The Mother—Infant Symbiosis: A Novel Perspective on the Newborn’s Role in Protecting Maternal Breast Health
Abstract
1. Introduction
2. Hormonal Protection of the Mammary Gland Induced by Neonatal Stimuli During Lactation
3. Functional Symbiosis of Montgomery Glands at the Beginning of Lactation
4. Xanthine Oxidase: A Mediator of Innate Immunity in the Mammary Epithelium
5. Cathelicidins and Defensins as Key Antimicrobial Mediators of Mammary Gland Protection Induced by Neonatal-Lactation Interactions
6. The Transforming Role of Fetal Cells in Maternal Mammary Protection and Regeneration
7. The Favorable Impact of Breastfeeding Through Its Infant-Induced Microbiome
8. Critical Discussion, Limits and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Szyller, H.; Antosz, K.; Batko, J.; Mytych, A.; Dziedziak, M.; Wrześniewska, M.; Braksator, J.; Pytrus, T. Bioactive Components of Human Milk and Their Impact on Child’s Health and Development, Literature Review. Nutrients 2024, 16, 1487. [Google Scholar] [CrossRef]
- LeMaster, C.; Pierce, S.H.; Geanes, E.S.; Khanal, S.; Elliott, S.S.; Scott, A.B.; Louiselle, D.A.; McLennan, R.; Maulik, D.; Lewis, T.; et al. The cellular and immunological dynamics of early and transitional human milk. Commun. Biol. 2023, 6, 539. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Fernández, L.; Rodríguez, J.M. Immune factors in human milk. In Human Milk; Elsevier: Amsterdam, The Netherlands, 2021; pp. 275–298. [Google Scholar] [CrossRef]
- Kobata, R.; Tsukahara, H.; Ohshima, Y.; Ohta, N.; Tokuriki, S.; Tamura, S.; Mayumi, M. High levels of growth factors in human breast milk. Early Hum. Dev. 2008, 84, 67–69. [Google Scholar] [CrossRef]
- Tingö, L.; Ahlberg, E.; Johansson, L.; Pedersen, S.A.; Chawla, K.; Sætrom, P.; Cione, E.; Simpson, M.R. Non-Coding RNAs in Human Breast Milk: A Systematic Review. Front. Immunol. 2021, 12, 725323. [Google Scholar] [CrossRef]
- Dombrowska-Pali, A.; Wiktorczyk-Kapischke, N.; Chrustek, A.; Olszewska-Słonina, D.; Gospodarek-Komkowska, E.; Socha, M.W. Human Milk Microbiome—A Review of Scientific Reports. Nutrients 2024, 16, 1420. [Google Scholar] [CrossRef]
- Branger, B.; Bainier, A.; Martin, L.; Darviot, E.; Forgeron, A.; Sarthou, L.; Wagner, A.-C.; Blanchais, T.; Brigly, T.; Troussier, F. Breastfeeding and respiratory, ear and gastro-intestinal infections, in children, under the age of one year, admitted through the paediatric emergency departments of five hospitals. Front. Pediatr. 2023, 10, 1053473. [Google Scholar] [CrossRef]
- Hossain, M.; Talapatra, S.N.; Mondal, N.; Mukherjee, S.S. Impact of breastfeeding on respiratory and gastrointestinal infections in infants of Muslim mothers of Kolkata, India. MGM J. Med. Sci. 2022, 9, 502–508. [Google Scholar] [CrossRef]
- Krol, K.M.; Rajhans, P.; Missana, M.; Grossmann, T. Duration of exclusive breastfeeding is associated with differences in infants’ brain responses to emotional body expressions. Front. Behav. Neurosci. 2015, 8, 459. [Google Scholar] [CrossRef] [PubMed]
- Modak, A.; Ronghe, V.; Gomase, K.P.; Dukare, K.P. The Psychological Benefits of Breastfeeding: Fostering Maternal Well-Being and Child Development. Cureus 2023, 15, e46730. [Google Scholar] [CrossRef]
- Lewandowska, D.; Rosińska-Lewandoska, D.; Ufnal, J.; Szewczyk, M.; Jarosz, K.; Wolff, A.; Morawska, M.; Gruszka, S.; Kożuchowska, K.; Pilarz, D. Long-Term Health Benefits of Breastfeeding: Obesity Prevention, Metabolic Health, and Cardiovascular Protection. J. Educ. Health Sport 2024, 75, 56476. [Google Scholar] [CrossRef]
- Campbell, O.M.; Gray, R.H. Characteristics and determinants of postpartum ovarian function in women in the United States. Am. J. Obstet. Gynecol. 1993, 169, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Much, D.; Beyerlein, A.; Roßbauer, M.; Hummel, S.; Ziegler, A.-G. Beneficial effects of breastfeeding in women with gestational diabetes mellitus. Mol. Metab. 2014, 3, 284–292. [Google Scholar] [CrossRef]
- Elbeltagi, R.; Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S. Cardiometabolic effects of breastfeeding on infants of diabetic mothers. World J. Diabetes 2023, 14, 617–631. [Google Scholar] [CrossRef]
- Su, D.; Pasalich, M.; Lee, A.H.; Binns, C.W. Ovarian cancer risk is reduced by prolonged lactation: A case-control study in southern China. Am. J. Clin. Nutr. 2013, 97, 354–359. [Google Scholar] [CrossRef]
- Stordal, B. Breastfeeding reduces the risk of breast cancer: A call for action in high-income countries with low rates of breastfeeding. Cancer Med. 2023, 12, 4616–4625. [Google Scholar] [CrossRef]
- Ruan, W.; Monaco, M.E.; Kleinberg, D.L. Progesterone Stimulates Mammary Gland Ductal Morphogenesis by Synergizing with and Enhancing Insulin-Like Growth Factor-I Action. Endocrinology 2005, 146, 1170–1178. [Google Scholar] [CrossRef]
- Biswas, S.K.; Banerjee, S.; Baker, G.W.; Kuo, C.-Y.; Chowdhury, I. The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int. J. Mol. Sci. 2022, 23, 3883. [Google Scholar] [CrossRef]
- Alex, A.; Bhandary, E.; McGuire, K.P. Anatomy and Physiology of the Breast during Pregnancy and Lactation. In Diseases of the Breast During Pregnancy and Lactation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–7. [Google Scholar] [CrossRef]
- Oakes, S.R.; Hilton, H.N.; Ormandy, C.J. Key stages in mammary gland development—The alveolar switch: Coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006, 8, 207. [Google Scholar] [CrossRef]
- Neville, M.C.; Morton, J. Physiology and Endocrine Changes Underlying Human Lactogenesis II. J Nutr. 2001, 131, 3005S–3008S. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Ding, J.; Xiong, T.; Liuding, J.; Nie, L. Determinants of delayed onset of lactogenesis II among women who delivered via Cesarean section at a tertiary hospital in China: A prospective cohort study. Int. Breastfeed. J. 2022, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Crowley, W.R. Neuroendocrine Regulation of Lactation and Milk Production. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2014; pp. 255–291. [Google Scholar] [CrossRef]
- Ohmura, N.; Okuma, L.; Truzzi, A.; Esposito, G.; Kuroda, K.O. Maternal physiological calming responses to infant suckling at the breast. J. Physiol. Sci. 2023, 73, 3. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P. Re-thinking benign inflammation of the lactating breast: A mechanobiological model. Women’s Health 2022, 18, 17455065221075907. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zheng, X.-M.; Zhang, M.-L.; Ning, P.; Wu, M.-J. Lactation mastitis: Promising alternative indicators for early diagnosis. World J. Clin. Cases 2022, 10, 11252–11259. [Google Scholar] [CrossRef]
- Amir, L.H.; Trupin, S.; Kvist, L.J. Diagnosis and Treatment of Mastitis in Breastfeeding Women. J. Hum. Lact. 2014, 30, 10–13. [Google Scholar] [CrossRef]
- Brumsted, J.R.; Riddick, D.H. The breast during pregnancy and lactation. In Obstetrics and Gynecology; Sciarra, J.J., Ed.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 1999; Volume 5, Chapter 31; pp. 4–5. [Google Scholar]
- Lue, J.C.; Radisky, D.C. From Embryogenesis to Senescence: The Role of Mammary Gland Physiology in Breast Cancer Risk. Cancers 2025, 17, 787. [Google Scholar] [CrossRef]
- Raju, T.N. Breastfeeding Is a Dynamic Biological Process—Not Simply a Meal at the Breast. Breastfeed. Med. 2011, 6, 257–259. [Google Scholar] [CrossRef]
- Carter, C.S.; Kenkel, W.M.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M.; et al. Is Oxytocin “Nature’s Medicine”? Pharmacol. Rev. 2020, 72, 829–861. [Google Scholar] [CrossRef] [PubMed]
- Althammer, F.; Eliava, M.; Grinevich, V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 25–44. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.-P.; Tian, S.; Wang, L.; Wang, S.C.; Zhang, F.; Wang, Y.-F. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity. J. Neuroimmunol. 2015, 289, 152–161. [Google Scholar] [CrossRef]
- Zagoory-Sharon, O.; Yirmiya, K.; Peleg, I.; Shimon-Raz, O.; Sanderlin, R.; Feldman, R. Breast milk oxytocin and s-IgA modulate infant biomarkers and social engagement; The role of maternal anxiety. Compr. Psychoneuroendocrinol. 2023, 17, 100219. [Google Scholar] [CrossRef]
- Uvnäs mOberg, K.; Ekström-Bergström, A.; Buckley, S.; Massarotti, C.; Pajalic, Z.; Luegmair, K.; Kotlowska, A.; Lengler, L.; Olza, I.; Grylka-Baeschlin, S.; et al. Maternal plasma levels of oxytocin during breastfeeding-A systematic review. PLoS ONE 2020, 15, e0235806. [Google Scholar] [CrossRef]
- Li, T.; Jia, S.-W.; Hou, D.; Wang, X.; Li, D.; Liu, Y.; Cui, D.; Liu, X.; Hou, C.-M.; Wang, P.; et al. Oxytocin Modulation of Maternal Behavior and Its Association With Immunological Activity in Rats With Cesarean Delivery. ASN Neuro 2021, 13, 17590914211014731. [Google Scholar] [CrossRef]
- Groer, M.; Davis, M.; Steele, K. Associations between Human Milk SIgA and Maternal Immune, Infectious, Endocrine, and Stress Variables. J. Hum. Lact. 2004, 20, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Moamer, A.; da Silva, R.G.; Shoham-Amizlev, A.; Hamam, D.; Shams, A.; Lebrun, J.-J.; Ali, S. A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer. Cell Death Dis. 2025, 16, 221. [Google Scholar] [CrossRef]
- Carvalho-Freitas, M.I.R.; Anselmo-Franci, J.A.; Maiorka, P.C.; Palermo-Neto, J.; Felicio, L.F. Prolactin differentially modulates the macrophage activity of lactating rats: Possible role of reproductive experience. J. Reprod. Immunol. 2011, 89, 38–45. [Google Scholar] [CrossRef]
- Dill, R.; Walker, A.M. Role of Prolactin in Promotion of Immune Cell Migration into the Mammary Gland. J. Mammary Gland. Biol. Neoplasia 2017, 22, 13–26. [Google Scholar] [CrossRef]
- Lara-Zárate, L.; López-Meza, J.E.; Ochoa-Zarzosa, A. Staphylococcus aureus inhibits nuclear factor kappa B activation mediated by prolactin in bovine mammary epithelial cells. Microb. Pathog. 2011, 51, 313–318. [Google Scholar] [CrossRef]
- Salgado-Lora, M.G.; Medina-Estrada, I.; López-Meza, J.E.; Ochoa-Zarzosa, A. Prolactin and Estradiol are Epigenetic Modulators in Bovine Mammary Epithelial Cells during Staphylococcus aureus Infection. Pathogens 2020, 9, 520. [Google Scholar] [CrossRef]
- Nyquist, S.K.; Gao, P.; Haining, T.K.J.; Retchin, M.R.; Golan, Y.; Drake, R.S.; Kolb, K.; Mead, B.E.; Ahituv, N.; Martinez, M.E.; et al. Cellular and transcriptional diversity over the course of human lactation. Proc. Natl. Acad. Sci. USA 2022, 119, e2121720119. [Google Scholar] [CrossRef]
- Schaal, B.; Doucet, S.; Soussignan, R.; Klaey-Tassone, M.; Patris, B.; Durand, K. The Human Mammary Odour Factor: Variability and Regularities in Sources and Functions. In Chemical Signals in Vertebrates 14; Springer: Berlin/Heidelberg, Germany, 2019; pp. 118–138. [Google Scholar] [CrossRef]
- Lawrence, R.A. Anatomy of the Breast. In Breastfeeding; Elsevier: Amsterdam, The Netherlands, 2022; pp. 38–57. [Google Scholar] [CrossRef]
- Picardo, M.; Ottaviani, M.; Camera, E.; Mastrofrancesco, A. Sebaceous gland lipids. Dermatoendocrinology 2009, 1, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty Acids and Derivatives as Antimicrobial Agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.A.; Torgerson, R.R.; Sandhu, N.P. Rare presentation of sebaceous hyperplasia. BMJ Case Rep. 2014, 2014, bcr2014204025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doucet, S.; Soussignan, R.; Sagot, P.; Schaal, B. The Secretion of Areolar (Montgomery’s) Glands from Lactating Women Elicits Selective, Unconditional Responses in Neonates. PLoS ONE 2009, 4, e7579. [Google Scholar] [CrossRef] [PubMed]
- Schaal, B.; Doucet, S.; Sagot, P.; Hertling, E.; Soussignan, R. Human breast areolae as scent organs: Morphological data and possible involvement in maternal-neonatal coadaptation. Dev. Psychobiol. 2006, 48, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Doucet, S.; Soussignan, R.; Sagot, P.; Schaal, B. An overlooked aspect of the human breast: Areolar glands in relation with breastfeeding pattern, neonatal weight gain, and the dynamics of lactation. Early Hum. Dev. 2012, 88, 119–128. [Google Scholar] [CrossRef]
- Livaoğlu Say, B. The Physiology of Breastfeeding. In Clinical Guidance in Breastfeeding—Physiology, Success, and Challenge; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Blech, H.; Friebe, K.; Krause, W. Inflammation of Montgomery Glands. Acta Derm. Venereol. 2003, 84, 93–94. [Google Scholar] [CrossRef]
- Al-Shehri, S.S.; Duley, J.A.; Bansal, N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol. 2020, 34, 101524. [Google Scholar] [CrossRef]
- Martin, H.M.; Hancock, J.T.; Salisbury, V.; Harrison, R. Role of Xanthine Oxidoreductase as an Antimicrobial Agent. Infect. Immun. 2004, 72, 4933–4939. [Google Scholar] [CrossRef]
- Vorbach, C.; Scriven, A.; Capecchi, M.R. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes Dev. 2002, 16, 3223–3235. [Google Scholar] [CrossRef]
- Jarasch, E.-D.; Grund, C.; Bruder, G.; Heid, H.W.; Keenan, T.W.; Franke, W.W. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 1981, 25, 67–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Naughton, D.P.; Blake, D.R.; Benjamin, N.; Stevens, C.R.; Winyard, P.G.; Symons, M.C.; Harrison, R. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochem. Soc. Trans. 1997, 25, 524S. [Google Scholar] [CrossRef]
- Godber, B.L.J.; Doel, J.J.; Sapkota, G.P.; Blake, D.R.; Stevens, C.R.; Eisenthal, R.; Harrison, R. Reduction of Nitrite to Nitric Oxide Catalyzed by Xanthine Oxidoreductase. J. Biol. Chem. 2000, 275, 7757–7763. [Google Scholar] [CrossRef]
- Al-Shehri, S.S.; Knox, C.L.; Liley, H.G.; Cowley, D.M.; Wright, J.R.; Henman, M.G.; Hewavitharana, A.K.; Charles, B.G.; Shaw, P.N.; Sweeney, E.L.; et al. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy. PLoS ONE 2015, 10, e0135047. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Shapiro, F.; Shamay, A.; Leitner, G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: Manipulation with casein hydrolyzates. Free Radic. Biol. Med. 2005, 38, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.; Millar, T.; Clinch, J.; Kanczler, J.; Bodamyali, T.; Blake, D.R. Antibacterial properties of xanthine oxidase in human milk. Lancet 2000, 356, 829–830. [Google Scholar] [CrossRef]
- Page, S.; Powell, D.; Benboubetra, M.; Stevens, C.R.; Blake, D.R.; Selase, F.; Wolstenholme, A.J.; Harrison, R. Xanthine oxidoreductase in human mammary epithelial cells: Activation in response to inflammatory cytokines. Biochim. Biophys. Acta 1998, 1381, 191–202. [Google Scholar] [CrossRef]
- Shin, K.; Hayasawa, H.; Lönnerdal, B. Purification and quantification of lactoperoxidase in human milk with use of immunoadsorbents with antibodies against recombinant human lactoperoxidase. Am. J. Clin. Nutr. 2001, 73, 984–989. [Google Scholar] [CrossRef]
- Zou, Z.; Bauland, J.; Hewavitharana, A.K.; Al-Shehri, S.S.; Duley, J.A.; Cowley, D.M.; Koorts, P.; Shaw, P.N.; Bansal, N. A sensitive, high-throughput fluorescent method for the determination of lactoperoxidase activities in milk and comparison in human, bovine, goat and camel milk. Food Chem. 2021, 339, 128090. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, D.T.; Kent, J.C.; Owens, R.A.; Hartmann, P.E. Ultrasound Imaging of Milk Ejection in the Breast of Lactating Women. Pediatrics 2004, 113, 361–367. [Google Scholar] [CrossRef]
- Taibi, G.; Di Gaudio, F.; Nicotra, C.M.A. Xanthine dehydrogenase processes retinol to retinoic acid in human mammary epithelial cells. J. Enzym. Inhib. Med. Chem. 2008, 23, 317–327. [Google Scholar] [CrossRef]
- Hao, X.; Yang, H.; Wei, L.; Yang, S.; Zhu, W.; Ma, D.; Yu, H.; Lai, R. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 2012, 43, 677–685. [Google Scholar] [CrossRef]
- Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012, 280, 22–35. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001, 97, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Morizane, S.; Yamasaki, K.; Kabigting, F.D.; Gallo, R.L. Kallikrein Expression and Cathelicidin Processing Are Independently Controlled in Keratinocytes by Calcium, Vitamin D3, and Retinoic Acid. J. Investig. Dermatol. 2010, 130, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Dzurová, L.; Holásková, E.; Pospíšilová, H.; Rauber, G.S.; Frébortová, J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics 2024, 14, 1. [Google Scholar] [CrossRef]
- Cowland, J.B.; Johnsen, A.H.; Borregaard, N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995, 368, 173–176. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Q.; Schmidt, A.P.; Anderson, G.M.; Wang, J.M.; Wooters, J.; Oppenheim, J.J.; Chertov, O. Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells. J. Exp. Med. 2000, 192, 1069–1074. [Google Scholar] [CrossRef]
- Salamah, M.F.; Ravishankar, D.; Kodji, X.; Moraes, L.A.; Williams, H.F.; Vallance, T.M.; Albadawi, D.A.; Vaiyapuri, R.; Watson, K.; Gibbins, J.M.; et al. The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Adv. 2018, 2, 2973–2985. [Google Scholar] [CrossRef]
- Dorschner, R.A.; Lin, K.H.; Murakami, M.; Gallo, R.L. Neonatal Skin in Mice and Humans Expresses Increased Levels of Antimicrobial Peptides: Innate Immunity During Development of the Adaptive Response. Pediatr. Res. 2003, 53, 566–572. [Google Scholar] [CrossRef]
- Murakami, M.; Dorschner, R.A.; Stern, L.J.; Lin, K.H.; Gallo, R.L. Expression and Secretion of Cathelicidin Antimicrobial Peptides in Murine Mammary Glands and Human Milk. Pediatr. Res. 2005, 57, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ohata, N.; Morishita, M.; Iwamoto, Y. Correlation Between the Protease Activities and the Number of Epithelial Cells in Human Saliva. J. Dent. Res. 1981, 60, 1039–1044. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, I.; Lehrer, R.I. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996, 396, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Tecle, T.; Tripathi, S.; Hartshorn, K.L. Review: Defensins and cathelicidins in lung immunity. Innate Immun. 2010, 16, 151–159. [Google Scholar] [CrossRef]
- Porter, E.M.; Liu, L.; Oren, A.; Anton, P.A.; Ganz, T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect. Immun. 1997, 65, 2389–2395. [Google Scholar] [CrossRef]
- Szyk, A.; Wu, Z.; Tucker, K.; Yang, D.; Lu, W.; Lubkowski, J. Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci. 2006, 15, 2749–2760. [Google Scholar] [CrossRef]
- Tunzi, C.R.; Harper, P.A.; Bar-Oz, B.; Valore, E.V.; Semple, J.L.; Watson-MacDonell, J.; Ganz, T.; Ito, S. β-Defensin Expression in Human Mammary Gland Epithelia. Pediatr. Res. 2000, 48, 30–35. [Google Scholar] [CrossRef]
- Jia, H.P.; Starner, T.; Ackermann, M.; Kirby, P.; Tack, B.F.; McCray, P.B. Abundant human β-defensin-1 expression in milk and mammary gland epithelium. J. Pediatr. 2001, 138, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Armogida, S.A.; Yannaras, N.M.; Melton, A.L.; Srivastava, M.D. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc. 2004, 25, 297–304. [Google Scholar] [PubMed]
- Baricelli, J.; Rocafull, M.A.; Vázquez, D.; Bastidas, B.; Báez-Ramirez, E.; Thomas, L.E. β-defensin-2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria. J. Pediatr. 2015, 91, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Neshani, A.; Zare, H.; Eidgahi, M.R.A.; Kakhki, R.K.; Safdari, H.; Khaledi, A.; Ghazvini, K. LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 2019, 17, 100519. [Google Scholar] [CrossRef]
- Tanaka, A.; Lindor, K.; Ansari, A.; Gershwin, E.M. Fetal microchimerisms in the mother: Immunologic implications. Liver Transpl. 2000, 6, 138–143. [Google Scholar] [CrossRef]
- Dawe, G.S.; Tan, X.W.; Xiao, Z.C. Cell migration from baby to mother. Cell Adh Migr. 2007, 1, 19–27. [Google Scholar] [CrossRef]
- Eun, J.K.; Guthrie, K.A.; Zirpoli, G.; Gadi, V.K. In Situ Breast Cancer and Microchimerism. Sci. Rep. 2013, 3, 2192. [Google Scholar] [CrossRef]
- Gadi, V.K. Fetal microchimerism and cancer. Cancer Lett. 2009, 276, 8–13. [Google Scholar] [CrossRef]
- Fehr, K.; Moossavi, S.; Sbihi, H.; Boutin, R.C.; Bode, L.; Robertson, B.; Yonemitsu, C.; Field, C.J.; Becker, A.B.; Mandhane, P.J.; et al. Breastmilk Feeding Practices Are Associated with the Co-Occurrence of Bacteria in Mothers’ Milk and the Infant Gut: The CHILD Cohort Study. Cell Host Microbe 2020, 28, 285–297.e4. [Google Scholar] [CrossRef] [PubMed]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019, 25, 324–335.e4. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Aceti, A.; Quercia, S.; Beghetti, I.; Rampelli, S.; Turroni, S.; Soverini, M.; Zambrini, A.V.; Faldella, G.; Candela, M.; et al. Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants. Front. Microbiol. 2018, 9, 2512. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.M. The Origin of Human Milk Bacteria: Is There a Bacterial Entero-Mammary Pathway during Late Pregnancy and Lactation? Adv. Nutr. 2014, 5, 779–784. [Google Scholar] [CrossRef]
- Laouar, A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020, 41, 225–239. [Google Scholar] [CrossRef]
- Delgado, S.; Arroyo, R.; Martín, R.; Rodríguez, J.M. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect. Dis. 2008, 8, 51. [Google Scholar] [CrossRef]
- Foxman, B.; D’Arcy, H.; Gillespie, B.; Bobo, J.K.; Schwartz, K. Lactation Mastitis: Occurrence and Medical Management among 946 Breastfeeding Women in the United States. Am. J. Epidemiol. 2002, 155, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, R.; Martín, V.; Maldonado, A.; Jiménez, E.; Fernández, L.; Rodríguez, J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin. Infect. Dis. 2010, 50, 1551–1558. [Google Scholar] [CrossRef]
- Hassan, Z.; Mustafa, S.; Rahim, R.A.; Isa, N.M. Anti-breast cancer effects of live, heat-killed and cytoplasmic fractions of Enterococcus faecalis and Staphylococcus hominis isolated from human breast milk. Vitr. Cell Dev. Biol. Anim. 2016, 52, 337–348. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 2018, 24, 133–145.e5. [Google Scholar] [CrossRef]
- Arnone, A.A.; Tsai, Y.-T.; Cline, J.M.; Wilson, A.S.; Westwood, B.; Seger, M.E.; Chiba, A.; Howard-McNatt, M.; Levine, E.A.; Thomas, A.; et al. Endocrine-targeting therapies shift the breast microbiome to reduce estrogen receptor-α breast cancer risk. Cell Rep. Med. 2025, 6, 101880. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, S.; Jena, M.K.; Anand, V.; Jaswal, A.; Kancharla, S.; Kolli, P.; Mandadapu, G.; Kumar, S.; Mohanty, A.K. Critical review of physiological and molecular features during bovine mammary gland development: Recent advances. Cells 2022, 11, 3325. [Google Scholar] [CrossRef]
- Twigger, A.J.; Engelbrecht, L.K.; Bach, K.; Schultz-Pernice, I.; Pensa, S.; Stenning, J.; Petricca, S.; Scheel, C.H.; Khaled, W.T.; Al-Dujaili, D.Z.M.; et al. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nat. Commun. 2022, 13, 562. [Google Scholar] [CrossRef]
- Lee, J.; Kuperwasser, C. Human Breast Organoid Models for Lactation Research. Front. Endocrinol. 2023, 14, 1123456. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, P.; Wang, H.; Liu, S. Progress and perspectives of organoid technology in breast research. Front. Cell Dev. Biol. 2024, 12, 1456. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Tani, F.; Ohta, R. Culture Models to Investigate Mechanisms of Milk Secretion and Mammary Epithelial Function. Methods Mol. Biol. 2023, 2591, 215–229. [Google Scholar]
Mechanism & Level of Evidence | Claimed Protective Effect in the Maternal Breast | Molecular Mediators and Justification with Key References |
---|---|---|
Hormonal modulation Direct Human in vivo [31,33,34,35,36,37,43] | Reduced stress and inflammation; enhanced immune surveillance; milk ejection reflex | Neonatal suckling triggers maternal oxytocin (OXT) and prolactin (PRL) release, measured directly in lactating women during feeding. These pulses modulate immune cells expressing OXTR, dampen stress responses, and promote lactation efficiency. Although direct links to reduced mastitis incidence remain associative, the neuroendocrine reflex itself is robustly documented in humans. |
Enzymatic activation XO/LPO system Indirect (Human/Model) [55,56,57,58,59,60,61,62,63,64,65,66] | Local antimicrobial activity via H2O2/OSCN− production in the ductal space | Human milk contains xanthine oxidase (XO) and lactoperoxidase (LPO). In vitro mixing of infant saliva (rich in hypoxanthine/xanthine) with milk produces physiologically relevant H2O2 that inhibits pathogens. While ductal in vivo measurements during suckling are lacking, the biochemical plausibility and ex vivo human demonstrations justify this indirect level. |
AMP activation (hCAP-18 → LL-37, β-defensins) Plausible Hypothesis [70,71,72,73,74,75,76,77,78,79,84,85,86,87,88,89] | Direct antimicrobial effect, immune cell recruitment, tissue repair | Milk contains hCAP-18, which can be processed by proteases (proteinase 3, kallikreins) into the active peptide LL-37. In vitro studies confirm this conversion. Neonatal saliva contains proteases, suggesting a plausible pathway for local activation. However, direct in vivo evidence of infant saliva proteases activating AMPs within ducts during nursing is absent, so this remains a biologically well-grounded hypothesis. |
Fetal microchimerism Indirect (Human/Model) [91,92,93] | Long-term immune surveillance, tissue repair, possible tumor suppression | Fetal cells persist in maternal tissues for decades. Studies detect microchimeric CD34+ progenitors in breast tissue and blood. Epidemiological data suggest associations with reduced breast malignancy. However, direct demonstrations that these cells actively protect lactating ducts against infection or inflammation are lacking; thus, evidence is indirect and correlative. |
Microbial transfer (retrograde flow) Indirect (Human/Model) [67,96,97,98,99,100,101,102,103,104] | Colonization of ducts with infant oral commensals; competitive exclusion of pathogens; immune modulation | Strain-level metagenomics show shared bacteria between infant oral cavity and breastmilk, demonstrating that maternal probiotic administration modifies mastitis outcomes, supporting ductal microbial modulation. While real-time in vivo proof of infant-to-breast retrograde seeding remains elusive, correlative human data and probiotic intervention studies provide indirect evidence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén-Morales, D.d.J.; Cruz-Cortés, I.; Sosa-Velazco, T.A.; Aquino-Domínguez, A.S. The Mother—Infant Symbiosis: A Novel Perspective on the Newborn’s Role in Protecting Maternal Breast Health. Hygiene 2025, 5, 46. https://doi.org/10.3390/hygiene5040046
Guillén-Morales DdJ, Cruz-Cortés I, Sosa-Velazco TA, Aquino-Domínguez AS. The Mother—Infant Symbiosis: A Novel Perspective on the Newborn’s Role in Protecting Maternal Breast Health. Hygiene. 2025; 5(4):46. https://doi.org/10.3390/hygiene5040046
Chicago/Turabian StyleGuillén-Morales, Darío de Jesús, Isabel Cruz-Cortés, Taurino Amilcar Sosa-Velazco, and Alba Soledad Aquino-Domínguez. 2025. "The Mother—Infant Symbiosis: A Novel Perspective on the Newborn’s Role in Protecting Maternal Breast Health" Hygiene 5, no. 4: 46. https://doi.org/10.3390/hygiene5040046
APA StyleGuillén-Morales, D. d. J., Cruz-Cortés, I., Sosa-Velazco, T. A., & Aquino-Domínguez, A. S. (2025). The Mother—Infant Symbiosis: A Novel Perspective on the Newborn’s Role in Protecting Maternal Breast Health. Hygiene, 5(4), 46. https://doi.org/10.3390/hygiene5040046