Enhancing Coastal Management Through the Modified Fuzzy DEMATEL Approach and Power Dynamics Consideration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coastal Sensitivity Analysis Variables
2.2. Fuzzy DEMATEL Approach in Coastal Vulnerability
2.3. Fuzzy DEMATEL Implementation
2.3.1. Formation of Fuzzy Direct Relation Matrix
2.3.2. Normalization of Fuzzy Direct Relation Matrix
2.3.3. Calculation of Fuzzy Total Relation Matrix
- Calculate the inverse of matrix
- 2.
- Subtract the inverse from the unit matrix,
- 3.
- Multiply the normal matrix X with the resulting matrix from step 2:
2.3.4. Defuzzification of Total Relations Matrix Values
2.3.5. Threshold Calculations
2.3.6. Final Output and Creation of the Causal Diagram
3. Results
3.1. The Effectiveness of Variables
3.2. The Influence Degree of Variables
3.3. Typology of Causal and Effect Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pham, H.V.; Dal Barco, M.K.; Pourmohammad Shahvar, M.; Furlan, E.; Critto, A.; Torresan, S. Bayesian Network Analysis for Shoreline Dynamics, Coastal Water Quality, and Their Related Risks in the Venice Littoral Zone, Italy. J. Mar. Sci. Eng. 2024, 12, 139. [Google Scholar] [CrossRef]
- Green, C.; McFadden, L. Coastal Vulnerability as Discourse About Meanings and Values. J. Risk Res. 2007, 10, 1027–1045. [Google Scholar] [CrossRef]
- Sudha Rani, N.N.V.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Balasuriya, A. Coastal Area Management: Biodiversity and Ecological Sustainability in Sri Lankan Perspective. In Biodiversity and Climate Change Adaptation in Tropical Islands; Elsevier: Amsterdam, The Netherlands, 2018; pp. 701–724. [Google Scholar]
- Cetin, M. Sustainability of urban coastal area management: A case study on Cide. J. Sustain. For. 2016, 35, 527–541. [Google Scholar] [CrossRef]
- Aslam, B.; Muhammad, J.; Muhammad, Z.I.; Gulraiz, A.; Quaid, I.A. GIS Mapping of Tsunami Susceptibility: Case Study of the Karachi City in Sindh, Pakistan. J. Geogr. Nat. Disasters 2017, 7, 2167-0587. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Du, X.; Aher, S.; Singh, R. Building Blocks: A Quantitative Approach for Evaluating Coastal Vulnerability. Water 2017, 9, 905. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones—A GIS based approach for the Odisha coast. J. Environ. Manag. 2018, 206, 1166–1178. [Google Scholar] [CrossRef]
- Almutairi, A.; Mourshed, M.; Ameen, R.F.M. Coastal community resilience frameworks for disaster risk management. Nat. Hazards 2020, 101, 595–630. [Google Scholar] [CrossRef]
- Gorokhovich, Y.; Leiserowitz, A.; Dugan, D. Integrating Coastal Vulnerability and Community-Based Subsistence Resource Mapping in Northwest Alaska. J. Coast. Res. 2013, 30, 158. [Google Scholar] [CrossRef]
- Kunte, P.D.; Jauhari, N.; Mehrotra, U.; Kotha, M.; Hursthouse, A.S.; Gagnon, A.S. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean. Coast. Manag. 2014, 95, 264–281. [Google Scholar] [CrossRef]
- Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. (Eds.) Decision Making Under Deep Uncertainty; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Stanton, M.C.B.; Roelich, K. Decision making under deep uncertainties: A review of the applicability of methods in practice. Technol. Forecast. Soc. Change 2021, 171, 120939. [Google Scholar] [CrossRef]
- Forsyth, T. Climate justice is not just ice. Geoforum 2014, 54, 230–232. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.; Olazabal, M.; Minucci, G. Resilience trade-offs: Addressing multiple scales and temporal aspects of urban resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef]
- Ribot, J. Cause and response: Vulnerability and climate in the Anthropocene. J. Peasant. Stud. 2014, 41, 667–705. [Google Scholar] [CrossRef]
- Ribot, J. Vulnerability before adaptation: Toward transformative climate action. Glob. Environ. Chang. 2011, 21, 1160–1162. [Google Scholar] [CrossRef]
- De Serio, F.; Armenio, E.; Mossa, M.; Petrillo, A.F. How to Define Priorities in Coastal Vulnerability Assessment. Geosciences 2018, 8, 415. [Google Scholar] [CrossRef]
- Sowman, M.; Raemaekers, S. Socio-ecological vulnerability assessment in coastal communities in the BCLME region. J. Mar. Syst. 2018, 188, 160–171. [Google Scholar] [CrossRef]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A. Adaptation Needs and Options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 833–868. [Google Scholar]
- Bellanger, M.; Speir, C.; Blanchard, F.; Brooks, K.; Butler, J.R.A.; Crosson, S.; Fonner, R.; Gourguet, S.; Holland, D.S.; Kuikka, S.; et al. Addressing Marine and Coastal Governance Conflicts at the Interface of Multiple Sectors and Jurisdictions. Front. Mar. Sci. 2020, 7, 544440. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Riyahi Bakhtyari, H.R.; Tien Bui, D. Multi-hazards vulnerability assessment of southern coasts of Iran. J. Environ. Manage. 2019, 252, 109628. [Google Scholar] [CrossRef]
- Thumerer, T.; Jones, A.P.; Brown, D. A GIS based coastal management system for climate change associated flood risk assessment on the east coast of England. Int. J. Geogr. Inf. Sci. 2000, 14, 265–281. [Google Scholar] [CrossRef]
- Bryan, B.; Harvey, N.; Belperio, T.; Al, E. Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise. Environ. Model. Assess. 2001, 6, 57–65. [Google Scholar] [CrossRef]
- Williams, A.T.; Davies, P.; Chrr, R.; Koh, A.; Bodéré, J.-C.; Hallegouet, B.; Meur, C.; Yoni, C. Checklist assessment of dune vulnerability and protection in Devon and Cornwall, UK. In Proceedings of the 8th Symposium on Coastal and Ocean Management, New Orleans, LA, USA, 19 July 1993; Volume 3, pp. 3394–3408. [Google Scholar]
- Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Mahmood, R.; Ahmed, N.; Zhang, L.; Li, G. Coastal vulnerability assessment of Meghna estuary of Bangladesh using integrated geospatial techniques. Int. J. Disaster Risk Reduct. 2020, 42, 101374. [Google Scholar] [CrossRef]
- Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Shahfahad; Ahmad, I.A.; Tayyab, M.; Asgher, M.S.; Rahman, A. Coastal Vulnerability Mapping by Integrating Geospatial Techniques and Analytical Hierarchy Process (AHP) along the Vishakhapatnam Coastal Tract, Andhra Pradesh, India. J. Indian Soc. Remote Sens. 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Sathiya Bama, V.P.; Rajakumari, S.; Ramesh, R. Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics. Nat. Hazards 2020, 100, 829–842. [Google Scholar] [CrossRef]
- Huynh, T.T.M.; Tran, D.-H.; Pham, A.-D.; Le-Hoai, L. Quantitative Structuring for the Strategy Map of Coastal Urban Projects Using a Hybrid Approach of Fuzzy Logic and DEMATEL. In Proceedings of the International Conference on Sustainable Civil Engineering and Architecture, Singapore, 28 July 2020; pp. 957–968. [Google Scholar]
- Nguyen, T.T.X.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef]
- Serafim, M.B.; Siegle, E.; Corsi, A.C.; Bonetti, J. Coastal vulnerability to wave impacts using a multi-criteria index: Santa Catarina (Brazil). J. Environ. Manage. 2019, 230, 21–32. [Google Scholar] [CrossRef]
- Smith, R.A.E.; Bates, P.D.; Hayes, C. Evaluation of a coastal flood inundation model using hard and soft data. Environ. Model. Softw. 2012, 30, 35–46. [Google Scholar] [CrossRef]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Westmacott, S. Developing decision support systems for integrated coastal management in the tropics: Is the ICM decision-making environment too complex for the development of a useable and useful DSS? J. Environ. Manag. 2001, 62, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Pamučar, D.; Mihajlović, M.; Obradović, R.; Atanasković, P. Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Syst. Appl. 2017, 88, 58–80. [Google Scholar] [CrossRef]
- Lin, C.L.; Wu, W. A Fuzzy Extension of the Dematel Method for Group Decision Making. 2004. Available online: https://api.semanticscholar.org/CorpusID:62248201 (accessed on 28 April 2025).
- Lin, K.-P.; Tseng, M.-L.; Pai, P.-F. Sustainable supply chain management using approximate fuzzy DEMATEL method. Resour. Conserv. Recycl. 2018, 128, 134–142. [Google Scholar] [CrossRef]
- Shahi, E.; Alavipoor, F.S.; Karimi, S. The development of nuclear power plants by means of modified model of Fuzzy DEMATEL and GIS in Bushehr, Iran. Renew. Sustain. Energy Rev. 2018, 83, 33–49. [Google Scholar] [CrossRef]
- Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean. Coast. Manag. 2015, 104, 22–35. [Google Scholar] [CrossRef]
Sea Level Rise | Exposure to Hurricane | Improving the Economic Situation | Land Use and Land Cover | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sea level rise | 0 | 0 | 0 | 8 | 9 | 9 | 1 | 1 | 1 | 6 | 7 | 8 |
exposure to hurricane | 8 | 9 | 9 | 0 | 0 | 0 | 1 | 1 | 1 | 6 | 7 | 8 |
coastal floods and storm surges | 8 | 9 | 9 | 8 | 9 | 9 | 1 | 1 | 1 | 6 | 7 | 8 |
Rock type | 1 | 1 | 1 | 8 | 8 | 9 | 2 | 3 | 4 | 4 | 5 | 6 |
Coast Shield | 8 | 9 | 9 | 8 | 8 | 9 | 6 | 7 | 8 | 6 | 7 | 8 |
Coastal protection through mangrove development | 6 | 7 | 8 | 8 | 8 | 9 | 6 | 7 | 8 | 6 | 7 | 8 |
Flood | 4 | 5 | 6 | 2 | 3 | 4 | 1 | 1 | 1 | 6 | 7 | 8 |
Geology | 1 | 1 | 1 | 6 | 7 | 8 | 4 | 5 | 6 | 2 | 3 | 4 |
Geomorphology | 2 | 3 | 4 | 6 | 7 | 8 | 6 | 7 | 8 | 4 | 5 | 6 |
Coastal slope | 1 | 1 | 1 | 6 | 7 | 8 | 6 | 7 | 8 | 4 | 5 | 6 |
Regional height | 1 | 1 | 1 | 6 | 7 | 8 | 6 | 7 | 8 | 6 | 7 | 8 |
Shoreline change rate | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 7 | 8 | 6 | 7 | 8 |
Wind and wave exposure | 6 | 7 | 8 | 8 | 8 | 9 | 1 | 1 | 1 | 6 | 7 | 8 |
Wave height | 4 | 5 | 6 | 4 | 5 | 6 | 2 | 3 | 4 | 6 | 7 | 8 |
Tidal amplitude | 8 | 9 | 9 | 6 | 7 | 8 | 4 | 5 | 6 | 6 | 7 | 8 |
Bathymetry | 6 | 7 | 8 | 8 | 8 | 9 | 4 | 5 | 6 | 2 | 3 | 4 |
Salinity level | 1 | 1 | 1 | 4 | 5 | 6 | 8 | 8 | 9 | 8 | 8 | 9 |
Sand dunes | 4 | 5 | 6 | 6 | 7 | 8 | 4 | 5 | 6 | 6 | 7 | 8 |
Relief | 4 | 5 | 6 | 8 | 8 | 9 | 4 | 5 | 6 | 2 | 3 | 4 |
Coastal ecosystems | 1 | 1 | 1 | 2 | 3 | 4 | 8 | 8 | 9 | 6 | 7 | 8 |
Nuclear lesions | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 7 | 8 |
Household waste | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 5 | 6 |
population | 1 | 1 | 1 | 2 | 3 | 4 | 8 | 8 | 9 | 8 | 8 | 9 |
Improving the economic situation | 1 | 1 | 1 | 8 | 8 | 9 | 0 | 0 | 0 | 6 | 7 | 6 |
Land use and land cover | 4 | 5 | 6 | 8 | 8 | 9 | 8 | 8 | 9 | 0 | 0 | 0 |
Code. | Verbal Phrase | U * | M * | L * |
---|---|---|---|---|
1 | No impact | 1 | 1 | 1 |
2 | Very low impact | 4 | 3 | 2 |
3 | Low impact | 6 | 5 | 4 |
4 | High impact | 8 | 7 | 6 |
5 | Very high impact | 9 | 9 | 8 |
Code | Criterion Name | D | R | D − R | D + R | Criterion Type | Wi | Wfinal |
---|---|---|---|---|---|---|---|---|
1. | Sea level rise | 2.74 | 1.9 | 0.88 | 4.6 | cause | 5.48 | 0.0455 |
2. | exposure to hurricane | 2.98 | 2.8 | 0.19 | 5.76 | cause | 5.95 | 0.0494 |
3. | coastal floods and storm surges | 3.01 | 2.5 | 0.54 | 5.48 | cause | 6.02 | 0.0499 |
4. | Rock type | 2.26 | 2.3 | −0.05 | 4.6 | effect | 4.55 | 0.0377 |
5. | Coast Shield | 2.40 | 2.7 | −0.25 | 5.06 | effect | 4.81 | 0.0399 |
6. | Coastal protection through mangrove development | 2.43 | 2.9 | −0.44 | 5.296 | effect | 4.856 | 0.0403 |
7. | Flood | 2.58 | 3 | −0.38 | 5.5 | effect | 5.12 | 0.0425 |
8. | Geology | 2.33 | 0.5 | 1.87 | 2.8 | cause | 4.67 | 0.0387 |
9. | Geomorphology | 2.56 | 2.7 | −0.17 | 5.293 | effect | 5.123 | 0.0425 |
10. | Coastal slope | 2.23 | 2.8 | −0.59 | 5.05 | effect | 4.46 | 0.0370 |
11. | Regional height | 2.1 | 0.6 | 1.47 | 2.7 | cause | 4.17 | 0.0346 |
12. | Shoreline change rate | 2.23 | 2.74 | −0.51 | 4.97 | effect | 4.46 | 0.0370 |
13. | Wind and wave exposure | 2.92 | 2.94 | −0.012 | 5.86 | effect | 5.848 | 0.0485 |
14. | Wave height | 2.62 | 2.09 | 0.53 | 4.7 | cause | 5.23 | 0.0434 |
15. | Tidal amplitude | 2.88 | 0.46 | 2.42 | 3.3 | cause | 5.72 | 0.0474 |
16. | Bathymetry | 2.2 | 2.13 | 0.081 | 4.3 | cause | 4.381 | 0.0363 |
17. | Salinity level | 2 | 2.39 | −0.39 | 4.4 | effect | 4.01 | 0.0332 |
18. | Sand dunes | 2.09 | 2.64 | −0.54 | 4.7 | effect | 4.16 | 0.0345 |
19. | Relief | 2.3 | 2.59 | −0.29 | 4.9 | effect | 4.61 | 0.0382 |
20. | Coastal ecosystems | 2.12 | 3.3 | −1.19 | 5.4 | effect | 4.21 | 0.0349 |
21. | Nuclear lesions | 2.16 | 3.19 | −1.03 | 5.34 | effect | 4.31 | 0.0357 |
22. | Household waste | 1.8 | 3.13 | −1.3 | 4.95 | effect | 3.65 | 0.0303 |
23. | population | 2.16 | 3.1 | −0.94 | 5.26 | effect | 4.32 | 0.0358 |
24. | Improving the economic situation | 2.07 | 2.15 | −0.083 | 4.2 | effect | 4.117 | 0.0341 |
25. | Land use and land cover | 3.09 | 2.9 | 0.2 | 5.99 | cause | 6.19 | 0.0514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourmohammad Shahvar, M.; Marsella, G. Enhancing Coastal Management Through the Modified Fuzzy DEMATEL Approach and Power Dynamics Consideration. Coasts 2025, 5, 15. https://doi.org/10.3390/coasts5020015
Pourmohammad Shahvar M, Marsella G. Enhancing Coastal Management Through the Modified Fuzzy DEMATEL Approach and Power Dynamics Consideration. Coasts. 2025; 5(2):15. https://doi.org/10.3390/coasts5020015
Chicago/Turabian StylePourmohammad Shahvar, Mohsen, and Giovanni Marsella. 2025. "Enhancing Coastal Management Through the Modified Fuzzy DEMATEL Approach and Power Dynamics Consideration" Coasts 5, no. 2: 15. https://doi.org/10.3390/coasts5020015
APA StylePourmohammad Shahvar, M., & Marsella, G. (2025). Enhancing Coastal Management Through the Modified Fuzzy DEMATEL Approach and Power Dynamics Consideration. Coasts, 5(2), 15. https://doi.org/10.3390/coasts5020015