Previous Issue
Volume 5, June
 
 

DNA, Volume 5, Issue 3 (September 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 884 KiB  
Article
Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants
by Georgios Stamatellos, Maria-Anna Kyrgiafini, Aris Kaltsas and Zissis Mamuris
DNA 2025, 5(3), 38; https://doi.org/10.3390/dna5030038 - 5 Aug 2025
Viewed by 207
Abstract
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed [...] Read more.
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed to identify infertility-specific variants in ncRNAs that affect mitochondrial dynamics and homeostasis and to explore their roles. Methods: Whole-genome sequencing (WGS) was performed on genomic DNA samples from teratozoospermic, asthenozoospermic, oligozoospermic, and normozoospermic men. Variants uniquely present in infertile individuals and mapped to ncRNAs that affect mitochondrial dynamics were selected and prioritized using bioinformatics tools. An independent transcriptomic validation was conducted using RNA-sequencing data from testicular biopsies of men with non-obstructive azoospermia (NOA) to determine whether the ncRNAs harboring WGS-derived variants were transcriptionally altered. Results: We identified several infertility-specific variants located in lncRNAs known to interact with mitochondrial regulators, including GAS5, HOTAIR, PVT1, MEG3, and CDKN2B-AS1. Transcriptomic analysis confirmed significant deregulation of these lncRNAs in azoospermic testicular samples. Bioinformatic analysis also implicated the disruption of lncRNA–miRNA–mitochondria networks, potentially contributing to mitochondrial membrane potential loss, elevated reactive oxygen species (ROS) production, impaired mitophagy, and germ cell apoptosis. Conclusions: Our integrative genomic and transcriptomic analysis highlights lncRNA–mitochondrial gene interactions as a novel regulatory layer in male infertility, while the identified lncRNAs hold promise as biomarkers and therapeutic targets. However, future functional studies are warranted to elucidate their mechanistic roles and potential for clinical translation in reproductive medicine. Full article
Show Figures

Figure 1

19 pages, 1940 KiB  
Review
The Role of DNA in Neural Development and Cognitive Function
by Tharsius Raja William Raja, Janakiraman Pillai Udaiyappan and Michael Pillay
DNA 2025, 5(3), 37; https://doi.org/10.3390/dna5030037 - 1 Aug 2025
Viewed by 153
Abstract
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. [...] Read more.
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. Neural progenitors are formed and differentiated according to genetic instructions, whereas epigenetic changes, such as DNA methylation, dynamically control gene expression in response to external stimuli. These processes shape behavior and cognitive resilience by influencing neural identity, synaptic efficiency, and adaptation. This review also examines how DNA damage and repair mechanisms affect the integrity of neurons, which are essential for memory and learning. It also emphasizes how genetic predispositions and environmental factors interact to determine a person’s susceptibility to neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. Developments in gene-editing technologies, such as CRISPR, and non-viral delivery techniques provide encouraging treatment avenues for neurodegenerative disorders. This review highlights the fundamental role of DNA in coordinating the intricate interactions between molecular and environmental factors that underlie brain function and diseases. Full article
Show Figures

Graphical abstract

12 pages, 702 KiB  
Article
DNA Triplex-Formation by a Covalent Conjugate of the Anticancer Drug Temozolomide
by Andrew J. Walsh and William Fraser
DNA 2025, 5(3), 36; https://doi.org/10.3390/dna5030036 - 22 Jul 2025
Viewed by 291
Abstract
Background/Objectives: Temozolomide is an important drug used for the treatment of glioblastoma multiforme. Covalent conjugation of temozolomide to triplex-forming oligonucleotides could facilitate better sequence discrimination when targeted to DNA to lessen off-target effects and potentially reduce side-effects associated with conventional chemotherapy. The base [...] Read more.
Background/Objectives: Temozolomide is an important drug used for the treatment of glioblastoma multiforme. Covalent conjugation of temozolomide to triplex-forming oligonucleotides could facilitate better sequence discrimination when targeted to DNA to lessen off-target effects and potentially reduce side-effects associated with conventional chemotherapy. The base sensitivity of temozolomide precludes use of basic deprotection conditions that typify the solid-supported synthesis of oligonucleotides. Methods: A novel di-iso-propylsilylene-linked solid support was developed and used in solid-supported synthesis of oligonucleotide conjugates. Results: Conditions were established whereby fully deprotected, solid-supported oligonucleotides could be prepared for derivatisation. Cleavage of the di-iso-propylsilylene linker was possible using mild, acidic conditions. Conclusions: The di-iso-propylsilylene-linked solid support was developed and shown to be compatible with base-sensitive oligonucleotide conjugate formation. The DNA triplex formation exhibited by a temozolomide oligonucleotide conjugate was equal in stability to the unconjugated control, opening new possibilities for sequence selective delivery of temozolomide to targeted DNA. Full article
Show Figures

Graphical abstract

16 pages, 831 KiB  
Article
Mutational Profiling of Medullary Thyroid Carcinoma via a Large-Scale Genomic Repository
by Beau Hsia, Elijah Torbenson, Nigel Lang and Peter T. Silberstein
DNA 2025, 5(3), 35; https://doi.org/10.3390/dna5030035 - 17 Jul 2025
Viewed by 290
Abstract
Background: Medullary thyroid cancer (MTC), a neuroendocrine tumor originating from thyroid parafollicular C-cells, presents therapeutic challenges, particularly in advanced stages. While RET proto-oncogene mutations are known drivers, a comprehensive understanding of the broader somatic mutation landscape is needed to identify novel therapeutic targets [...] Read more.
Background: Medullary thyroid cancer (MTC), a neuroendocrine tumor originating from thyroid parafollicular C-cells, presents therapeutic challenges, particularly in advanced stages. While RET proto-oncogene mutations are known drivers, a comprehensive understanding of the broader somatic mutation landscape is needed to identify novel therapeutic targets and improve prognostication. This study leveraged the extensive AACR Project GENIE dataset to characterize MTC genomics. Methods: A retrospective analysis of MTC samples from GENIE examined recurrent somatic mutations, demographic/survival correlations, and copy number variations using targeted sequencing data (significance: p < 0.05). Results: Among 341 samples, RET mutations predominated (75.7%, mostly M918T), followed by HRAS (10.0%) and KRAS (5.6%), with mutual exclusivity between RET and RAS alterations. Recurrent mutations included KMT2D (5.3%), CDH11 (5.3%), ATM (5.0%), and TP53 (4.1%). NOTCH1 mutations were enriched in metastatic cases (p = 0.023). Preliminary associations included sex-linked mutations (BRAF/BRCA1/KIT in females, p = 0.028), and survival (ATM associated with longer survival, p = 0.016; BARD1/BLM/UBR5/MYH11 with shorter survival, p < 0.05), though limited subgroup sizes warrant caution. Conclusions: This large-scale genomic analysis confirms the centrality of RET and RAS pathway alterations in MTC and their mutual exclusivity. The association of NOTCH1 mutations with metastasis suggests a potential role in disease progression. While findings regarding demographic and survival correlations are preliminary, they generate hypotheses for future validation. This study enhances the genomic foundation for understanding MTC and underscores the need for integrated clinico-genomic datasets to refine therapeutic approaches. Full article
Show Figures

Figure 1

13 pages, 1496 KiB  
Article
Yeast Surface Display of Protein Addresses Confers Robust Storage and Access of DNA-Based Data
by Magdelene N. Lee, Gunavaran Brihadiswaran, Balaji M. Rao, James M. Tuck and Albert J. Keung
DNA 2025, 5(3), 34; https://doi.org/10.3390/dna5030034 - 9 Jul 2025
Viewed by 307
Abstract
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential [...] Read more.
Background/Objectives: The potential of DNA as an information-dense storage medium has inspired a broad spectrum of creative systems. In particular, hybrid biomolecular systems that integrate new materials and chemistries with DNA could drive novel functions. In this work, we explore the potential for proteins to serve as molecular file addresses. We stored DNA-encoded data in yeast and leveraged yeast surface display to readily produce the protein addresses and make them easy to access on the cell surface. Methods: We generated yeast populations that each displayed a distinct protein on their cell surfaces. These proteins included binding partners for cognate antibodies as well as chromatin-associated proteins that bind post-translationally modified histone peptides. For each specific yeast population, we transformed a library of hundreds of DNA sequences collectively encoding a specific image file. Results: We first demonstrated that the yeast retained file-encoded DNA through multiple cell divisions without a noticeable skew in their distribution or a loss in file integrity. Second, we showed that the physical act of sorting yeast displaying a specific file address was able to recover the desired data without a loss in file fidelity. Finally, we showed that analog addresses can be achieved by using addresses that have overlapping binding specificities for target peptides. Conclusions: These results motivate further exploration into the advantages proteins may confer in molecular information storage. Full article
Show Figures

Figure 1

17 pages, 388 KiB  
Review
Challenges in the Identification of Environmental Bacterial Isolates from a Pharmaceutical Industry Facility by 16S rRNA Gene Sequences
by Juliana Nunes Ramos, Luciana Veloso da Costa, Verônica Viana Vieira and Marcelo Luiz Lima Brandão
DNA 2025, 5(3), 33; https://doi.org/10.3390/dna5030033 - 7 Jul 2025
Viewed by 423
Abstract
Microbial contamination is a critical challenge for the pharmaceutical industry, especially in thermosensitive sterile products, and can compromise their quality and safety. The accurate identification of microorganisms is essential to trace sources of contamination and adopt corrective measures. Although MALDI-TOF MS technology has [...] Read more.
Microbial contamination is a critical challenge for the pharmaceutical industry, especially in thermosensitive sterile products, and can compromise their quality and safety. The accurate identification of microorganisms is essential to trace sources of contamination and adopt corrective measures. Although MALDI-TOF MS technology has revolutionized this process, its database limitations necessitate the use of complementary methods, such as sequencing 16S rRNA genes, housekeeping genes, and, in some cases, the entire genome. Advances in sequencing have expanded genomic taxonomy, increasing the accuracy of bacterial identification. The integration of these approaches significantly improves the reliability of identification, overcoming the limitations of isolated methods. Full article
Show Figures

Figure 1

12 pages, 232 KiB  
Review
Hypodiploidy: A Poor Prognostic Cytogenetic Marker in B-CLL
by Andrew Ruggero and Carlos A. Tirado
DNA 2025, 5(3), 32; https://doi.org/10.3390/dna5030032 - 1 Jul 2025
Viewed by 361
Abstract
In B-cell chronic lymphocytic leukemia (B-CLL), hypodiploidy is a rare but aggressive subtype of the disease with a very bad prognosis. Hypodiploidy, in contrast to normal B-CLL chromosomal aberrations, is marked by widespread genomic instability, which promotes treatment resistance and quick illness development. [...] Read more.
In B-cell chronic lymphocytic leukemia (B-CLL), hypodiploidy is a rare but aggressive subtype of the disease with a very bad prognosis. Hypodiploidy, in contrast to normal B-CLL chromosomal aberrations, is marked by widespread genomic instability, which promotes treatment resistance and quick illness development. Its persistence after treatment implies that chromosomal loss gives cancerous clones a selection edge, which is made worse by telomere malfunction and epigenetic changes. Since thorough genetic profiling has a major impact on patient outcomes, advanced diagnostic methods are crucial for early detection. Treatment approaches must advance beyond accepted practices because of its resistance to traditional medicines. Hematopoietic stem cell transplantation (HSCT) and chimeric antigen receptor (CAR) T-cell therapy are two potential new therapeutic modalities. Relapse and treatment-related morbidity continue to be limiting concerns, despite the noteworthy improvements in outcomes in high-risk CLL patients receiving HSCT. Although more research is required, CAR T-cell treatment is effective in treating recurrent B-ALL and may also be used to treat B-CLL with hypodiploidy. Novel approaches are essential for enhancing patient outcomes and redefining therapeutic success when hypodiploidy challenges established treatment paradigms. Hypodiploidy is an uncommon yet aggressive form of B-CLL that has a very bad prognosis. Hypodiploidy represents significant chromosomal loss and structural imbalance, which contributes to a disordered genomic environment, in contrast to more prevalent cytogenetic changes. This instability promotes resistance to certain new drugs as well as chemoimmunotherapy and speeds up clonal evolution. Its persistence after treatment implies that hypodiploid clones have benefits in survival, which are probably strengthened by chromosomal segregation issues and damaged DNA repair pathways. Malignant progression and treatment failure are further exacerbated by telomere erosion and epigenetic dysregulation. The need for more sensitive molecular diagnostics is highlighted by the fact that standard karyotyping frequently overlooks hypodiploid clones, particularly those concealed by endoreduplication, despite the fact that these complications make early and correct diagnosis crucial. Hypodiploidy requires a move toward individualized treatment because of their link to high-risk genetic traits and resistance to conventional regimens. Although treatments like hematopoietic stem cell transplantation and CAR T-cells show promise, long-term management is still elusive. To improve long-term results and avoid early relapse, addressing this cytogenetic population necessitates combining high-resolution genomic technologies with changing therapy approaches. Full article
Previous Issue
Back to TopTop