KRM-II-81, a β3-Preferring GABAA Receptor Potentiator, Blocks Handling-Induced Seizures in Theiler’s Murine Encephalomyelitis Virus-Infected Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. TMEV Model
2.2. Subunit Composition
3. Results
3.1. TMEV Model
3.2. Subunit Composition
4. Discussion
Compound | Mechanism(s) | TMEV Model |
---|---|---|
KRM-II-81 | GABAA α2/3 | Active (Present manuscript) |
Darigabat | GABAA α2/3 | ------------ |
Diazepam | GABAA | ------------ |
Phenobarbital | GABAA | Active [7] |
Tiagabine | GABA | ------------ |
Vigabatrin | GABA | ------------ |
Clonazepam | GABA | Not Active [7] |
Phenytoin | Na+ Channels | Active [7] |
Lamotrigine | Na+ Channels | Not Active [7] |
Valproate | Na+ Channels | Active [4,7] |
Topiramate | Na+ Channels | ------------ |
Carbamazepine | Na+ Channels | Increase [4] a |
Gabapentin | Ca2+ Channels | ------------ |
Ethosuxamide | Ca2+ Channels | Not Active [7] |
Levetiracetam | SV2A | Active [7,11] Increase [38] |
NBQX | AMPA | Increase [12] a |
Perampanel | AMPA | ------------ |
Cannabidiol | Cannabinoid | Active [29] |
Ceftriaxone | Cephalosporin antibiotic | Not Active [39] |
VU0360172 | mGlu5 receptor potentiator | Active [40] |
CCPA | Adenosine 1 receptor agonist | ------------ |
Minocycline | Tetracycline antibiotic | Active [41] Not Active [7] |
Soticlestat (TAK-935) | Cholesterol 24-hydroxylase inhibitor | Active [42] |
Dexamethasone | Corticosteroid | Active [7] |
Prednisone | Corticosteroid | Active [7] |
Ibuprofen | NSAID | Not Active [7] |
Diclofenac | NSAID | Not Active [7] |
Celocoxib | Cox-2 inhibitor | Active [7] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Witkin, J.M.; Lippa, A.; Smith, J.L.; Jin, X.; Ping, X.; Biggerstaff, A.; Kivell, B.M.; Knutson, D.E.; Sharmin, D.; Pandey, K.P.; et al. The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol. Biochem. Behav. 2022, 213, 173321. [Google Scholar] [CrossRef] [PubMed]
- Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines—Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther. 2022, 234, 108035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, Y.; Zou, J.; Yang, X.; Liu, Q.; Chen, Y. Seizures and epilepsy secondary to viral infection in the central nervous system. Acta Epileptol. 2020, 2, 12. [Google Scholar] [CrossRef]
- Barker-Haliski, M.L.; Dahle, E.J.; Heck, T.D.; Pruess, T.H.; Vanegas, F.; Wilcox, K.S.; White, H.S. Evaluating an etiologically relevant platform for therapy development for temporal lobe epilepsy: Effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler’s murine encephalomyelitis virus mouse model. J. Pharmacol. Exp. Ther. 2015, 353, 318–329. [Google Scholar] [CrossRef]
- Kirkman, N.J.; Libbey, J.E.; Wilcox, K.S.; White, H.S.; Fujinami, R.S. Innate but not adaptive immune responses contribute to behavioral seizures following viral infection. Epilepsia 2010, 51, 454–464. [Google Scholar] [CrossRef]
- Libbey, J.E.; Kirkman, N.J.; Smith, M.C.; Tanaka, T.; Wilcox, K.S.; White, H.S.; Fujinami, R.S. Seizures following picornavirus infection. Epilepsia 2008, 49, 1066–1074. [Google Scholar] [CrossRef]
- Metcalf, C.S.; Vanegas, F.; Underwood, T.; Johnson, K.; West, P.J.; Smith, M.D.; Wilcox, K.S. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler’s murine encephalomyelitis virus model of epilepsy. Epilepsia Open 2022, 7, 46–58. [Google Scholar] [CrossRef]
- Stewart, K.A.; Wilcox, K.S.; Fujinami, R.S.; White, H.S. Development of postinfection epilepsy after Theiler’s virus infection of C57BL/6 mice. J. Neuropathol. Exp. Neurol. 2010, 69, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Libbey, J.E.; Kennett, N.J.; Wilcox, K.S.; White, H.S.; Fujinami, R.S. Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. J. Virol. 2011, 85, 6913–6922. [Google Scholar] [CrossRef]
- Löscher, W.; Howe, C.L. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated with Viral Infection. Front. Mol. Neurosci. 2022, 15, 870868. [Google Scholar] [CrossRef]
- Batot, G.; Metcalf, C.S.; Bell, L.A.; Pauletti, A.; Wilcox, K.S.; Bröer, S. A Model for Epilepsy of Infectious Etiology using Theiler’s Murine Encephalomyelitis Virus. J. Vis. Exp. JoVE 2022, 184, e63673. [Google Scholar] [CrossRef]
- Libbey, J.E.; Hanak, T.J.; Doty, D.J.; Wilcox, K.S.; Fujinami, R.S. NBQX, a highly selective competitive antagonist of AMPA and KA ionotropic glutamate receptors, increases seizures and mortality following picornavirus infection. Exp. Neurol. 2016, 280, 89–96. [Google Scholar] [CrossRef]
- Witkin, J.M.; Cerne, R.; Davis, P.G.; Freeman, K.B.; do Carmo, J.M.; Rowlett, J.K.; Methuku, K.R.; Okun, A.; Gleason, S.D.; Li, X.; et al. The α2,3-selective potentiator of GABAA receptors, KRM-II-81, reduces nociceptive-associated behaviors induced by formalin and spinal nerve ligation in rats. Pharmacol. Biochem. Behav. 2019, 180, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.J.; Bonnert, T.P.; McKernan, R.M.; Farrar, S.; Le Bourdellès, B.; Heavens, R.P.; Smith, D.W.; Hewson, L.; Rigby, M.R.; Sirinathsinghji, D.J.; et al. Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann. N. Y. Acad. Sci. 1999, 868, 645–653. [Google Scholar] [CrossRef]
- Poe, M.M.; Methuku, K.R.; Li, G.; Verma, A.R.; Teske, K.A.; Stafford, D.C.; Arnold, L.A.; Cramer, J.W.; Jones, T.M.; Cerne, R.; et al. Synthesis and Characterization of a Novel γ-Aminobutyric Acid Type A (GABAA) Receptor Ligand That Combines Outstanding Metabolic Stability, Pharmacokinetics, and Anxiolytic Efficacy. J. Med. Chem. 2016, 59, 10800–10806. [Google Scholar] [CrossRef] [PubMed]
- Lewter, L.A.; Fisher, J.L.; Siemian, J.N.; Methuku, K.R.; Poe, M.M.; Cook, J.M.; Li, J.X. Antinociceptive Effects of a Novel α2/α3-Subtype Selective GABAA Receptor Positive Allosteric Modulator. ACS Chem. Neurosci. 2017, 8, 1305–1312. [Google Scholar] [CrossRef]
- Atack, J.R. GABAA receptor alpha2/alpha3 subtype-selective modulators as potential nonsedating anxiolytics. Curr. Top. Behav. Neurosci. 2010, 2, 331–360. [Google Scholar]
- Skolnick, P. Anxioselective anxiolytics: On a quest for the Holy Grail. Trends Pharmacol. Sci. 2012, 33, 611–620. [Google Scholar] [CrossRef]
- Gee, K.W.; Tran, M.B.; Hogenkamp, D.J.; Johnstone, T.B.; Bagnera, R.E.; Yoshimura, R.F.; Huang, J.C.; Belluzzi, J.D.; Whittemore, E.R. Limiting activity at beta1-subunit-containing GABAA receptor subtypes reduces ataxia. J. Pharmacol. Exp. Ther. 2010, 332, 1040–1053. [Google Scholar] [CrossRef]
- Yoshimura, R.F.; Tran, M.B.; Hogenkamp, D.J.; Johnstone, T.B.; Xie, J.Y.; Porreca, F.; Gee, K.W. Limited central side effects of a β-subunit subtype-selective GABAA receptor allosteric modulator. J. Psychopharmacol. 2014, 28, 472–478. [Google Scholar] [CrossRef]
- Johnstone, T.; Xie, J.Y.; Qu, C.; Wasiak, D.J.; Hogenkamp, D.J.; Porreca, F.; Gee, K.W. Positive allosteric modulators of nonbenzodiazepine γ-aminobutyric acidA receptor subtypes for the treatment of chronic pain. Pain 2019, 160, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Knutson, D.E.; Smith, J.L.; Ping, X.; Jin, X.; Golani, L.K.; Li, G.; Tiruveedhula, V.V.N.P.B.; Rashid, F.; Mian, M.Y.; Jahan, R.; et al. Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects. ACS Chem. Neurosci. 2020, 11, 2624–2637. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.Y.; Divović, B.; Sharmin, D.; Pandey, K.P.; Golani, L.K.; Tiruveedhula, V.; Cerne, R.; Smith, J.L.; Ping, X.; Jin, X.; et al. Hydrochloride Salt of the GABAkine KRM-II-81. ACS Omega 2022, 7, 27550–27559. [Google Scholar] [CrossRef] [PubMed]
- Golani, L.K.; Divović, B.; Sharmin, D.; Pandey, K.P.; Mian, M.Y.; Cerne, R.; Zahn, N.M.; Meyer, M.J.; Tiruveedhula, V.; Smith, J.L.; et al. Metabolism, pharmacokinetics, and anticonvulsant activity of a deuterated analog of the α2/3-selective GABAkine KRM-II-81. Biopharm. Drug Dispos. 2022, 43, 66–75. [Google Scholar] [CrossRef]
- Racine, R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef]
- Barker-Haliski, M.L.; Heck, T.D.; Dahle, E.J.; Vanegas, F.; Pruess, T.H.; Wilcox, K.S.; White, H.S. Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 2016, 57, 1958–1967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biggerstaff, A.; Kivell, B.; Smith, J.L.; Mian, M.Y.; Golani, L.K.; Rashid, F.; Sharmin, D.; Knutson, D.E.; Cerne, R.; Cook, J.M.; et al. The α2,3-selective potentiators of GABAA receptors, KRM-II-81 and MP-III-80, produce anxiolytic-like effects and block chemotherapy-induced hyperalgesia in mice without tolerance development. Pharmacol. Biochem. Behav. 2020, 196, 172996. [Google Scholar] [CrossRef]
- Pandey, S.; Rathore, C.; Michael, B.D. Antiepileptic drugs for the primary and secondary prevention of seizures in viral encephalitis. Cochrane Database Syst. Rev. 2016, 2016, CD010247. [Google Scholar] [CrossRef]
- Patel, D.C.; Wallis, G.; Fujinami, R.S.; Wilcox, K.S.; Smith, M.D. Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus. Epilepsia Open 2019, 4, 431–442. [Google Scholar] [CrossRef]
- Bouilleret, V.; Ridoux, V.; Depaulis, A.; Marescaux, C.; Nehlig, A.; Le Gal La Salle, G. Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: Electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 1999, 89, 717–729. [Google Scholar] [CrossRef]
- Canto, A.M.; Godoi, A.B.; Matos, A.; Geraldis, J.C.; Rogerio, F.; Alvim, M.; Yasuda, C.L.; Ghizoni, E.; Tedeschi, H.; Veiga, D.; et al. Benchmarking the proteomic profile of animal models of mesial temporal epilepsy. Ann. Clin. Transl. Neurol. 2022, 9, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Behr, C.; Lévesque, M.; Ragsdale, D.; Avoli, M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res. 2015, 115, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Meng, D.; Chen, Y.; Du, T.; Liu, Y.; Liu, D.; Shi, L.; Jiang, Y.; Zhang, X.; Zhang, J. Anterior nucleus of thalamus stimulation inhibited abnormal mossy fiber sprouting in kainic acid-induced epileptic rats. Brain Res. 2018, 1701, 28–35. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, G.; Shi, L.; Liu, D.; Zhang, X.; Liu, Y.; Yuan, T.; Du, T.; Zhang, J. Establishment of a novel mesial temporal lobe epilepsy rhesus monkey model via intra-hippocampal and intra-amygdala kainic acid injection assisted by neurosurgical robot system. Brain Res. Bull. 2019, 149, 32–41. [Google Scholar] [CrossRef]
- Duveau, V.; Pouyatos, B.; Bressand, K.; Bouyssières, C.; Chabrol, T.; Roche, Y.; Depaulis, A.; Roucard, C. Differential Effects of Antiepileptic Drugs on Focal Seizures in the Intrahippocampal Kainate Mouse Model of Mesial Temporal Lobe Epilepsy. CNS Neurosci. Ther. 2016, 22, 497–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pohlen, M.S.; Jin, J.; Tobias, R.S.; Maheshwari, A. Pharmacoresistance with newer anti-epileptic drugs in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res. 2017, 137, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.H.; Yasuda, C.L.; Coan, A.C.; Kanner, A.M.; Cendes, F. Concurrent mood and anxiety disorders are associated with pharmacoresistant seizures in patients with MTLE. Epilepsia 2017, 58, 1268–1276. [Google Scholar] [CrossRef]
- Barker-Haliski, M.L.; Löscher, W.; White, H.S.; Galanopoulou, A.S. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia 2017, 58, 39–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loewen, J.L.; Albertini, G.; Dahle, E.J.; Sato, H.; Smolders, I.J.; Massie, A.; Wilcox, K.S. Genetic and pharmacological manipulation of glial glutamate transporters does not alter infection-induced seizure activity. Exp. Neurol. 2019, 318, 50–60. [Google Scholar] [CrossRef]
- Hanak, T.J.; Libbey, J.E.; Doty, D.J.; Sim, J.T.; DePaula-Silva, A.B.; Fujinami, R.S. Positive modulation of mGluR5 attenuates seizures and reduces TNF-α+ macrophages and microglia in the brain in a murine model of virus-induced temporal lobe epilepsy. Exp. Neurol. 2019, 311, 194–204. [Google Scholar] [CrossRef]
- Libbey, J.E.; Kennett, N.J.; Wilcox, K.S.; White, H.S.; Fujinami, R.S. Once initiated, viral encephalitis-induced seizures are consistent no matter the treatment or lack of interleukin-6. J. Neurovirol. 2011, 17, 496–499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barker-Haliski, M.; Nishi, T.; White, H.S. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor, modifies acute seizure burden and chronic epilepsy-related behavioral deficits following Theiler’s virus infection in mice. Neuropharmacology 2023, 222, 109310. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Yoshimura, R.F.; Ramanathan, G.; Carver, C.; Johnstone, T.B.; Hogenkamp, D.J.; Gee, K.W. Role of β2/3-specific GABA-A receptor isoforms in the development of hippocampus kindling epileptogenesis. Epilepsy Behav. E&B 2018, 82, 57–63. [Google Scholar] [CrossRef]
Vehicle | KRM-II-81 | ANOVA |
---|---|---|
1.39 ± 0.39 | 0.03 ± 0.01 | F1,369 = 114, p < 0.0001 |
Treatment | 3 dpi | 4 dpi | 5 dpi | 6 dpi | 7 dpi |
---|---|---|---|---|---|
Vehicle | 13/40 | 15/40 | 15/40 | 15/40 | 3/40 |
KRM-II-81 | 1/40 *** | 0/39 *** | 0/36 *** | 0/36 *** | 3/36 |
Treatment | 3 dpi | 4 dpi | 5 dpi | 6 dpi | 7 dpi |
---|---|---|---|---|---|
Vehicle | 3/40 | 9/40 | 15/40 | 14/40 | 2/40 |
KRM-II-81 | 0/40 | 0/39 ** | 0/36 *** | 0/36 *** | 0/36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharmin, D.; Pandey, K.P.; Golani, L.K.; Rezvanian, S.; Mian, M.Y.; Fisher, J.L.; Lippa, A.; Cook, J.M.; Radin, D.P.; Smith, J.L.; et al. KRM-II-81, a β3-Preferring GABAA Receptor Potentiator, Blocks Handling-Induced Seizures in Theiler’s Murine Encephalomyelitis Virus-Infected Mice. Future Pharmacol. 2025, 5, 25. https://doi.org/10.3390/futurepharmacol5020025
Sharmin D, Pandey KP, Golani LK, Rezvanian S, Mian MY, Fisher JL, Lippa A, Cook JM, Radin DP, Smith JL, et al. KRM-II-81, a β3-Preferring GABAA Receptor Potentiator, Blocks Handling-Induced Seizures in Theiler’s Murine Encephalomyelitis Virus-Infected Mice. Future Pharmacology. 2025; 5(2):25. https://doi.org/10.3390/futurepharmacol5020025
Chicago/Turabian StyleSharmin, Dishary, Kamal P. Pandey, Lalit K. Golani, Sepideh Rezvanian, Md Yeunus Mian, Janet L. Fisher, Arnold Lippa, James M. Cook, Daniel P. Radin, Jodi L. Smith, and et al. 2025. "KRM-II-81, a β3-Preferring GABAA Receptor Potentiator, Blocks Handling-Induced Seizures in Theiler’s Murine Encephalomyelitis Virus-Infected Mice" Future Pharmacology 5, no. 2: 25. https://doi.org/10.3390/futurepharmacol5020025
APA StyleSharmin, D., Pandey, K. P., Golani, L. K., Rezvanian, S., Mian, M. Y., Fisher, J. L., Lippa, A., Cook, J. M., Radin, D. P., Smith, J. L., Witkin, J. M., Shafique, H., & Cerne, R. (2025). KRM-II-81, a β3-Preferring GABAA Receptor Potentiator, Blocks Handling-Induced Seizures in Theiler’s Murine Encephalomyelitis Virus-Infected Mice. Future Pharmacology, 5(2), 25. https://doi.org/10.3390/futurepharmacol5020025