Human Power Production and Energy Harvesting
Definition
1. Introduction
2. Energy Production in Sport
3. Energy Harvesting
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De La Mettrie, J.O. Machine Man and Other Writings; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Syvitski, J.; Waters, C.N.; Day, J.; Milliman, J.D.; Summerhayes, C.; Steffen, W.; Zalasiewicz, J.; Cearreta, A.; Gałuszka, A.; Hajdas, I.; et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. 2020, 1, 32. [Google Scholar] [CrossRef]
- Chen, J.; Bao, B.; Liu, J.; Wu, Y.; Wang, Q. Pendulum Energy Harvesters: A Review. Energies 2022, 15, 8674. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Staff, S. Harvesting Energy from Humans. Available online: https://www.popsci.com/environment/article/2009-01/harvestingenergy-humans/ (accessed on 17 April 2023).
- Mahapatra, S.D.; Mohapatra, P.C.; Aria, A.I.; Christie, G.; Mishra, Y.K.; Hofmann, S.; Thakur, V.K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 8, e2100864. [Google Scholar] [CrossRef] [PubMed]
- Homayounfar, S.Z.; Andrew, T.L. Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technol. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Robert Obrest. Available online: https://en.wikipedia.org/wiki/Robert_Oberst (accessed on 17 April 2023).
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion:theory, state of the art, design guidelines and future directions. J. Neuroeng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance, 5th ed.; Lippincott, Williams & Wilkins: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Davies, C.T.; Sandstrom, E.R. Maximal mechanical power output and capacity of cyclists and young adults. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 58, 838–844. [Google Scholar] [CrossRef]
- Garhammer, J. Power production by Olympic weightlifters. Med. Sci. Sports Exerc. 1980, 12, 54–60. [Google Scholar] [CrossRef]
- Soriano, M.A.; Kipp, K.; Lake, J.P.; Suchomel, T.J.; Marín, P.J.; Sainz De Baranda, M.P.; Comfort, P. Mechanical power production assessment during weightlifting exercises. A systematic review. Sport. Biomech. 2023, 22, 633–659. [Google Scholar] [CrossRef]
- Slawinski, J.; Termoz, N.; Rabita, G.; Guilhem, G.; Dorel, S.; Morin, J.B.; Samozino, P. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand. J. Med. Sci. Sports 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Haugen, T.; Paulsen, G.; Seiler, S.; Sandbakk, Ø. New Records in Human Power. Int. J. Sports Physiol. Perform. 2018, 13, 678–686. [Google Scholar] [CrossRef]
- Izquierdo-Gabarren, M.; Expósito, R.G.; de Villarreal, E.S.; Izquierdo, M. Physiological factors to predict on traditional rowing performance. Eur. J. Appl. Physiol. 2010, 108, 83–89. [Google Scholar] [CrossRef]
- Swarén, M.; Eriksson, A. Power and pacing calculations based on real-time locating data from a cross-country skiing sprint race. Sport. Biomech. 2017, 3141, 1–12. [Google Scholar] [CrossRef]
- Poulianiti, K.P.; Havenith, G.; Flouris, A.D. Metabolic energy cost of workers in agriculture, construction, manufacturing, tourism, and transportation industries. Ind. Health 2019, 57, 283–305. [Google Scholar] [CrossRef]
- McGilvery, R.W. The use of fuels for muscular work. In Metabolic Adaptation to Prolonged Physical Exercise; Howald, H., Poortmans, J.R., Eds.; Birkhauser Verlag: Basel, Switzerland, 1975; pp. 12–30. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Collins, H.; Dsouza, K.; Hossain Polash, M.; Hosseini, M.; Hyland, M.; Liu, J.; Malhotra, A.; Matos Ortiz, F.; Mohaddes, F.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy 2020, 258, 114069. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, M.; Tai, W.-C.; Zuo, L. Design and experimental studies of an energy harvesting backpack with mechanical motion rectification. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, OR, USA, 12 April 2017. [Google Scholar]
- Martin, J.P.; Li, Q. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study. Gait Posture. 2017, 52, 124–128. [Google Scholar] [CrossRef]
- Jafek, A.; Salmon, J. A Systems Engineering Approach to Harnessing Human Energy in Public Places: A Feasibility Study. J. Energy Resour. Technol. 2017, 139, 041201. [Google Scholar] [CrossRef]
- Empowering Playgrounds. Available online: https://empowerplaygrounds.org (accessed on 17 April 2023).
- Bouchard-Roy, J.; Delnavaz, A.; Voix, J. In-Ear Energy Harvesting: Evaluation of the Power Capability of the Temporomandibular Joint. IEEE Sens. J. 2020, 20, 6338–6345. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Han, B.; Wu, L.; Li, H. Design of a Human Lower Limbs Exoskeleton for Biomechanical Energy Harvesting and Assist Walking. Energy Technol. 2021, 9, 2000726. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Zhang, Y.; Liu, Y.; Liu, Y.; Cao, W.; Chen, C. A New Portable Energy Harvesting Device Mounted on Shoes: Performance and Impact on Wearer. Energies 2020, 13, 3871. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Bibbo, D.; Vala, D.; Conforto, S.; Schmid, M. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting. Sensors 2016, 12, 524. [Google Scholar] [CrossRef]
- Shen, J.; Li, Z.; Yu, J.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288. [Google Scholar] [CrossRef]
- Rome, L.C.; Flynn, L.; Evan, M.; Goldman, E.M.; Yoo, T.D. Generating Electricity While Walking with Loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef] [PubMed]
- Berdy, D.F.; Valentino, D.J.; Peroulis, D. Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sens. Actuators A Phys. 2015, 222, 262–271. [Google Scholar] [CrossRef]
- Martin, J.P.; Li, Q. Generating electricity while walking with a medial-lateral oscillating load carriage device. R. Soc. Open Sci. 2019, 10, 182021. [Google Scholar] [CrossRef]
- Ling Xiao, A.; Kai, W.; Xiaobing, T.; Luo, J. Activity-specific caloric expenditure estimation from kinetic energy harvesting in wearable devices. Pervasive Mob. Comput. 2020, 67, 101185. [Google Scholar] [CrossRef]
- Dean, T. The Human-Powered Home: Choosing Muscles Over Motors; New Society Publishers: Gabriola Island, BC, Canada, 2013. [Google Scholar]
- Shin, H.D.; Bharma, T. Design for sustainable behaviour: A case study of using human-power as an everyday energy source. J. Des. Res. 2016, 14, 280. [Google Scholar] [CrossRef]
- Riaz, A.; Fariha, M.; Sourav, B. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 2017, 26, 085031. [Google Scholar] [CrossRef]
- What If Your Footsteps Could Power Your City Sustainably? UrbanTimes. Available online: https://urbantimes.co/2012/10/footsteps-power-city-sustainably-pavegen-pavingtiles-smart/ (accessed on 17 April 2023).
- Birnbaum, S. Force on a Runner’s Foot. (Elert, G., Ed.). Available online: http://hypertextbook.com/facts/1999/SaraBirnbaum.shtml (accessed on 17 April 2023).
- Harvesting Energy form the Movement of Cows. Available online: https://www.tuni.fi/en/news/harvesting-energy-form-movement-cows#:~:text=%2C%E2%80%9D%20Bla%C5%BEevi%C4%87%20says.-,Electrical%20energy%20can%20be%20captured%20from%20the%20movement%20of%20animals,vibration%2C%20friction%20and%20temperature%20differences (accessed on 17 April 2023).
Energy Source | Production Rate and Peaks (W) |
---|---|
Olympic 50 m sprinter | 2000 |
Sprinting | 3440 |
Professional cyclist (1 h) | 400 |
Peak | 1100 |
Weightlifting | 6629 |
Vertical jump with run-up | 5600 |
Sprinters 100 m | 2392 |
Laborer (over 8 h) | 75 |
Agriculture (peak/min) | 420 |
One footstep | 2–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchella, A. Human Power Production and Energy Harvesting. Encyclopedia 2023, 3, 698-704. https://doi.org/10.3390/encyclopedia3020050
Cicchella A. Human Power Production and Energy Harvesting. Encyclopedia. 2023; 3(2):698-704. https://doi.org/10.3390/encyclopedia3020050
Chicago/Turabian StyleCicchella, Antonio. 2023. "Human Power Production and Energy Harvesting" Encyclopedia 3, no. 2: 698-704. https://doi.org/10.3390/encyclopedia3020050
APA StyleCicchella, A. (2023). Human Power Production and Energy Harvesting. Encyclopedia, 3(2), 698-704. https://doi.org/10.3390/encyclopedia3020050