A Biomimetic Strategy for the Fabrication of Micro- and Nanodiamond Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of PEMA Solutions and Diamond Suspensions
2.2. Film Deposition
2.3. Film Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chen, Q.; Cho, J.; Boccaccini, A. Electrophoretic co-deposition of diamond/borosilicate glass composite coatings. Surf. Coat. Technol. 2007, 201, 7645–7651. [Google Scholar] [CrossRef]
- Mani, N.; Ahnood, A.; Peng, D.; Tong, W.; Booth, M.; Jones, A.; Murdoch, B.; Tran, N.; Houshyar, S.; Fox, K. Single-Step Fabrication Method toward 3D Printing Composite Diamond–Titanium Interfaces for Neural Applications. ACS Appl. Mater. Interfaces 2021, 13, 31474–31484. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-H.; Narayan, R.J. Biocompatibility and functionalization of diamond for neural applications. Curr. Opin. Biomed. Eng. 2019, 10, 60–68. [Google Scholar] [CrossRef]
- Pandey, P.C.; Shukla, S.; Pandey, G.; Narayan, R.J. Nanostructured diamond for biomedical applications. Nanotechnology 2021, 32, 132001. [Google Scholar] [CrossRef]
- Branzoi, I.V.; Iordoc, M.; Branzoi, F.; Rimbu, G.; Marinescu, V. Synthesis and characterization of high-voltage electrodeposited diamond-like carbon protective coating on TiAlV biomedical substrates. Surf. Interface Anal. 2012, 44, 1193–1197. [Google Scholar] [CrossRef]
- Starikov, V.; Starikova, S.; Mamalis, A.; Lavrynenko, S. Diamond biocompatible coatings for medical implants. J. Biol. Phys. Chem. 2016, 16, 70–74. [Google Scholar] [CrossRef]
- Wang, T.; Huang, L.; Liu, Y.; Li, X.; Liu, C.; Handschuh-Wang, S.; Xu, Y.; Zhao, Y.; Tang, Y. Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface. ACS Appl. Mater. Interfaces 2020, 12, 24432–24441. [Google Scholar] [CrossRef]
- Li, Y.; Ye, F.; Corona, J.; Taheri, M.; Zhang, C.; Sanchez-Pasten, M.; Yang, Q. CVD deposition of nanocrystalline diamond coatings on implant alloy materials with CrN/Al interlayer. Surf. Coat. Technol. 2018, 353, 364–369. [Google Scholar] [CrossRef]
- Nistor, P.; May, P. Diamond thin films: Giving biomedical applications a new shine. J. R. Soc. Interface 2017, 14, 20170382. [Google Scholar] [CrossRef] [Green Version]
- Tasat, D.R.; Bruno, M.E.; Domingo, M.; Gurman, P.; Auciello, O.; Paparella, M.L.; Evelson, P.; Guglielmotti, M.B.; Olmedo, D.G. Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 2408–2415. [Google Scholar] [CrossRef]
- Tien, H.-W.; Lee, C.-Y.; Lin, I.-N.; Chen, Y.-C. Long term in vivo functional stability and encapsulation reliability of using ultra-nanocrystalline diamond as an insulating coating layer for implantable microchips. J. Mater. Chem. B 2017, 5, 3706–3717. [Google Scholar] [CrossRef] [PubMed]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Turcheniuk, K.; Mochalin, V.N. Biomedical applications of nanodiamond. Nanotechnology 2017, 28, 252001. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-H.; Nguyen, A.K.; Goering, P.L.; Sumant, A.V.; Narayan, R.J. Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment. Interface Focus 2018, 8, 20170063. [Google Scholar] [CrossRef]
- Rifai, A.; Tran, N.; Reineck, P.; Elbourne, A.; Mayes, E.; Sarker, A.; Dekiwadia, C.; Ivanova, E.P.; Crawford, R.J.; Ohshima, T. Engineering the interface: Nanodiamond coating on 3D-printed titanium promotes mammalian cell growth and inhibits Staphylococcus aureus colonization. ACS Appl. Mater. Interfaces 2019, 11, 24588–24597. [Google Scholar] [CrossRef]
- Stigler, R.G.; Becker, K.; Bruschi, M.; Steinmüller-Nethl, D.; Gassner, R. Impact of nano-crystalline diamond enhanced hydrophilicity on cell proliferation on machined and SLA titanium surfaces: An in-vivo study in rodents. Nanomaterials 2018, 8, 524. [Google Scholar] [CrossRef] [Green Version]
- Perevedentseva, E.; Karmenyan, A.; Lin, Y.-C.; Song, C.-Y.; Lin, Z.-R.; Ahmed, A.-I.; Chang, C.-C.; Norina, S.B.; Bessalova, V.; Perov, N. Multifunctional biomedical applications of magnetic nanodiamond. J. Biomed. Opt. 2018, 23, 091404. [Google Scholar]
- Choudhury, D.; Morita, T.; Sawae, Y.; Lackner, J.M.; Towler, M.; Krupka, I. A novel functional layered diamond like carbon coating for orthopedics applications. Diam. Relat. Mater. 2016, 61, 56–69. [Google Scholar] [CrossRef]
- Ding, H.; Fridrici, V.; Geringer, J.; Fontaine, J.; Kapsa, P. Influence of diamond-like carbon coatings and roughness on fretting behaviors of Ti–6Al–4V for neck adapter–femoral stem contact. Wear 2018, 406, 53–67. [Google Scholar] [CrossRef]
- Liao, T.; Zhang, T.; Li, S.; Deng, Q.; Wu, B.; Zhang, Y.; Zhou, Y.; Guo, Y.; Leng, Y.; Huang, N. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Mater. Sci. Eng. C 2016, 69, 751–759. [Google Scholar] [CrossRef]
- Strąkowska, P.; Beutner, R.; Gnyba, M.; Zielinski, A.; Scharnweber, D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films—Coating characterization and first cell biological results. Mater. Sci. Eng. C 2016, 59, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Salehi, M. Fabrication and characterization of optical, mechanical and chemical properties of diamond-like carbon thin film deposited on polymer substrate. Opt. Quantum Electron. 2018, 50, 1–17. [Google Scholar] [CrossRef]
- Bito, K.; Hasebe, T.; Maegawa, S.; Maeda, T.; Matsumoto, T.; Suzuki, T.; Hotta, A. In vitro basic fibroblast growth factor (bFGF) delivery using an antithrombogenic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coated with a micropatterned diamond-like carbon (DLC) film. J. Biomed. Mater. Res. Part A 2017, 105, 3384–3391. [Google Scholar] [CrossRef] [PubMed]
- Khatir, S.; Hirose, A.; Xiao, C. Coating diamond-like carbon films on polymer substrates by inductively coupled plasma assisted sputtering. Surf. Coat. Technol. 2014, 253, 96–99. [Google Scholar] [CrossRef]
- Zhao, Q.; Veldhuis, S.; Mathews, R.; Zhitomirsky, I. Influence of chemical structure of bile acid dispersants on electrophoretic deposition of poly (vinylidene fluoride) and composites. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127181. [Google Scholar] [CrossRef]
- St. Hill, L.R.; Tran, H.-V.; Chinwangso, P.; Lee, H.J.; Marquez, M.D.; Craft, J.W.; Lee, T.R. Antifouling Studies of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiol Self-Assembled Monolayers. Micro 2021, 1, 151–163. [Google Scholar] [CrossRef]
- Kuganathan, N.; Ganeshalingam, S. Encapsulation and Adsorption of Halogens into Single-Walled Carbon Nanotubes. Micro 2021, 1, 140–150. [Google Scholar] [CrossRef]
- Zhitomirsky, I.; Gal-Or, L. Formation of hollow fibers by electrophoretic deposition. Mater. Lett. 1999, 38, 10–17. [Google Scholar] [CrossRef]
- Haveriku, S.; Meucci, M.; Badalassi, M.; Cardelli, C.; Ruggeri, G.; Pucci, A. Optimization of the Mechanical Properties of Polyolefin Composites Loaded with Mineral Fillers for Flame Retardant Cables. Micro 2021, 1, 102–119. [Google Scholar] [CrossRef]
- Boane, J.L.N.; Centeno, P.; Mouquinho, A.; Alexandre, M.; Calmeiro, T.; Fortunato, E.; Martins, R.; Mendes, M.J.; Águas, H. Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro 2021, 1, 215–227. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Y.; Zhitomirsky, I. Electrophoretic deposition of TiO2 and composite TiO2–MnO2 films using benzoic acid and phenolic molecules as charging additives. J. Colloid Interface Sci. 2010, 352, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, F.; Swain, S.K. Effect of graphene platelets on the thermal and conducting properties of poly (ethyl methacrylate). Adv. Polym. Technol. 2018, 37, 1316–1322. [Google Scholar] [CrossRef]
- Abdelrazek, E. Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films. Phys. B 2007, 400, 26–32. [Google Scholar] [CrossRef]
- Ata, M.; Liu, Y.; Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 2014, 4, 22716–22732. [Google Scholar] [CrossRef]
- Ata, M.S.; Poon, R.; Syed, A.M.; Milne, J.; Zhitomirsky, I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon 2018, 130, 584–598. [Google Scholar] [CrossRef]
- Baker, K.; Sikkema, R.; Liang, W.; Zhitomirsky, I. Multifunctional Properties of Commercial Bile Salts for Advanced Materials Engineering. Adv. Eng. Mater. 2021, 23, 2001261. [Google Scholar] [CrossRef]
- Baker, K.; Sikkema, R.; Zhitomirsky, I. Application of bile acids for biomedical devices and sensors. Med. Devices Sens. 2020, 3, e10119. [Google Scholar] [CrossRef]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.; Zhitomirsky, I. A Versatile Strategy for the Fabrication of Poly (ethyl methacrylate) Composites. J. Compos. Sci. 2022, 6, 40. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, K.; Zhitomirsky, I. A Biomimetic Strategy for the Fabrication of Micro- and Nanodiamond Composite Films. Micro 2022, 2, 154-163. https://doi.org/10.3390/micro2010010
Baker K, Zhitomirsky I. A Biomimetic Strategy for the Fabrication of Micro- and Nanodiamond Composite Films. Micro. 2022; 2(1):154-163. https://doi.org/10.3390/micro2010010
Chicago/Turabian StyleBaker, Kayla, and Igor Zhitomirsky. 2022. "A Biomimetic Strategy for the Fabrication of Micro- and Nanodiamond Composite Films" Micro 2, no. 1: 154-163. https://doi.org/10.3390/micro2010010
APA StyleBaker, K., & Zhitomirsky, I. (2022). A Biomimetic Strategy for the Fabrication of Micro- and Nanodiamond Composite Films. Micro, 2(1), 154-163. https://doi.org/10.3390/micro2010010