, M.A.; et al. A perspective on physical reservoir computing with nanomagnetic devices. Appl. Phys. Lett. 2023, 122, 040501. [Google Scholar] [CrossRef]
- Marković, D.; Grollier, J. Quantum neuromorphic computing. Appl. Phys. Lett. 2020, 117, 150501. [Google Scholar] [CrossRef]
- Bravo, R.A.; Najafi, K.; Gao, X.; Yelin, S.F. Quantum Reservoir Computing Using Arrays of Rydberg Atoms. PRX Quantum 2022, 3, 030325. [Google Scholar] [CrossRef]
- Govia, L.C.G.; Ribeill, G.J.; Rowlands, G.E.; Krovi, H.K.; Ohki, T.A. Quantum reservoir computing with a single nonlinear oscillator. Phys. Rev. Res. 2021, 3, 013077. [Google Scholar] [CrossRef]
- Abbas, A.H.; Maksymov, I.S. Reservoir computing using measurement-controlled quantum dynamics. Electronics 2024, 13, 1164. [Google Scholar] [CrossRef]
- Goto, K.; Nakajima, K.; Notsu, H. Twin vortex computer in fluid flow. New J. Phys. 2021, 23, 063051. [Google Scholar] [CrossRef]
- Abbas, A.H.; Abdel-Ghani, H.; Maksymov, I.S. Classical and quantum physical reservoir computing for onboard artificial intelligence systems: A perspective. Dynamics 2024, 4, 643–670. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Pototsky, A. Reservoir computing based on solitary-like waves dynamics of liquid film flows: A proof of concept. EPL 2023, 142, 43001. [Google Scholar] [CrossRef]
- Marcucci, G.; Caramazza, P.; Shrivastava, S. A new paradigm of reservoir computing exploiting hydrodynamics. Phys. Fluids 2023, 35, 071703. [Google Scholar] [CrossRef]
- Matsuo, T.; Sato, D.; Koh, S.G.; Shima, H.; Naitoh, Y.; Akinaga, H.; Itoh, T.; Nokami, T.; Kobayashi, M.; Kinoshita, K. Dynamic nonlinear behavior of ionic liquid-based reservoir computing devices. ACS Appl. Mater. Interfaces 2022, 14, 36890–36901. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Hauser, H.; Kang, R.; Guglielmino, E.; Caldwell, D.; Pfeifer, R. A soft body as a reservoir: Case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 2013, 7, 91. [Google Scholar] [CrossRef]
- Nakajima, K.; Fischer, I.; Hauser, H. Exploiting physical reservoir computing with soft materials. J. R. Soc. Interface 2018, 15, 20180282. [Google Scholar] [CrossRef]
- Chembo, Y.K. Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos 2020, 30, 013111. [Google Scholar] [CrossRef]
- Penkovsky, B.; Larger, L.; Brunne, D. Efficient design of hardware-enabled reservoir computing in FPGAs. J. Appl. Phys. 2018, 124, 162101. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Jiang, J.; Kim, Y.; Joo, B.; Zheng, S.; Lee, S.; Yu, W.J.; Kong, B.S.; Yang, H. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 2021, 7, eabg1455. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Cheng, H.; Qiu, J.; Liu, X.; Wang, M.; Liu, Q. Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 2022, 14, 289–298. [Google Scholar] [CrossRef]
- Ikeda, S.; Awano, H.; Sato, T. Modular DFR: Digital delayed feedback reservoir model for enhancing design flexibility. ACM Trans. Embed. Comput. Syst. 2023, 22, 014008. [Google Scholar] [CrossRef]
- Wang, R.; Liang, Q.; Wang, S.; Cao, Y.; Ma, X.; Wang, H.; Hao, Y. Deep reservoir computing based on self-rectifying memristor synapse for time series prediction. Appl. Phys. Lett. 2023, 123, 042109. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Pototsky, A.; Suslov, S.A. Neural echo state network using oscillations of gas bubbles in water. Phys. Rev. E 2022, 105, 044206. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.; Yakopcic, C.; Harbour, S.; Taha, T.M. Detection and classification of drones through acoustic features using a spike-based reservoir computer for low power applications. In Proceedings of the 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, USA, 18–22 September 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Lymburn, T.; Algar, S.D.; Small, M.; Jüngling, T. Reservoir computing with swarms. Chaos 2020, 31, 033121. [Google Scholar] [CrossRef] [PubMed]
- Natschläger, T.; Maass, W.; Markram, H. The “Liquid Computer”: A novel strategy for real-time computing on time series. Telematik 2002, 8, 39. [Google Scholar]
- Jones, B.; Stekel, D.; Rowe, J.; Fernando, C. Is there a Liquid State Machine in the Bacterium Escherichia coli? In Proceedings of the 2007 IEEE Symposium on Artificial Life, Honolulu, HI, USA, 1–5 April 2007; pp. 187–191. [Google Scholar]
- Adamatzky, A. Advances in Unconventional Computing. Volume 2: Prototypes, Models and Algorithms; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Adamatzky, A. A brief history of liquid computers. Philos. Trans. R. Soc. B 2019, 374, 20180372. [Google Scholar] [CrossRef]
- Marcucci, G.; Pierangeli, D.; Conti, C. Theory of neuromorphic computing by waves: Machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett. 2020, 125, 093901. [Google Scholar] [CrossRef]
- Kheirabadi, N.R.; Chiolerio, A.; Szaciłowski, K.; Adamatzky, A. Neuromorphic liquids, colloids, and gels: A review. ChemPhysChem 2023, 24, e202200390. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S. Analogue and physical reservoir computing using water waves: Applications in power engineering and beyond. Energies 2023, 16, 5366. [Google Scholar] [CrossRef]
- Verdecchia, R.; Sallou, J.; Cruz, L. A systematic review of Green AI. WIREs Data Min. Knowl. 2023, 13, e1507. [Google Scholar] [CrossRef]
- Akhatov, I.; Gumerov, N.; Ohl, C.D.; Parlitz, U.; Lauterborn, W. The role of surface tension in stable single-bubble sonoluminescence. Phys. Rev. Lett. 1997, 78, 227–230. [Google Scholar] [CrossRef]
- Lauterborn, W.; Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys. 2010, 73, 106501. [Google Scholar] [CrossRef]
- Tandiono; Ohl, S.W.; Ow, D.S.W.; Klaseboer, E.; Wong, V.V.; Dumke, R.; Ohl, C.D. Sonochemistry and sonoluminescence in microfluidics. Proc. Natl. Acad. Sci. USA 2011, 108, 5996–5998. [Google Scholar] [CrossRef]
- Maksymov, I.S. Gas Bubble Photonics: Manipulating Sonoluminescence Light with Fluorescent and Plasmonic Nanoparticles. Appl. Sci. 2022, 12, 8790. [Google Scholar] [CrossRef]
- McKenna, T.M.; McMullen, T.A.; Shlesinger, M.F. The brain as a dynamic physical system. Neuroscience 1994, 60, 587–605. [Google Scholar] [CrossRef]
- Korn, H.; Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus Biol. 2003, 326, 787–840. [Google Scholar] [CrossRef]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef]
- Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 2004, 304, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Krauhausen, I.; Coen, C.T.; Spolaor, S.; Gkoupidenis, P.; van de Burgt, Y. Brain-inspired organic electronics: Merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 2024, 34, 2307729. [Google Scholar] [CrossRef]
- Nguyen, B.Q.H.; Maksymov, I.S.; Suslov, S.A. Spectrally wide acoustic frequency combs generated using oscillations of polydisperse gas bubble clusters in liquids. Phys. Rev. E 2021, 104, 035104. [Google Scholar] [CrossRef]
- Maksymov, I. Artificial musical creativity enabled by nonlinear oscillations of a bubble acting as a physical reservoir computing system. Int. J. Unconvent. Comput. 2023, 18, 249–269. [Google Scholar]
- Gaitan, D.F.; Crum, L.A.; Church, C.C.; Roy, R.A. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 1992, 91, 3166–3183. [Google Scholar] [CrossRef]
- Nguyen, B.Q.H.; Maksymov, I.S.; Suslov, S.A. Acoustic frequency combs using gas bubble cluster oscillations in liquids: A proof of concept. Sci. Rep. 2021, 11, 38. [Google Scholar] [CrossRef]
- Lukoševičius, M. A Practical Guide to Applying Echo State Networks. In Neural Networks: Tricks of the Trade, Reloaded; Montavon, G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 659–686. [Google Scholar]
- Jaeger, H. Short Term Memory in Echo State Networks; GMD Report 152; German National Research Center for Information Technology: Birlinghoven, Germany, 2001. [Google Scholar]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Cole, R.H. Underwater Explosions; Princeton University Press: New York, NY, USA, 1948. [Google Scholar]
- Plesset, M.S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 228–231. [Google Scholar] [CrossRef]
- Keller, J.B.; Miksis, M. Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 1980, 68, 628–633. [Google Scholar] [CrossRef]
- Minnaert, M. On musical air-bubbles and the sound of running water. Phil. Mag. 1933, 16, 235–248. [Google Scholar] [CrossRef]
- Prosperetti, A. Nonlinear oscillations of gas bubbles in liquids: Steady-state solutions. J. Acoust. Soc. Am. 1974, 56, 878–885. [Google Scholar] [CrossRef]
- Prosperetti, A. Application of the subharmonic threshold to the measurement of the damping of oscillating gas bubbles. J. Acoust. Soc. Am. 1977, 61, 11–16. [Google Scholar] [CrossRef]
- Prosperetti, A. Bubble phenomena in sound fields: Part one. Ultrasonics 1984, 22, 69–77. [Google Scholar] [CrossRef]
- Parlitz, U.; Englisch, V.; Scheffczyk, C.; Lauterborn, W. Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 1990, 88, 1061–1077. [Google Scholar] [CrossRef]
- Lauterborn, W.; Mettin, R. Nonlinear Bubble Dynamics. In Sonochemistry and Sonoluminescence; Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 63–72. [Google Scholar]
- Leighton, T. The Acoustic Bubble; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Mettin, R.; Akhatov, I.; Parlitz, U.; Ohl, C.D.; Lauterborn, W. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 1997, 56, 2924–2931. [Google Scholar] [CrossRef]
- Doinikov, A.A. Translational motion of two interacting bubbles in a strong acoustic field. Phys. Rev. E 2001, 64, 026301. [Google Scholar] [CrossRef]
- Doinikov, A.A. Translational motion of a spherical bubble in an acoustic standing wave of high intensity. Phys. Fluids 2002, 14, 1420. [Google Scholar] [CrossRef]
- Suslov, S.A.; Ooi, A.; Manasseh, R. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall. Phys. Rev. E 2012, 85, 066309. [Google Scholar] [CrossRef]
- Sojahrood, A.; Earl, R.; Kolios, M.; Karshafian, R. Investigation of the 1/2 order subharmonic emissions of the period-2 oscillations of an ultrasonically excited bubble. Ultrason. Sonochem. 2021, 72, 105423. [Google Scholar] [CrossRef]
- Sojahrood, A.J.; Kolios, M.C. Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency. Phys. Lett. A 2012, 376, 2222–2229. [Google Scholar] [CrossRef]
- Haghi, H.; Sojahrood, A.; Kolios, M. Collective nonlinear behavior of interacting polydisperse microbubble clusters. Ultrason. Sonochem. 2019, 58, 104708. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Nguyen, B.Q.H.; Suslov, S.A. Biomechanical sensing using gas bubbles oscillations in liquids and adjacent technologies: Theory and practical applications. Biosensors 2022, 12, 624. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S.; Nguyen, B.Q.H.; Pototsky, A.; Suslov, S.A. Acoustic, phononic, Brillouin light scattering and Faraday wave-based frequency combs: Physical foundations and applications. Sensors 2022, 22, 3921. [Google Scholar] [CrossRef] [PubMed]
- Zandi-Mehran, N.; Nazarimehr, F.; Rajagopal, K.; Ghosh, D.; Jafari, S.; Chen, G. FFT bifurcation: A tool for spectrum analyzing of dynamical systems. Appl. Math. Comput. 2022, 422, 126986. [Google Scholar] [CrossRef]
- Nakajima, K.; Fischer, I. (Eds.) Reservoir Computing: Theory, Physical Implementations, and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Bertschinger, N.; Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 2004, 16, 1413–1436. [Google Scholar] [CrossRef]
- Carroll, T.L. Do reservoir computers work best at the edge of chaos? Chaos 2020, 30, 121109. [Google Scholar] [CrossRef]
- Bollt, E. On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD. Chaos 2021, 31, 013108. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, Z.; Yamahara, H.; Tabata, H. Echo state network activation function based on bistable stochastic resonance. Chaos Solitons Fract. 2021, 153, 111503. [Google Scholar] [CrossRef]
- Nishioka, D.; Tsuchiya, T.; Namiki, W.; Takayanagi, M.; Imura, M.; Koide, Y.; Higuchi, T.; Terabe, K. Edge-of-chaos learning achieved by ion-electron–coupled dynamics in an ion-gating reservoir. Sci. Adv. 2022, 8, eade1156. [Google Scholar] [CrossRef]
- Baccetti, V.; Zhu, R.; Kuncic, Z.; Caravelli, F. Ergodicity, lack thereof, and the performance of reservoir computing with memristive networks. Nano Express 2024, 5, 015021. [Google Scholar] [CrossRef]
- Abbas, A.H.; Abdel-Ghani, H.; Maksymov, I.S. Edge-of-chaos and chaotic dynamics in resistor-inductor-diode-based reservoir computing. IEEE Access 2025, 13, 18191–18199. [Google Scholar] [CrossRef]
- Gauthier, D.J.; Bollt, E.; Griffith, A.; Barbosa, W.A.S. Next generation reservoir computing. Nat. Commun. 2021, 12, 5564. [Google Scholar] [CrossRef]
- Harding, S.; Leishman, Q.; Lunceford, W.; Passey, D.J.; Pool, T.; Webb, B. Global forecasts in reservoir computers. Chaos 2024, 34, 023136. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, J.; Wang, Y. Towards fault tolerance of reservoir computing in time series prediction. Information 2023, 14, 266. [Google Scholar] [CrossRef]
- Hénon, M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 1976, 50, 69–77. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Watt, S.; Kostylev, M.; Ustinov, A.B.; Kalinikos, B.A. Implementing a magnonic reservoir computer model based on time-delay multiplexing. Phys. Rev. Appl. 2021, 15, 064060. [Google Scholar] [CrossRef]
- Lee, J.; De Brouwer, E.; Hamzi, B.; Owhadi, H. Learning dynamical systems from data: A simple cross-validation perspective, Part III: Irregularly-sampled time series. Phys. D 2023, 443, 133546. [Google Scholar] [CrossRef]
- Sun, C.; Hong, S.; Song, M.; Chou, Y.H.; Sun, Y.; Cai, D.; Li, H. TE-ESN: Time Encoding Echo State Network for Prediction Based on Irregularly Sampled Time Series Data. arXiv 2021. [Google Scholar] [CrossRef]
- Dudas, J.; Carles, B.; Plouet, E.; Mizrahi, F.A.; Grollier, J.; Marković, D. Quantum reservoir computing implementation on coherently coupled quantum oscillators. NPJ Quantum Inf. 2023, 9, 64. [Google Scholar] [CrossRef]
- Shougat, M.R.E.U.; Perkins, E. The van der Pol physical reservoir computer. Neuromorph. Comput. Eng. 2023, 3, 024004. [Google Scholar] [CrossRef]
- Pathak, J.; Lu, Z.; Hunt, B.R.; Girvan, M.; Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 2017, 27, 121102. [Google Scholar] [CrossRef]
- Pathak, J.; Hunt, B.R.; Girvan, M.; Lu, Z.; Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 2018, 120, 24102. [Google Scholar] [CrossRef]
- Nathe, C.; Pappu, C.; Mecholsky, N.A.; Hart, J.; Carroll, T.; Sorrentino, F. Reservoir computing with noise. Chaos 2023, 33, 041101. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, J.; Yan, Z.; Gao, J. Noise resistance of next-generation reservoir computing: A comparative study with high-order correlation computation. Nonlinear Dyn. 2023, 111, 14295–14308. [Google Scholar] [CrossRef]
- Polloreno, A.M. Limits to Analog Reservoir Learning. arXiv 2025, arXiv:2307.14474. [Google Scholar]
- Li, Z.; Andreev, A.; Hramov, A.; Blyuss, O.; Zaikin, A. Novel efficient reservoir computing methodologies for regular and irregular time series classification. Nonlinear Dyn. 2025, 113, 4045–4062. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, K.; Chen, Z.; Maul, T.; Yin, J. Exploring feature sparsity for out-of-distribution detection. Sci. Rep. 2024, 14, 28444. [Google Scholar] [CrossRef] [PubMed]
- Regonda, S.; Rajagopalan, B.; Lall, U.; Clark, M.; Moon, Y.I. Local polynomial method for ensemble forecast of time series. Nonlinear Process. Geophys. 2005, 12, 397–406. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Sangiorgio, M.; Dercole, F.; Guariso, G. Forecasting of noisy chaotic systems with deep neural networks. Chaos Solitons Fractals 2021, 153, 111570. [Google Scholar] [CrossRef]
- Vismaya, V.S.; Hareendran, A.; Nair, B.V.; Muni, S.S.; Lellep, M. Comparative Analysis of Predicting Subsequent Steps in Hénon Map. arXiv 2024, arXiv:2405.10190. [Google Scholar]
- Maksymov, I.S. Physical reservoir computing enabled by solitary waves and biologically inspired nonlinear transformation of input data. Dynamics 2024, 4, 119–134. [Google Scholar] [CrossRef]
- Malashin, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A. Applications of long short-term memory (LSTM) networks in polymeric sciences: A review. Polymers 2024, 16, 2607. [Google Scholar] [CrossRef] [PubMed]
- Apple Inc. Mac Mini (2018)—Technical Specifications. Apple Support. 2020. Available online: https://support.apple.com/en-au/102027 (accessed on 15 March 2024).
- Shang, X.; Huang, X. Investigation of the dynamics of cavitation bubbles in a microfluidic channel with actuations. Micromachines 2022, 13, 203. [Google Scholar] [CrossRef]
- González, I.; Candil, M.; Luzuriaga, J. Acoustophoretic trapping of particles by bubbles in microfluidics. Front. Phys. 2023, 11, 1062433. [Google Scholar] [CrossRef]
- Pedretti, G.; Ielmini, D. In-memory computing with resistive memory circuits: Status and outlook. Electronics 2021, 10, 1063. [Google Scholar] [CrossRef]
- Shirmohammadli, V.; Bahreyni, B. Physics-based approach to developing physical reservoir computers. Phys. Rev. Res. 2024, 6, 033055. [Google Scholar] [CrossRef]
- Picco, E.; Jaurigue, L.; Lüdge, K.; Massar, S. Efficient optimisation of physical reservoir computers using only a delayed input. Commun. Eng. 2025, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Sadati, S.M.H.; Perera, S.; Hauser, H.; Childs, P.R.N.; Nanayakkara, T. Tapered whisker reservoir computing for real-time terrain identification-based navigation. Sci. Rep. 2023, 13, 5213. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Unit |
---|---|---|
Density of water () | 998 | kg/m3 |
Static pressure () | Pa | |
Vapor pressure () | Pa | |
Surface tension () | N/m | |
Gas polytropic exponent () | 1.4 | - |
Driving acoustic frequency () | Hz | |
Dynamic viscosity () | kg/(m·s) | |
Equilibrium bubble radius () | m | |
Velocity of sound in water (c) | m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Ghani, H.; Abbas, A.H.; Maksymov, I.S. Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime. AppliedMath 2025, 5, 101. https://doi.org/10.3390/appliedmath5030101
Abdel-Ghani H, Abbas AH, Maksymov IS. Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime. AppliedMath. 2025; 5(3):101. https://doi.org/10.3390/appliedmath5030101
Chicago/Turabian StyleAbdel-Ghani, Hend, A. H. Abbas, and Ivan S. Maksymov. 2025. "Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime" AppliedMath 5, no. 3: 101. https://doi.org/10.3390/appliedmath5030101
APA StyleAbdel-Ghani, H., Abbas, A. H., & Maksymov, I. S. (2025). Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime. AppliedMath, 5(3), 101. https://doi.org/10.3390/appliedmath5030101