An Update to The Demagnetizing Factor Dataset Calculated for The General Ellipsoid by Osborn
Abstract
1. Introduction
2. Demagnetizing Factors of the General Ellipsoid
3. New Calculated Data for the Demagnetizing Factors of the General Ellipsoid
4. A Useful Graphical Representation of the Demagnetizing Factor Data for the General Ellipsoid
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGuire, T.R.; Potter, R.I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 1975, 11, 1018–1038. [Google Scholar] [CrossRef]
- Campbell, I.A.; Fert, A. Chapter 9 Transport Properties of Ferromagnets. In Handbook of Ferromagnetic Materials; Wohlfarth, E.P., Ed.; North-Holland: Amsterdam, The Netherland, 1982; Volume 3. [Google Scholar]
- Bakonyi, I. Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity. Eur. Phys. J. Plus 2018, 133, 521. [Google Scholar] [CrossRef]
- Isnaini, V.A.; Kolonits, T.; Czigány, Z.; Gubicza, J.; Zsurzsa, S.; Varga, L.K.; Tóth-Kádár, E.; Pogány, L.; Péter, L.; Bakonyi, I. Room-temperature magnetoresistance of nanocrystalline Ni metal with various grain sizes. Eur. Phys. J. Plus 2020, 135, 39. [Google Scholar] [CrossRef]
- Bakonyi, I.; Czeschka, F.D.; Kiss, L.F.; Isnaini, V.A.; Krupp, A.T.; Palotás, K.; Zsurzsa, S.; Péter, L. High-field magnetoresistance of microcrystalline and nanocrystalline Ni metal at 3 K and 300 K. Eur. Phys. J. Plus 2022, 137, 871. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Péter, L.; Kiss, L.F.; Gubicza, J.; Czigány, Z.; Molnár, G.; Bakonyi, I. Anisotropic magnetoresistance (AMR) of cobalt: hcp-Co vs. fcc-Co. J. Magn. Magn. Mater. 2022, 560, 169660. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Péter; Gubicza, J.; Molnár, G.; Li, C.; Vitos, L.; Bakonyi, I. Metastable Phase Formation in Electrodeposited Co-Rich Co-Cu and Co-Ni Alloys. J. Electrochem. Soc. 2023, 170, 062507. [Google Scholar] [CrossRef]
- Bakonyi, I.; Czeschka, F.D.; Isnaini, V.A.; Krupp, A.T.; Gubicza, J.; Varga, L.K.; Péter, L. High-field magnetoresistance measurements on Ni75Co25 and Ni40Co60 alloys at 3 K and 300 K. J. Magn. Magn. Mater. 2024, 591, 171683. [Google Scholar] [CrossRef]
- Kiss, L.F.; Varga, L.K.; Gubicza, J.; Péter, L.; Bakonyi, I. Influence of demagnetizing effects on the magnetization curves of finite-size rectangular slabs (in preparation).
- Osborn, J.A. Demagnetizing Factors of the General Ellipsoid. Phys. Rev. 1945, 67, 351. [Google Scholar] [CrossRef]
- Stoner, E.C. XCVII. The demagnetizing factors for ellipsoids. Philos. Mag. 1945, 36, 803. [Google Scholar] [CrossRef]
- Cronemeyer, D.C. Demagnetization factors for general ellipsoids. J. Appl. Phys. 1991, 70, 2911–2914, Erratum in J. Appl. Phys. 1991, 70, 7660. [Google Scholar] [CrossRef]
- Chen, D.-X.; Brug, J.A.; Goldfarb, R.B. Demagnetizing factors for cylinders. IEEE Trans. Magn. 1991, 27, 3601. [Google Scholar] [CrossRef]
- Zheng, G.; Pardavi-Horváth, M.; Huang, X.; Keszei, B.; Vandlik, J. Experimental determination of an effective demagnetization factor for nonellipsoidal geometries. J. Appl. Phys. 1996, 79, 5742. [Google Scholar] [CrossRef]
- Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 1998, 83, 3432. [Google Scholar] [CrossRef]
- Pardavi-Horvath, M. Shape and size effects in nanostructured 2D magnetic systems. J. Magn. Magn. Mater. 1999, 198–199, 219–221. [Google Scholar] [CrossRef]
- Chen, D.-X.; Pardo, E.; Sanchez, A. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 2002, 38, 1742–1752. [Google Scholar] [CrossRef]
- Chen, D.-X.; Prados, C.; Pardo, E.; Sanchez, A.; Hernando, A. Transverse demagnetizing factors of long rectangular bars: I. Analytical expressions for extreme values of susceptibility. J. Appl. Phys. 2002, 91, 5254–5259. [Google Scholar] [CrossRef]
- Chen, D.-X.; Pardo, E.; Sanchez, A. Demagnetizing factors for rectangular prisms. IEEE Trans. Magn. 2005, 41, 2077–2088. [Google Scholar] [CrossRef]
- Beleggia, M.; De Graef, M.; Millev, Y. Demagnetization factors of the general ellipsoid: An alternative to the Maxwell approach. Philos. Mag. 2006, 86, 2451. [Google Scholar] [CrossRef]
- Smith, A.; Nielsen, K.K.; Christensen, D.V.; Bahl, C.R.H.; Bjørk, R.; Hattel, J. The demagnetizing field of a nonuniform rectangular prism. J. Appl. Phys. 2010, 107, 103910. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE Press–Wiley: Hoboken, NJ, USA, 2009; p. 54. [Google Scholar]
b/a | c/a | Na/4π | Nb/4π | Nc/4π | b/a | c/a | Na/4π | Nb/4π | Nc/4π |
---|---|---|---|---|---|---|---|---|---|
0.1 | 0.005 | 0.001329 | 0.047066 | 0.951605 | 0.6 | 0.005 | 0.003345 | 0.007197 | 0.989457 |
0.01 | 0.002612 | 0.089804 | 0.907585 | 0.01 | 0.006642 | 0.014259 | 0.979099 | ||
0.03 | 0.007338 | 0.227495 | 0.765167 | 0.03 | 0.019357 | 0.041225 | 0.939419 | ||
0.05 | 0.011528 | 0.327974 | 0.660498 | 0.05 | 0.031364 | 0.066289 | 0.902346 | ||
0.075 | 0.016171 | 0.420749 | 0.563080 | 0.075 | 0.045462 | 0.095223 | 0.859315 | ||
0.1 | 0.0203 | 0.4899 | 0.4898 | 0.1 | 0.0586 | 0.1218 | 0.8196 | ||
0.2 | 0.005 | 0.002023 | 0.023606 | 0.974372 | 0.7 | 0.005 | 0.003524 | 0.006012 | 0.990464 |
0.01 | 0.003998 | 0.046050 | 0.949952 | 0.01 | 0.006998 | 0.011925 | 0.981077 | ||
0.03 | 0.011455 | 0.125752 | 0.862793 | 0.03 | 0.020424 | 0.034624 | 0.944952 | ||
0.05 | 0.018279 | 0.192259 | 0.789461 | 0.05 | 0.033138 | 0.055900 | 0.910962 | ||
0.075 | 0.026049 | 0.261274 | 0.712676 | 0.075 | 0.048107 | 0.080677 | 0.871216 | ||
0.1 | 0.0331 | 0.3183 | 0.6486 | 0.1 | 0.0621 | 0.1036 | 0.8343 | ||
0.3 | 0.005 | 0.002499 | 0.015477 | 0.982023 | 0.8 | 0.005 | 0.003671 | 0.005128 | 0.991201 |
0.01 | 0.004950 | 0.030426 | 0.964623 | 0.01 | 0.007294 | 0.010179 | 0.982527 | ||
0.03 | 0.014297 | 0.085430 | 0.900273 | 0.03 | 0.021311 | 0.029650 | 0.949039 | ||
0.05 | 0.022975 | 0.133772 | 0.843253 | 0.05 | 0.034611 | 0.048018 | 0.917371 | ||
0.075 | 0.032988 | 0.186493 | 0.780519 | 0.075 | 0.050305 | 0.069552 | 0.880143 | ||
0.1 | 0.0422 | 0.2322 | 0.7256 | 0.1 | 0.0651 | 0.0896 | 0.8453 | ||
0.4 | 0.005 | 0.002853 | 0.011351 | 0.985796 | 0.9 | 0.005 | 0.003796 | 0.004444 | 0.991760 |
0.01 | 0.005657 | 0.022402 | 0.971941 | 0.01 | 0.007543 | 0.008829 | 0.983629 | ||
0.03 | 0.016410 | 0.063814 | 0.919776 | 0.03 | 0.022058 | 0.02578 | 0.952162 | ||
0.05 | 0.026474 | 0.101225 | 0.872300 | 0.05 | 0.035853 | 0.041849 | 0.922298 | ||
0.075 | 0.038182 | 0.143158 | 0.818660 | 0.075 | 0.052157 | 0.060793 | 0.887050 | ||
0.1 | 0.049 | 0.1805 | 0.7705 | 0.1 | 0.0675 | 0.0786 | 0.8539 | ||
0.5 | 0.005 | 0.003127 | 0.008860 | 0.988013 | 1 | 0.005 | 0.003902 | 0.003902 | 0.992196 |
0.01 | 0.006205 | 0.017526 | 0.976269 | 0.01 | 0.007755 | 0.007755 | 0.98449 | ||
0.03 | 0.018049 | 0.050368 | 0.931583 | 0.03 | 0.022693 | 0.022693 | 0.954615 | ||
0.05 | 0.029193 | 0.080545 | 0.890262 | 0.05 | 0.036909 | 0.036909 | 0.926181 | ||
0.075 | 0.042225 | 0.114965 | 0.842810 | 0.075 | 0.053738 | 0.053738 | 0.892524 | ||
0.1 | 0.0544 | 0.1462 | 0.7994 | 0.1 | 0.069598 | 0.069598 | 0.860804 |
Demagnetizing Factor | b/a | Fitted Polynomials for Na/4π and Nb/4π vs. c/a Data |
---|---|---|
Na/4π | 0.1 | y = −8.213325x4 + 3.683730x3 − 0.959648x2 + 0.270340x |
0.2 | y = −2.056457x4 + 1.893922x3 − 0.943486x2 + 0.408386x | |
0.3 | y = −1.036537x4 + 1.383364x3 − 0.937688x2 + 0.502749x | |
0.4 | y = −0.649740x4 + 1.058068x3 − 0.901723x2 + 0.570613x | |
0.5 | y = −0.634477x4 + 1.093231x3 − 0.950133x2 + 0.628057x | |
0.6 | y = −0.416283x4 + 0.892748x3 − 0.918148x2 + 0.669353x | |
0.7 | y = −0.323111x4 + 0.789552x3 − 0.901536x2 + 0.703562x | |
0.8 | y = −0.277554x4 + 0.737396x3 − 0.896990x2 + 0.732554x | |
0.9 | y = −0.226527x4 + 0.664125x3 − 0.875293x2 + 0.754415x | |
1.0 | y = −0.190013x4 + 0.607244x3 − 0.857422x2 + 0.773218x | |
Nb/4π | 0.1 | y = −2725.800x4 + 797.2283x3 − 104.9405x2 + 10.14657x |
0.2 | y = −122.1111x4 + 78.27606x3 − 23.08401x2 + 4.822780x | |
0.3 | y = −19.49980x4 + 20.34586x3 − 9.691984x2 + 3.109993x | |
0.4 | y = −6.783389x4 + 8.992644x3 − 5.484144x2 + 2.269712x | |
0.5 | y = −2.650351x4 + 4.504643x3 − 3.476309x2 + 1.769546x | |
0.6 | y = −1.337034x4 + 2.687582x3 − 2.427738x2 + 1.436237x | |
0.7 | y = −0.782321x4 + 1.770638x3 − 1.798673x2 + 1.199285x | |
0.8 | y = −0.475207x4 + 1.211208x3 − 1.377362x2 + 1.022217x | |
0.9 | y = −0.278778x4 + 0.814805x3 − 1.057882x2 + 0.880707x | |
1.0 | y = −0.190013x4 + 0.607244x3 − 0.857422x2 + 0.773218x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, L.F.; Bakonyi, I. An Update to The Demagnetizing Factor Dataset Calculated for The General Ellipsoid by Osborn. Magnetism 2024, 4, 173-182. https://doi.org/10.3390/magnetism4030012
Kiss LF, Bakonyi I. An Update to The Demagnetizing Factor Dataset Calculated for The General Ellipsoid by Osborn. Magnetism. 2024; 4(3):173-182. https://doi.org/10.3390/magnetism4030012
Chicago/Turabian StyleKiss, László F., and Imre Bakonyi. 2024. "An Update to The Demagnetizing Factor Dataset Calculated for The General Ellipsoid by Osborn" Magnetism 4, no. 3: 173-182. https://doi.org/10.3390/magnetism4030012
APA StyleKiss, L. F., & Bakonyi, I. (2024). An Update to The Demagnetizing Factor Dataset Calculated for The General Ellipsoid by Osborn. Magnetism, 4(3), 173-182. https://doi.org/10.3390/magnetism4030012