Well-Posedness of Problems for the Heat Equation with a Fractional-Loaded Term and Memory
Abstract
1. Introduction
2. Problem Statement: Cauchy Problem for a Loaded Heat Equation
- Cauchy Problem. Find a function satisfying
3. Well-Posedness of the Classical Problem
- Uniqueness of the Solution. To prove uniqueness, we proceed by contradiction. Assume that the integral Equation (6) admits two distinct solutions:
4. Inverse Problem for Recovering the Memory Term in a Fractionally Loaded Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Refai, M.; Kirane, M. Identification of a convolution kernel in a heat equation with memory. J. Math. Anal. Appl. 2012, 393, 28–44. [Google Scholar]
- Li, Z.; Yamamoto, M. Inverse Problems for Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Atangana, A. Fractional operators with applications. J. Math. Phys. 2021, 62, 051501. [Google Scholar]
- Li, Z.; Liu, Y.; Yamamoto, M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 2019, 347, 249–264. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media. Eur. Phys. J. Plus 2020, 135, 552. [Google Scholar]
- Cannon, J.R. The One-Dimensional Heat Equation; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Friedman, A. Partial Differential Equations of Parabolic Type; Prentice-Hall: Hoboken, NJ, USA, 1964. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Agarwal, R.P.; Baltaeva, U.; Hubert, F.; Khasanov, B. Existence and uniqueness of the solution to initial and inverse problems for integro-differential heat equations with fractional load. Electron. J. Differ. Equ. 2024, 2024, 1–19. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. J. Math. Anal. Appl. 2022, 507, 125742. [Google Scholar] [CrossRef]
- Durdiev, D.K.; Zhumaev, Z.Z. Problem of determining the thermal memory of a conducting medium. Differ. Equ. 2020, 56, 785–796. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Jiang, D.; Liu, J. Inverse problems for time-fractional parabolic equations with applications. Appl. Math. Lett. 2023, 137, 108434. [Google Scholar]
- Sakamoto, K.; Yamamoto, M. Inverse source problems for fractional diffusion equations. J. Math. Anal. Appl. 2022, 504, 125438. [Google Scholar]
- Kabanikhin, S.I. Inverse and Ill-Posed Problems: Theory and Applications; De Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Liu, Y.; Li, X. Numerical analysis for a time-fractional diffusion equation with variable coefficients. Eur. Phys. J. Plus 2021, 136, 220. [Google Scholar]
- Makhmudov, K.N.; Rakhmatullaeva, N.S. On an inverse problem for a heat equation with memory and convolution kernel. Uzbek Math. J. 2020, 3, 88–102. [Google Scholar]
- Aliev, N.A.; Makhmudov, K.N. On inverse problems for degenerate parabolic equations with fractional and integral terms. Comput. Math. Math. Phys. 2021, 61, 1763–1777. [Google Scholar]
- Atanackovic, T.M.; Janev, M.; Pilipovic, S.; Zorica, D. An alternative definition of the Caputo derivative and applications to fractional wave equations. Appl. Math. Model. 2014, 38, 3860–3870. [Google Scholar]
- Baleanu, D.; Garra, R.; Srivastava, H.M. Applications of fractional calculus in physics. Eur. Phys. J. Spec. Top. 2020, 229, 2301–2302. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus in applied sciences. Eur. Phys. J. Spec. Top. 2021, 230, 2349–2362. [Google Scholar]
- Mohan, L.; Prakash, A. Stability and numerical analysis of the generalised time-fractional Cattaneo model for heat conduction in porous media. Eur. Phys. J. Plus 2023, 138, 294. [Google Scholar] [CrossRef]
- Prakash, P.; Choudhary, S.; Daftardar-Gejji, V. Exact solutions of generalized nonlinear time-fractional reaction-diffusion equations with time delay. Eur. Phys. J. Plus 2020, 135, 490. [Google Scholar] [CrossRef]
- Janno, J.; Li, Z. Identification of a space-dependent force function in a time-fractional diffusion equation. Inverse Probl. 2016, 32, 015012. [Google Scholar]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Li, Z.; Yamamoto, M. Inverse problems of fractional differential equations. Inverse Probl. 2020, 36, 123002. [Google Scholar]
- Baltaeva, U.I.; Alikulov, Y.; Baltaeva, I.I.; Ashirova, A. Analog of the Darboux problem for a loaded integro-differential equation involving the Caputo fractional derivative. Nanosyst. Phys. Chem. Math. 2021, 12, 418–424. [Google Scholar] [CrossRef]
- Liu, Y.; Yamamoto, M. A backward problem for multi-term fractional diffusion equations. Appl. Anal. 2010, 89, 1769–1788. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2014, 256, 324–336. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, 2nd ed.; World Scientific: Singapore, 2020. [Google Scholar]
- Jiang, H.; Liu, F.; Anh, V.; Turner, I. Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 2012, 389, 1117–1127. [Google Scholar] [CrossRef]
- Ryskan, A.; Arzikulov, Z.; Ergashev, T.; Berdyshev, A. Self-similar solutions of a multidimensional degenerate partial differential equation of the third order. Mathematics 2024, 12, 3188. [Google Scholar] [CrossRef]
- Sabat, A.K.; Das, S. A study of fractional-order Ambartsumian equation involving exponential decay kernel. Chaos Solitons Fractals 2023, 173, 113657. [Google Scholar]
- Parida, K.V.; Mishra, B.K. Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system. Chaos, Solitons Fractals 2022, 162, 112531. [Google Scholar]
- Das, S.; Debbouche, A.; Mukherjee, S. Hydrogenolysis of glycerol by heterogeneous catalysis: A fractional-order kinetic model with analysis. Phys. A Stat. Mech. Its Appl. 2021, 573, 12596. [Google Scholar]
- Baltaeva, U.; Khasanov, B. Cauchy problem for a loaded hyperbolic equation with the Bessel operator. Math. Slovaca 2024, 74, 1241–1254. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltaeva, U.; Khasanov, B.; Egamberganova, O.; Hayitbayev, H. Well-Posedness of Problems for the Heat Equation with a Fractional-Loaded Term and Memory. Dynamics 2025, 5, 44. https://doi.org/10.3390/dynamics5040044
Baltaeva U, Khasanov B, Egamberganova O, Hayitbayev H. Well-Posedness of Problems for the Heat Equation with a Fractional-Loaded Term and Memory. Dynamics. 2025; 5(4):44. https://doi.org/10.3390/dynamics5040044
Chicago/Turabian StyleBaltaeva, Umida, Bobur Khasanov, Omongul Egamberganova, and Hamrobek Hayitbayev. 2025. "Well-Posedness of Problems for the Heat Equation with a Fractional-Loaded Term and Memory" Dynamics 5, no. 4: 44. https://doi.org/10.3390/dynamics5040044
APA StyleBaltaeva, U., Khasanov, B., Egamberganova, O., & Hayitbayev, H. (2025). Well-Posedness of Problems for the Heat Equation with a Fractional-Loaded Term and Memory. Dynamics, 5(4), 44. https://doi.org/10.3390/dynamics5040044