Enhancing Sialidase Production from the Oerskovia paurometabola O129 Strain by the Optimization of Fermentation Parameters and the Addition of Stimulative Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Extracellular Sialidase Activity Assay
2.3. Effect of Different Conditions on Cell Growth and Enzyme Production
2.3.1. Dynamics of Enzyme Accumulation During Growth Phases
2.3.2. Effect of Inoculum Size
2.3.3. Effect of Physicochemical Parameters—Temperature, pH, and Aeration
2.3.4. Effect of Inducers and Surfactants
2.3.5. Effect of Combined Optimal Conditions
2.4. Statistical Analysis
3. Results
3.1. Dynamics of Enzyme Accumulation During Growth Phases
3.2. Effect of Inoculum Size
3.3. Effect of Physicochemical Parameters—Temperature, pH, and Aeration
3.3.1. Effect of Temperature
3.3.2. Effect of pH
3.3.3. Aeration
3.4. Effect of Inducers and Surfactants
3.5. Effect of Combined Optimal Conditions for Cell Growth and Sialidase Production
4. Discussion
4.1. Dynamics of Enzyme Accumulation During Growth Phases
4.2. Effect of Physicochemical Parameters—Temperature, pH, and Aeration
4.3. Effect of Inducers and Surfactants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 2009, 19, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell Mol. Life Sci. 1998, 54, 1330–1349. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, S.; Melzig, M. Sialidases in biological systems. Pharmazie 2010, 65, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Eneva, R.; Engibarov, S.; Abrashev, R.; Krumova, E.; Angelova, M. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi. Biotechnol. Biotechnol. Equip. 2021, 35, 346–357. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.; Kwon, O.; Kang, H. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J. Biochem. 2010, 147, 523–533. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, B.; Mee, B.; Riley, T. Neuraminidase production by Erysipelothrix rhusiopathiae. Vet. Microbiol. 2005, 107, 265–272. [Google Scholar] [CrossRef]
- White, D.; Jolley, W.; Purdy, C.; Straus, D. Extracellular neuraminidase production by a Pasteurella multocida: 3 strain associated with bovine pneumonia. Infect. Immun. 1995, 63, 1703–1709. [Google Scholar] [CrossRef]
- Hoyer, L.; Roggentin, P.; Schauer, R.; Vimr, E. Purification and properties cloned Salmonela typhimurium LT-2 sialidase with virus-typical kinetic preference for sialyl alpha 2–3 linkages. J. Biochem. 1991, 110, 462–467. [Google Scholar] [CrossRef]
- Jost, B.; Songer, J.; Billington, S. Identification of a second Arcanobacterium pyogenes neuraminidase and involvement of neuraminidase activity in host cell adhesion. Infect. Immun. 2002, 70, 1106–1112. [Google Scholar] [CrossRef]
- Blanchette, K.; Shenoy, A.; Milner, J., 2nd; Gilley, R.; McClure, E.; Hinojosa, C.; Kumar, N.; Daugherty, S.; Tallon, L.; Ott, S.; et al. Neuraminidase A-exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization. Infect. Immun. 2016, 84, 2922–2932. [Google Scholar] [CrossRef]
- Lewis, W.; Robinson, L.; Perry, J.; Bick, J.; Peipert, J.; Allsworth, J.; Lewis, A. Hydrolysis of secreted sialoglycoprotein immunoglobulin A (IgA) in ex vivo and biochemical models of bacterial vaginosis. J. Biol. Chem. 2012, 287, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Kunimoto, S.; Aoyagi, T.; Takeuchi, T.; Umezawa, H. Purification and characterization of Streptomyces sialidases. J. Bacteriol. 1974, 119, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Aisaka, K.; Igarashi, A.; Uwajima, T. Purification, crystallization, and characterization of neuraminidase from Micromonospora viridifaciens. Agr. Biol. Chem. 1991, 55, 997–1004. [Google Scholar] [CrossRef]
- Kessler, J.; Heck, J.; Tannenbaum, S.; Flashner, M. Substrate and product specificity of Arthrobacter sialophilus neuraminidase. J. Biol. Chem. 1982, 277, 5056–5060. [Google Scholar] [CrossRef]
- Abrashev, I.; Dulguerova, G.; Dolashka-Angelova, P.; Voelter, W. Purification and characterization of a novel sialidase from a strain of Arthrobacter nicotianae. J. Biochem. 2005, 137, 365–371. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Gocheva, Y.; Mitova, S.; Petrova, P. Novel sialidase from non-pathogenic bacterium Oerskovia paurometabola strain O129. Z. Naturforsch. C 2022, 78, 49–55. [Google Scholar] [CrossRef]
- Chemaly, R.; Marty, F.; Wolfe, C.; Lawrence, S.; Dadwal, S.; Soave, R.; Farthing, J.; Hawley, S.; Montanez, P.; Hwang, J.; et al. DAS181 Treatment of severe lower respiratory tract parainfluenza virus infection in immunocompromised patients: A phase 2 randomized, placebo-controlled study. Clin. Infect. Dis. 2021, 73, e773–e778. [Google Scholar] [CrossRef]
- Nicholls, J.; Moss, R.; Haslam, S. The use of sialidase therapy for respiratory viral infections. Antivir. Res. 2013, 98, 401–409. [Google Scholar] [CrossRef]
- Kurnia, R.; Tarigan, S.; Nugroho, C.; Silaen, O.; Natalia, L.; Ibrahim, F.; Sudarmono, P. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Vet. World 2022, 15, 1896. [Google Scholar] [CrossRef]
- Chen, Q.-V.; Zhang, Y.; Bao, P.; Zhang, X.-Z. Sialidase-chimeric bioengeneered bacteria for tumor-sialoglycan-triggered solid tumor therapy. Nano Lett. 2024, 24, 10362–10371. [Google Scholar] [CrossRef]
- Durgin, J.; Thokala, R.; Johnson, L.; Song, E.; Leferovich, J.; Bhoj, V.; Ghassemi, S.; Milone, M.; Binder, Z.; O’Rourke, D.; et al. Enhancing CAR T function with the engineered secretion of C. perfringens neuraminidase. Mol. Ther. 2022, 30, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Laftah, B.; Al-Shammary, A.; Salih, H. Study the role of bacterial neuraminidase against adenocarcinoma cells in vivo. 2nd International Conference in Physical Science & Advanced Materials. AIP Conf. Proc. 2021, 2372, 030009. [Google Scholar] [CrossRef]
- Chamberlain, B.; Buttery, J.; Pannall, P. A simple electrophoretic method for separating elevated liver and bone alkaline phosphatase isoenzymes in plasma after neuraminidase treatment. Clin. Chim. Acta 1992, 208, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lin, X.; Hui, K.; Yang, S.; Wu, X.; Tan, Y.; Li, M.; Qin, A.; Wang, Q.; Zhao, Q.; et al. A biochemiluminescent sialidase assay for diagnosis of bacterial vaginosis. Sci. Rep. 2019, 9, e20024. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yu, W.; Zhang, W.; Jiang, J.; Gu, Q.; Wang, X.; Wu, Y. Evaluating the activity of neuraminidase in bacterial vaginosis microflora and imaging sialic acid on the cell membrane by boron and nitrogen codoped fluorescent carbon dots. ACS Sens. 2023, 8, 2556–2562. [Google Scholar] [CrossRef]
- Worrall, E.; Priadi, A. Sialivac: An intranasal homologous inactivated split virus vaccine containing bacterial sialidase for the control of avian influenza in poultry. Vaccine 2009, 27, 4161–4168. [Google Scholar] [CrossRef]
- Jin, R.; Hu, Y.; Sun, B.; Zhang, X.; Sun, L. Edwardsiella tarda sialidase: Pathogenicity involvement and vaccine potential. Fish Shellfish Immunol. 2012, 33, 514–521. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.; Kang, H.; Kwon, O. Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 2011, 91, 1–15. [Google Scholar] [CrossRef]
- Schmidt, D.; Sauerbrei, B.; Thiem, J. Chemoenzymatic synthesis of sialyl oligosaccharides with sialidases employing transglycosylation methodology. J. Org. Chem. 2000, 65, 8518–8526. [Google Scholar] [CrossRef]
- Muñoz-Provencio, D.; Yebra, M. Gut microbial sialidases and their role in the metabolism of human milk sialylated glycans. Int. J. Mol. Sci. 2023, 24, 9994. [Google Scholar] [CrossRef]
- Ajisaka, H.; Fujimoto, H.; Isomura, M. Regioselective transglycosylation in the synthesis of oligosaccharide: Comparison of β-galactosidases and sialidases of various origin. Carbohydr. Res. 1994, 259, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.F.; Wang, X.D.; Wei, D.Z. Development of a large scale process for the conversion of polysialogangliosides to monosialotetrahexosylganglioside with a novel strain of Brevibacterium casei producing sialidase. Biotechnol. Lett. 2007, 29, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, D.; Shen, D.; Wang, X.; Wei, D. Efficient conversion from polysialogangliosides to monosialotetrahexosylganglioside using Oerskovia xanthineolytica YZ-2. Bioprocess Biosyst. Eng. 2011, 34, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Jiang, J.; Chen, Q. Development of a cell immobilization technique for the conversion of polysialogangliosides to monosialotetrahexosylganglioside. Pharm. Biol. 2011, 49, 805–809. [Google Scholar] [CrossRef]
- Mariño, K.; Bones, J.; Kattla, J.; Rudd, P. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef]
- Estrella, R.; Whitelock, J.; Roubin, R.; Packer, N.; Karlsson, N. Small-scale enzymatic digestion of glycoproteins and proteoglycans for analysis of oligosaccharides by LC-MS and FACE gel electrophoresis. Methods Mol. Biol. 2009, 534, 171–192. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Strateva, T.; Abrashev, R.; Abrashev, I. Biochemical studies on the production of neuraminidase by environmental isolates of Vibrio cholerae non-O1 from Bulgaria. Can. J. Microbiol. 2011, 57, 606–610. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Petrova, P.; Abrashev, R.; Strateva, T.; Kolyovska, V.; Abrashev, I. High production of neuraminidase by a Vibrio cholerae non-O1 strain—The first possible alternative to toxigenic producers. Appl. Biochem. Biotechnol. 2015, 176, 412–427. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Schumann, P. Oerskovia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Kim, J.; Lee, T.; Ihm, C.; Kim, Y.; Moon, S.; Lee, H.; Jeong, K. CAPD peritonitis caused by co-infection with Cellulosimicrobium cellulans (Oerskovia xanthineolytica) and Enterobacter cloacae: A case report and literature review. Int. Med. 2015, 54, 627–630. [Google Scholar] [CrossRef]
- Oikonomou, K.; Mcwilliams, C.; Moussa, M. Oerskovia species bacteremia in a diabetic patient. J. Glob. Infect. Dis. 2018, 10, 113–114. [Google Scholar] [CrossRef]
- Rohowetz, L.; Patel, N.; Yannuzzi, N.; Fan, K.; Miller, D.; Flynn, H. Post-Traumatic Endophthalmitis Caused by Oerskovia turbata. Case Rep. Ophthalmol. 2019, 10, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Lewis, C.; Aslanzadeh, J.; Stelmach, P.; Woolfrey, A. Oerskovia xanthineolytica infection of a prosthetic joint: Case report and review. J. Clin. Microbiol. 1996, 34, 1821–1824. [Google Scholar] [CrossRef] [PubMed]
- Wibbelt, G.; McKay, J. Oerskovia spp. infection in a pigeon-Case report and review. Eur. J. Vet. Pathol. 2001, 7, 79–82. [Google Scholar]
- Müller, H. Detection of sialidase activity in Oerskovia (Cellulomonas) turbata. Zentralbl. Bacteriol. 1995, 282, 13–17. [Google Scholar] [CrossRef]
- Eneva, R.; Engibarov, S.; Gocheva, Y.; Mitova, S.; Arsov, A.; Petrov, K.; Abrashev, R.; Lazarkevich, I.; Petrova, P. Safe sialidase production by the saprophyte Oerskovia paurometabola: Gene sequence and enzyme purification. Molecules 2022, 27, 8922. [Google Scholar] [CrossRef]
- Gocheva, Y.; Nikolova, M.; Engıbarov, S.; Lazarkevich, I.; Eneva, R. Effective inhibition of bacterial sialidases by phenolic acids and flavonoids. Int. J. Second. Metab. 2024, 11, 514–521. [Google Scholar] [CrossRef]
- Gocheva, Y.; Nikolova, M.; Engıbarov, S.; Lazarkevich, I.; Mitova, S.; Eneva, R. Study of bulgarian plant extracts effect on three bacterial sialidases. Acta Microbiol. Bulg. 2024, 40, 236–241. [Google Scholar] [CrossRef]
- Uchida, Y.; Tsukada, Y.; Sugimori, T. Distribution of neuraminidase in Arthrobacter and its purification by affinity chromatography. J. Biochem. 1977, 82, 1425–1433. [Google Scholar] [CrossRef]
- Engibarov, S.; Eneva, R.; Abrashev, I. Neuraminidase (sialidase) from Aeromonas sp. strain 40/02–isolation and partial purification. Ann. Microbiol. 2015, 65, 1515–1523. [Google Scholar] [CrossRef]
- Naveed, M.; Tianying, H.; Wang, F.; Yin, X.; Chan, M.; Ullah, A.; Xu, B.; Aslam, S.; Ali, N.; Abbas, Q.; et al. Isolation of lysozyme producing Bacillus subtilis strains, identification of the new strain Bacillus subtilis BSN314 with the highest enzyme production capacity and optimization of culture conditions for maximum lysozyme production. Curr. Res. Biotechnol. 2022, 4, 290–301. [Google Scholar] [CrossRef]
- Lazarkevich, I.; Sotirova, A.; Avramova, T.; Stoitsova, S.; Paunova-Krasteva, T.; Galabova, D. Antibacterial activity of methyltiosulfonate and its complexes with rhamnolipid and trehalose lipid against Pseudomonas aeruginosa NBIMCC 1390. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 282–290. [Google Scholar]
- Ogunniran, A.; Odeleye, B.; Femi-Ola, T. Optimization of culture conditions for lipase production by Pseudomonas aeruginosa ECS3. Trop. J. Nat. Prod. Res. 2023, 7, 3240–3245. [Google Scholar] [CrossRef]
- Banerjee, S.; Maiti, T.; Roy, R. Identification and product optimization of amylolytic Rhodococcus opacus GAA 31. 1 isolated from gut of Gryllotalpa africana. J. Genet. Eng. Biotechnol. 2016, 14, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Butt, K.; Altaf, A.; Malana, M.; Ghori, M.; Jamil, A. Optimal production of proteases from Bacillus subtilis using submerged fermentation. Pak. J. Life Soc. Sci. 2018, 16, 15–19. [Google Scholar]
- Rodrigo, W.; Magamulla, L.; Thiwanka, M.; Yapa, Y. Optimization of growth conditions to identify the superior Bacillus strain which produce high yield of thermostable alpha amylase. Adv. Enzyme Res. 2022, 10, 1–22. [Google Scholar] [CrossRef]
- Abusham, R.; Rahman, R.; Salleh, A.; Basri, M. Optimization of physical factors affecting the production of thermostable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb. Cell Fact. 2009, 8, 1–9. [Google Scholar] [CrossRef]
- Milligan, T.; Straus, D.; Mattingly, S. Extracellular neuraminidase production by group B streptococci. Infect. Immun. 1977, 18, 189–195. [Google Scholar] [CrossRef]
- Davis, L.; Baig, M.; Ayoub, E. Properties of extracellular neuraminidase produced by group A streptococcus. Infect. Immun. 1979, 24, 780–786. [Google Scholar] [CrossRef]
- Straus, D.; Portnoy-Duran, C. Neuraminidase production by a Streptococcus sanguis strain associated with subacute bacterial endocarditis. Infect. Immun. 1983, 41, 507–515. [Google Scholar] [CrossRef]
- Ghazaei, S.; Ahmadi, M.; Hosseini, J. Detection of neuraminidase activity in Pseudomonas aeruginosa PAO1. Iran. J. Basic Med. Sci. 2010, 13, 69–75. [Google Scholar] [CrossRef]
- Flashner, M.; Wang, P.; Hurley, J.; Tanenbaum, S. Properties of an inducible extracellular neuraminidase from an Artrobacter isolate. J. Bacteriol. 1977, 129, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Abrashev, R.; Krumova, E.; Petrova, P.; Eneva, R.; Kostadinova, N.; Miteva-Staleva, J.; Engibarov, S.; Stoyancheva, G.; Gocheva, Y.; Kolyovska, V.; et al. Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol. 2021, 125, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Grobe, K.; Sartori, B.; Traving, C.; Schauer, R.; Roggentin, P. Enzymatic and molecular properties of the Clostridium tertium sialidase. J. Biochem. 1998, 124, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Von Nicolai, H.; Höffler, U.; Zilliken, F. Isolation, purification, and properties of neuraminidase from Propionibacterium acnes. Zentralbl. Bakteriol. A 1980, 247, 84–94. [Google Scholar] [CrossRef]
- Byers, H.; Tarelli, E.; Homer, K.; Beighton, D. Isolation and characterisation of sialidase from a strain of Streptococcus oralis. J Med. Microbiol. 2000, 49, 235–244. [Google Scholar] [CrossRef]
- Mally, M.; Shin, H.; Paroz, C.; Landmann, R.; Cornelis, G. Capnocytophaga canimorsus: A Human Pathogen Feeding at the Surface of Epithelial Cells and Phagocytes. PLoS Pathog. 2008, 4, e1000164. [Google Scholar] [CrossRef]
- Corfield, T. Bacterial sialidases: Roles in pathogenecty and nutrition. Glycobiology 1992, 2, 509–521. [Google Scholar] [CrossRef]
- Moncla, B.; Braham, P.; Hillier, S. Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J. Clin. Microbiol. 1990, 28, 422–425. [Google Scholar] [CrossRef]
- Gualdi, L.; Hayre, J.; Gerlini, A.; Bidossi, A.; Colomba, L.; Trappetti, C.; Pozzi, G.; Docquier, J.; Andrew, P.; Ricci, S.; et al. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol. 2012, 12, 200. [Google Scholar] [CrossRef]
- Drzeniek, R.; Scharmann, W.; Balke, E. Neuraminidase and N-acetylneuraminate pyruvate-lyase of Pasteurella Multocida. J. Gen. Microbiol. 1972, 72, 357–368. [Google Scholar] [CrossRef]
- Abrashev, I.; Orozova, P. Erysipelothrix rhusiopathiae neuraminidase and its role in pathogenicity. Z. Naturforsch. C. 2006, 61, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Deive, F.; Carvalho, E.; Pastrana, L.; Rúa, M.; Longo, M.; Sanroman, M.A. Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Biores. Technol. 2009, 100, 3630–3637. [Google Scholar] [CrossRef] [PubMed]
- Uma Maheswar Rao, J.; Satyanarayana, T. Enhanced secretion and low temperature stabilization of a hyperthermostable and Ca2+-independent alpha-amylase of Geobacillus thermoleovorans by surfactants. Lett. Appl. Microbiol. 2003, 36, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Pardo, A.G. Effect of surfactants on cellulase production by Nectria catalinensis. Curr. Microbiol. 1996, 33, 275–278. [Google Scholar] [CrossRef]
- Boekema, B.; Beselin, A.; Breuer, M.; Hauer, B.; Koster, M.; Rosenau, F.; Jaeger, K.-E.; Tommassen, J. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl. Environ. Microbiol. 2007, 73, 3838–3844. [Google Scholar] [CrossRef]
- Evans, E.; Abdullahi, A. Effect of surfactant inclusions on the yield and characteristics of protease from Bacillus subtilis. Proc. Rom. Acad. Ser. B 2012, 2, 108–112. [Google Scholar]
- Al Mohaini, M.; Farid, A.; Muzammal, M.; Ghazanfar, S.; Dadrasnia, A.; Alsalman, A.; Hawaj, M.; Alhashem, Y.; Ismail, S. Enhancing lipase production of Bacillus salmalaya strain 139SI using different carbon sources and surfactants. Appl. Microbiol. 2022, 2, 237–247. [Google Scholar] [CrossRef]
- Domínguez, A.; Deive, F.; Sanromán, M.; Longo, M. Effect of lipids and surfactants on extracellular lipase production by Yarrowia lipolytica. J. Chem. Technol. Biotechnol. 2003, 78, 1166–1170. [Google Scholar] [CrossRef]
- Zeng, G.; Shi, J.; Yuan, X.; Liu, J.; Zhang, Z.; Huang, G.; Li, J.; Xi, B.; Liu, H. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enz. Microb. Technol. 2006, 39, 1451–1456. [Google Scholar] [CrossRef]
- Shi, J.; Zeng, G.; Yuan, X.; Dai, F.; Liu, J.; Wu, X. The stimulatory effects of surfactants on composting of waste rich in cellulose. World J. Microbiol. Biotechnol. 2006, 22, 1121–1127. [Google Scholar] [CrossRef]
- Shao, B.; Liu, Z.; Zhong, H.; Zeng, G.; Liu, G.; Yu, M.; Liu, Y.; Yang, X.; Li, Z.; Fang, Z.; et al. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiol. Res. 2017, 200, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Chiou, C.; Tsai, Y. Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol. Lett. 1995, 17, 959–962. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Su, L.; Chen, S.; Li, Z.; Chen, J.; Wu, J. Glycine and Triton X-100 enhanced secretion of recombinant α-CGTase mediated by OmpA signal peptide in Escherichia coli. Biotechnol. Bioprocess Eng. 2012, 17, 1128–1134. [Google Scholar] [CrossRef]
- Duan, X.; Zou, C.; Wu, J. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. Bioresour. Technol. 2015, 194, 137–143. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Incubation period (hour) | 28 |
Inoculum size (%) | 2 |
pH | 8 |
Temperature (°C) | 30 |
Time point of supplementation of additives (hour) | 16 |
Agitation (rpm) | 200 |
Tween (%) | 0.025 |
GMP (%) | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gocheva, Y.; Krumova, E.; Lazarkevich, I.; Eneva, R.; Engibarov, S. Enhancing Sialidase Production from the Oerskovia paurometabola O129 Strain by the Optimization of Fermentation Parameters and the Addition of Stimulative Compounds. Appl. Microbiol. 2025, 5, 50. https://doi.org/10.3390/applmicrobiol5020050
Gocheva Y, Krumova E, Lazarkevich I, Eneva R, Engibarov S. Enhancing Sialidase Production from the Oerskovia paurometabola O129 Strain by the Optimization of Fermentation Parameters and the Addition of Stimulative Compounds. Applied Microbiology. 2025; 5(2):50. https://doi.org/10.3390/applmicrobiol5020050
Chicago/Turabian StyleGocheva, Yana, Ekaterina Krumova, Irina Lazarkevich, Rumyana Eneva, and Stephan Engibarov. 2025. "Enhancing Sialidase Production from the Oerskovia paurometabola O129 Strain by the Optimization of Fermentation Parameters and the Addition of Stimulative Compounds" Applied Microbiology 5, no. 2: 50. https://doi.org/10.3390/applmicrobiol5020050
APA StyleGocheva, Y., Krumova, E., Lazarkevich, I., Eneva, R., & Engibarov, S. (2025). Enhancing Sialidase Production from the Oerskovia paurometabola O129 Strain by the Optimization of Fermentation Parameters and the Addition of Stimulative Compounds. Applied Microbiology, 5(2), 50. https://doi.org/10.3390/applmicrobiol5020050