Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage
Abstract
:1. Introduction
2. Experimental
2.1. Analytical Methods
2.2. Synthesis of the Polyoxometalate (C16TA)H2PW and Cellulose Degradation Experiments
2.3. Synthesis of Catalytic Electrode Sheets
2.4. Electrolysis Experiment
3. Results and Discussion
3.1. Characteristics of Solid Heteropoly Acids
3.2. Characterizations of Different Electrodes
3.3. Catalytic Performance of Different Electrodes
3.4. Oxidation Mechanism of Pretreated Cellulose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yolcan, O.O. World energy outlook and state of renewable energy: 10-Year evaluation. Innov. Green Dev. 2023, 2, 100070. [Google Scholar] [CrossRef]
- Dechamps, P. The IEA World Energy Outlook 2022—A brief analysis and implications. Eur. Energy Clim. J. 2023, 11, 100–103. [Google Scholar] [CrossRef]
- Mukherji, A. Climate Change 2023 Synthesis Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed on 4 April 2025).
- Guo, J.; Tsou, C.-H.; De Guzman, M.R.; Wu, C.-S.; Zhang, X.; Chen, Z.; Wen, Y.-H.; Yang, T.; Zhuang, Y.-J.; Ge, F.; et al. Preparation and characterization of bio-based green renewable composites from poly (lactic acid) reinforced with corn stover. J. Polym. Res. 2021, 28, 199. [Google Scholar] [CrossRef]
- Ni, J.; Wang, H.; Chen, Y.; She, Z.; Na, H.; Zhu, J. A novel facile two-step method for producing glucose from cellulose. Bioresour. Technol. 2013, 137, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Takagaki, A.; Obata, W.; Ishihara, T. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst. ChemistryOpen 2021, 10, 954–959. [Google Scholar]
- Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem. 2011, 13, 2759. [Google Scholar] [CrossRef]
- Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy Environ. Sci. 2012, 5, 7956. [Google Scholar] [CrossRef]
- Maerten, S.; Kumpidet, C.; Voß, D.; Bukowski, A.; Wasserscheid, P.; Albert, J. Glucose oxidation to formic acid and methyl formate in perfect selectivity. Green Chem. 2020, 22, 4311–4320. [Google Scholar] [CrossRef]
- Voß, D.; Kahl, M.; Albert, J. Continuous Production of Formic Acid from Biomass in a Three-Phase Liquid–Liquid–Gas Reaction Process. ACS Sustain. Chem. Eng. 2020, 8, 10444–10453. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Li, S.-J.; Sun, Y.-L.; Wang, L.; Zhang, W.-M.; Zhang, P.; Lan, Y.; Li, Y. Practical DMSO-promoted selective hydrolysis–oxidation of lignocellulosic biomass to formic acid attributed to hydrogen bonds. Green Chem. 2021, 23, 7041–7052. [Google Scholar] [CrossRef]
- Nguyen, V.-C.; Nimbalkar, D.B.; Nam, L.D.; Lee, Y.L.; Teng, H. Photocatalytic Cellulose Reforming for H2 and Formate Production by Using Graphene Oxide-Dot Catalysts. ACS Catal. 2021, 11, 4955–4967. [Google Scholar] [CrossRef]
- Li, J.; Smith, R.L.; Xu, S.; Li, D.; Yang, J.; Zhang, K.; Shen, F. Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water. Green Chem. 2022, 24, 315–324. [Google Scholar] [CrossRef]
- Yun, J.; Yao, G.; Jin, F.; Zhong, H.; Kishita, A.; Tohji, K.; Enomoto, H.; Wang, L. Low-temperature and highly efficient conversion of saccharides into formic acid under hydrothermal conditions. AIChE J. 2016, 62, 3657–3663. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Qi, M.; Wu, J.; Gözaydın, G.; Yan, N.; Zhong, H.; Jin, F. Room temperature, near-quantitative conversion of glucose into formic acid. Green Chem. 2019, 21, 6089–6096. [Google Scholar] [CrossRef]
- Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J.-L.; Fu, X.-Z. Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value—Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Heteropoly acids and related compounds as catalysts for fine chemical synthesis. Catal. Rev. 1995, 37, 311–352. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, F.; Zeng, H.-Y.; Guo, F. Production of glucose by hydrolysis of cellulose at 423 K in the presence of activated hydrotalcite nanoparticles. Bioresour. Technol. 2011, 102, 8017–8021. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, J.; Cheng, Z.; Kuang, Y.; Wu, Q.; Wang, B.; Gao, W.; Zeng, J.; Li, J.; Chen, K. Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl. Catal. B Environ. 2020, 268, 118732. [Google Scholar] [CrossRef]
- Zeng, M.; Xuejun, P. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: Progress, challenges, and future opportunities. Catal. Rev. 2022, 64, 445–490. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A.; Song, Z.; Olubajo, O.; Crittle, T.; Peters, D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008, 10, 696–705. [Google Scholar] [CrossRef]
- Luzgin, M.V.; Alexander, G.S. Solid-state NMR characterization of brønsted acid sites of cesium salt of 12-tungstophosphoric acid. J. Phys. Chem. C 2014, 18, 21042–21048. [Google Scholar] [CrossRef]
- Pei, Y.; Pi, Z.; Zhong, H.; Cheng, J.; Jin, F. Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate. J. Mater. Chem. A 2022, 10, 1309–1319. [Google Scholar] [CrossRef]
- Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J.-L.; Fu, X.-Z. Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 2021, 9, 6316–6324. [Google Scholar] [CrossRef]
- Han, X.; Sheng, H.; Yu, C.; Walker, T.W.; Huber, G.W.; Qiu, J.; Jin, S. Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo2O4 Spinel Oxide Nanostructure Catalysts. ACS Catal. 2020, 10, 6741–6752. [Google Scholar] [CrossRef]
- Choi, S.; Balamurugan, M.; Lee, K.-G.; Cho, K.H.; Park, S.; Seo, H.; Nam, K.T. Mechanistic investigation of biomass oxidation using nickel oxide nanoparticles in a CO2-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. 2020, 11, 2941–2948. [Google Scholar] [CrossRef]
- Strakosas, X.; Selberg, J.; Pansodtee, P.; Yonas, N.; Manapongpun, P.; Teodorescu, M.; Rolandi, M. A non-enzymatic glucose sensor enabled by bioelectronic pH control. Sci. Rep. 2019, 9, 10844. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, T.; Dong, C.-L.; Yang, C.; Zhou, L.; Huang, Y.-C.; Li, Y.; Zou, Y.; Wang, S. Tailoring Competitive Adsorption Sites by Oxygen-Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Adv. Mater. 2021, 34, 2107185. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Z.; Yang, M.; Wu, J.; Chen, W.; Wu, Y.; Pan, Y.; Lu, Y.; Zou, Y.; Wang, S. Salting-Out aldehyde from the electrooxidation of alcohols with 100% selectivity. Angew. Chem. Int. Ed. 2022, 61, e202210123. [Google Scholar] [CrossRef]
- Muiuane, V.P.; Ferreira, M.; Bignet, P.; Bettencourt, A.P.; Parpot, P. Production of formic acid from biomass-based compounds using a filter press type electrolyzer. J. Environ. Chem. Eng. 2013, 1, 1237–1244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Yang, Y. Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage. Biomass 2025, 5, 27. https://doi.org/10.3390/biomass5020027
Xiao S, Yang Y. Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage. Biomass. 2025; 5(2):27. https://doi.org/10.3390/biomass5020027
Chicago/Turabian StyleXiao, Shuhan, and Yang Yang. 2025. "Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage" Biomass 5, no. 2: 27. https://doi.org/10.3390/biomass5020027
APA StyleXiao, S., & Yang, Y. (2025). Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage. Biomass, 5(2), 27. https://doi.org/10.3390/biomass5020027