A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive
Abstract
:1. Introduction
2. Greek-Style of Table Olives
3. Different Variables Affect the Indigenous Microbiota of the Olive Fruits
4. Microbiota Associated with Greek-Style Table Olive
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bonatsou, S.; Tassou, C.; Panagou, E.; Nychas, G.-J. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential. Microorganisms 2017, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table Olives More than a Fermented Food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Mendes, P.; Fernandes, F.; Rodrigues, N.; Bento, A.; Pereira, J.A. Bioactivity and phenolic composition from natural fermented table olives. Food Funct. 2014, 5, 3132–3142. [Google Scholar] [CrossRef]
- IOC. Trade Standard Applying to Table Olives (Resolution No. RES-2/91-IV/04). 2004. Available online: http://www.internationaloliveoil.org/estaticos/view/222-standards (accessed on 5 January 2024).
- ICO. Olive World. Table Olives. 2022. Available online: https://www.internationaloliveoil.org/olive-world/table-olives/ (accessed on 25 January 2024).
- Campus, M.; Değirmencioğlu, N.; Comunian, R. Technologies and Trends to Improve Table Olive Quality and Safety. Front. Microbiol. 2018, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; Kailis, S.G. Naturally processed table olives, their preservation and uses. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2021; pp. 15–25. [Google Scholar]
- Rocha, J.; Borges, N.; Pinho, O. Table olives and health: A review. J. Nutr. Sci. 2020, 9, e57. [Google Scholar] [CrossRef]
- Romeo, F.V. Microbiological Aspects of Table Olives. Em Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy; InTech: Rang-du-Fliers, France, 2012. [Google Scholar]
- Campaniello, D.; Bevilacqua, A.; D’Amato, D.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. Microbial Characterization of Table Olives Processed According to Spanish and Natural Styles. Food Technol. Biotechnol. 2005, 43, 289–294. [Google Scholar]
- Sánchez, A.-H.; Ruiz-Barba, J.L.; López-López, A.; Montaño, A. Table olives: Types and trade preparations. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2021; pp. 5–14. [Google Scholar]
- Lanza, B. Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Front. Microbiol. 2013, 4, 91. [Google Scholar] [CrossRef]
- Coimbra-Gomes, J.; Reis PJ, M.; Tavares, T.G.; Silva, A.A.; Mendes, E.; Casal, S.; Malcata, F.X.; Macedo, A.C. Cobrançosa Table Olive Fermentation as per the Portuguese Traditional Method, Using Potentially Probiotic Lactiplantibacillus pentosus i106 upon Alternative Inoculation Strategies. Fermentation 2022, 9, 12. [Google Scholar] [CrossRef]
- Gómez Sanchez, A.H.; Garcia Garcia, P.; Navarro Rejano, L. Elaboration of table olives. Grasas Aceites 2006, 57, 86–94. [Google Scholar] [CrossRef]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Peres, C.M.; Alves, M.; Hernandez-Mendoza, A.; Moreira, L.; Silva, S.; Bronze, M.R.; Vilas-Boas, L.; Peres, C.; Malcata, F.X. Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT-Food Sci. Technol. 2014, 59, 234–246. [Google Scholar] [CrossRef]
- Reis, P.J.M.; Tavares, T.G.; Rocha, J.M.; Malcata, F.X.; Macedo, A.C. Cobrançosa Table Olives: Characterization of Processing Method and Lactic Acid Bacteria Profile throughout Spontaneous Fermentation. Appl. Sci. 2022, 12, 9738. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A study on the implications of NaCl reduction in the fermentation profile of Conservolea natural black olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Rodríguez-Gómez, F.; Barrio, E.; Querol, A.; Garrido-Fernández, A.; Arroyo-López, F.N. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int. J. Food Microbiol. 2011, 147, 89–96. [Google Scholar] [CrossRef]
- Garrido Fernandez, A.; Fernandez-Dıez, M.J.; Adams, R.M. Table olives: Production and Processing; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardà and Leccino table olives. Front. Microbiol. 2014, 5, 570. [Google Scholar] [CrossRef]
- Pereira, E.L.; Ramalhosa, E.; Borges, A.; Pereira, J.A.; Baptista, P. YEAST dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol. 2015, 46, 582–586. [Google Scholar] [CrossRef]
- Penland, M.; Deutsch, S.-M.; Falentin, H.; Pawtowski, A.; Poirier, E.; Visenti, G.; Le Meur, C.; Maillard, M.-B.; Thierry, A.; Mounier, J.; et al. Deciphering Microbial Community Dynamics and Biochemical Changes During Nyons Black Olive Natural Fermentations. Front. Microbiol. 2020, 11, 586614. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.M.; Mafra, I.; Reis, A.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Naturally fermented black olives: Effect on cell wall polysaccharides and on enzyme activities of Taggiasca and Conservolea varieties. LWT-Food Sci. Technol. 2010, 43, 153–160. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Esteve-Zarzoso, B.; Bordons, A.; Rozès, N. Microbial population dynamics during the processing of Arbequina table olives. Food Res. Int. 2008, 41, 738–744. [Google Scholar] [CrossRef]
- Hutkins. Microbiology and Technology of Fermented Foods. Fermented Vegetables; Blackwell Publishing: Hoboken, NJ, USA, 2006. [Google Scholar]
- ICS67.040;67.230; Norma Portuguesa (NP) 3034 (2012). Azeitonas de Mesa. Definição, Classificação, Características, Acondicionamento e Rotulagem. Instituto Português da Qualidade: Caparica, Portugal, 2012.
- Bonatsou, S.; Paramithiotis, S.; Panagou, E.Z. Evolution of Yeast Consortia during the Fermentation of Kalamata Natural Black Olives upon Two Initial Acidification Treatments. Front. Microbiol. 2018, 8, 2673. [Google Scholar] [CrossRef]
- Chorianopoulos, N.G.; Boziaris, I.S.; Stamatiou, A.; Nychas, G.-J.E. Microbial association and acidity development of unheated and pasteurized green-table olives fermented using glucose or sucrose supplements at various levels. Food Microbiol. 2005, 22, 117–124. [Google Scholar] [CrossRef]
- Ramírez, E.; García, P.; Brenes, M.; Romero, C. Evaluation of chemical components of debittered olives undergone preservation and polyphenol oxidation. Int. J. Food Sci. Technol. 2016, 51, 1674–1679. [Google Scholar] [CrossRef]
- Ramírez, E.; Medina, E.; García, P.; Brenes, M.; Romero, C. Optimization of the natural debittering of table olives. LWT 2017, 77, 308–313. [Google Scholar] [CrossRef]
- Paba, A.; Chessa, L.; Daga, E.; Campus, M.; Bulla, M.; Angioni, A.; Sedda, P.; Comunian, R. Do Best-Selected Strains Perform Table Olive Fermentation Better than Undefined Biodiverse Starters? A Comparative Study. Foods 2020, 9, 135. [Google Scholar] [CrossRef]
- Costa, D.; Fernandes, T.; Martins, F.; Pereira, J.A.; Tavares, R.M.; Santos, P.M.; Baptista, P.; Lino-Neto, T. Illuminating Olea europaea L. endophyte fungal community. Microbiol. Res. 2021, 245, 126693. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Costa, D.; Tavares, R.M.; Baptista, P.; Lino-Neto, T. Olive Fungal Epiphytic Communities Are Affected by Their Maturation Stage. Microorganisms 2022, 10, 376. [Google Scholar] [CrossRef]
- Gomes, T.; Pereira, J.A.; Benhadi, J.; Lino-Neto, T.; Baptista, P. Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. Microb. Ecol. 2018, 76, 668–679. [Google Scholar] [CrossRef]
- Lucena-Padrós, H.; Ruiz-Barba, J.L. Microbial biogeography of Spanish-style green olive fermentations in the province of Seville, Spain. Food Microbiol. 2019, 82, 259–268. [Google Scholar] [CrossRef]
- Argyri, K.; Doulgeraki, A.I.; Manthou, E.; Grounta, A.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020, 8, 1241. [Google Scholar] [CrossRef]
- Boudallaa, A.; El Antari, B.; Ababou, K.; Boukachabin, J. Characterization of yeast diversity colonizing various olive habitats associated to Moroccan Picholine olive variety (orchards and crushing units). J. Mater. Environ. Sci. 2018, 9, 497–502. [Google Scholar] [CrossRef]
- Mujdeci, G.; Arévalo-Villena, M.; Ozbas, Z.Y.; Briones Pérez, A. Yeast Identification During Fermentation of Turkish Gemlik Olives: Yeasts from Turkish Gemlik olives. J. Food Sci. 2018, 83, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Preto, G.; Martins, F.; Pereira, J.A.; Baptista, P. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biol. Control 2017, 110, 1–9. [Google Scholar] [CrossRef]
- Martins, F.; Cameirão, C.; Mina, D.; Benhadi-Marín, J.; Pereira, J.A.; Baptista, P. Endophytic fungal community succession in reproductive organs of two olive tree cultivars with contrasting anthracnose susceptibilities. Fungal Ecol. 2021, 49, 101003. [Google Scholar] [CrossRef]
- Mina, D.; Pereira, J.A.; Lino-Neto, T.; Baptista, P. Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. Microb. Ecol. 2020, 80, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Optimal harvesting period for cvs. Madural and Verdeal Transmontana, based on antioxidant potential and phenolic composition of olives. LWT-Food Sci. Technol. 2015, 62, 1120–1126. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.M.; Giuffrè, A.M. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol, A.; Garrido-Fernández, A. Potential benefits of the application of yeast starters in table olive processing. Front. Microbiol. 2012, 3, 161. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Querol, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Role of yeasts in table olive production. Int. J. Food Microbiol. 2008, 128, 189–196. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Grieco, F.; Ramires, F.A.; Mita, G.; Tasioula-Margari, M.; Logrieco, A.F. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters. Food Microbiol. 2015, 46, 368–382. [Google Scholar] [CrossRef]
- Tofalo, R.; Schirone, M.; Perpetuini, G.; Angelozzi, G.; Suzzi, G.; Corsetti, A. Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Antonie Van Leeuwenhoek 2012, 102, 121–131. [Google Scholar] [CrossRef]
- Speranza, B.; Sinigaglia, M.; Corbo, M.R.; D’Errico, N.; Bevilacqua, A. A Preliminary Approach to Define the Microbiological Profile of Naturally Fermented Peranzana Alta Daunia Table Olives. Foods 2022, 11, 2100. [Google Scholar] [CrossRef] [PubMed]
- Portilha-Cunha, M.F.; Macedo, A.C.; Malcata, F.X. A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020, 9, 948. [Google Scholar] [CrossRef] [PubMed]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Kamilari, E.; Anagnostopoulos, D.A.; Tsaltas, D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front. Microbiol. 2023, 13, 1101515. [Google Scholar] [CrossRef]
- Muccilli, S.; Caggia, C.; Randazzo, C.L.; Restuccia, C. Yeast dynamics during the fermentation of brined green olives treated in the field with kaolin and Bordeaux mixture to control the olive fruit fly. Int. J. Food Microbiol. 2011, 148, 15–22. [Google Scholar] [CrossRef]
- Porru, C.; Rodríguez-Gómez, F.; Benítez-Cabello, A.; Jiménez-Díaz, R.; Zara, G.; Budroni, M.; Mannazzu, I.; Arroyo-López, F.N. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol. 2018, 69, 33–42. [Google Scholar] [CrossRef]
- Sidari, R.; Martorana, A.; De Bruno, A. Effect of brine composition on yeast biota associated with naturally fermented Nocellara messinese table olives. LWT 2019, 109, 163–170. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Schirone, M.; Suzzi, G.; Corsetti, A. Yeast biota associated to naturally fermented table olives from different Italian cultivars. Int. J. Food Microbiol. 2013, 161, 203–208. [Google Scholar] [CrossRef]
- Abriouel, H.; Benomar, N.; Lucas, R.; Gálvez, A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Int. J. Food Microbiol. 2011, 144, 487–496. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Medina, E.; Ruiz-Bellido M, Á.; Romero-Gil, V.; Montes-Borrego, M.; Landa, B.B. Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis. PLoS ONE 2016, 11, e0163135. [Google Scholar] [CrossRef]
- Nisiotou, A.A.; Panagou, E.Z.; Nychas, G.-J.E. Candida olivae sp. Nov., a novel yeast species from ‘Greek-style’ black olive fermentation. Int. J. Syst. Evol. Microbiol. 2010, 60, 1219–1223. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Esperilla, A.; Hernández, A.; Benito, M.J.; Casquete, R.; Martín-Vertedor, D.; Pérez-Nevado, F. Application of ISSR-PCR as a rapid method for clustering and typing of yeasts isolated from table olives. LWT 2019, 109, 250–254. [Google Scholar] [CrossRef]
- Kazou, M.; Tzamourani, A.; Panagou, E.Z.; Tsakalidou, E. Unraveling the Microbiota of Natural Black cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms 2020, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Fendri, I.; Chamkha, M.; Bouaziz, M.; Labat, M.; Sayadi, S.; Abdelkafi, S. Olive fermentation brine: Biotechnological potentialities and valorization. Environ. Technol. 2013, 34, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Mougiou, N.; Tsoureki, A.; Didos, S.; Bouzouka, I.; Michailidou, S.; Argiriou, A. Microbial and Biochemical Profile of Different Types of Greek Table Olives. Foods 2023, 12, 1527. [Google Scholar] [CrossRef]
- Leventdurur, S.; Sert-Aydın, S.; Boyaci-Gunduz, C.P.; Agirman, B.; Ben Ghorbal, A.; Francesca, N.; Martorana, A.; Erten, H. Yeast biota of naturally fermented black olives in different brines made from cv. Gemlik grown in various districts of the Cukurova region of Turkey. Yeast 2016, 33, 289–301. [Google Scholar] [CrossRef]
- Pereira, A.P.; Pereira, J.A.; Bento, A.; Estevinho, M.L. Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food Chem. Toxicol. 2008, 46, 2895–2902. [Google Scholar] [CrossRef]
- Silva, T.; Reto, M.; Sol, M.; Peito, A.; Peres, C.M.; Peres, C.; Malcata, F.X. Characterization of yeasts from Portuguese brined olives, with a focus on their potentially probiotic behavior. LWT-Food Sci. Technol. 2011, 44, 1349–1354. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozès, N. Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives. Food Microbiol. 2009, 26, 827–833. [Google Scholar] [CrossRef]
- Lanza, B.; Di Marco, S.; Simone, N.; Di Marco, C.; Gabriele, F. Table Olives Fermented in Iodized Sea Salt Brines: Nutraceutical/Sensory Properties and Microbial Biodiversity. Foods 2020, 9, 301. [Google Scholar] [CrossRef]
- Simões, L.; Fernandes, N.; De Souza, A.; Dos Santos, L.; Magnani, M.; Abrunhosa, L.; Teixeira, J.; Schwan, R.F.; Dias, D.R. Probiotic and Antifungal Attributes of Lactic Acid Bacteria Isolates from Naturally Fermented Brazilian Table Olives. Fermentation 2022, 8, 277. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.; Arroyo-López, F.N.; López-López, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol. 2010, 27, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cabello, A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Evaluation and identification of poly-microbial biofilms on natural green Gordal table olives. Antonie Van Leeuwenhoek 2015, 108, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Abbas, C.A. Production of Antioxidants, Aromas, Colours, Flavours, and Vitamins by Yeasts. In Yeasts in Food and Beverages; Querol, A., Fleet, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 285–334. [Google Scholar] [CrossRef]
- Čadež, N.; Raspor, P.; Turchetti, B.; Cardinali, G.; Ciafardini, G.; Veneziani, G.; Péter, G. Candida adriatica sp. Nov. And Candida molendinolei sp. Nov., two yeast species isolated from olive oil and its by-products. Int. J. Syst. Evol. Microbiol. 2021, 62, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Paul, K.; Kaur, S. Diverse species in the genus Cryptococcus: Pathogens and their non-pathogenic ancestors. IUBMB Life 2020, 72, 2303–2312. [Google Scholar] [CrossRef]
- Hernández, A.; Martín, A.; Aranda, E.; Pérez-Nevado, F.; Córdoba, M.G. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 2007, 24, 346–351. [Google Scholar] [CrossRef]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Mujdeci, G.N.; Ozbas, Z.Y. Technological and enzymatic characterization of the yeasts isolated from natural fermentation media of Gemlik olives. J. Appl. Microbiol. 2021, 131, 801–818. [Google Scholar] [CrossRef]
- Psani, M.; Kotzekidou, P. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J. Microbiol. Biotechnol. 2006, 22, 1329–1336123. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Tsaltas, D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front. Microbiol. 2022, 12, 797295. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, S.; Petrovits, G.E.; Kyritsi, M.; Argiriou, A. Amplicon metabarcoding data of prokaryotes and eukaryotes present in ‘Kalamata’ table olives packaged under modified atmosphere. Data Brief 2021, 38, 107314. [Google Scholar] [CrossRef] [PubMed]
- Fernández Díez, M.J.; Castro Ramos, R.; Garrido Fernández, A.; González Cancho, F.; González Pellisó, F.; Nosti Vega, M.; Heredia Moreno, A.; Mínguez Mosquera, M.I.; Rejano Navarro, L.; Durán, Q.; et al. Biotecnología de la Aceituna de Mesa; Consejo Superior de Investigaciones Científicas, Gráficas Urpe: Madrid, Spain, 1985. [Google Scholar]
- Durán, Q.; González, F.; Garrido, A. Aceitunas negras al natural en salmuera. Ensayos de produccíon de alambrado. Inoculacíon de diversos microorganismos aislados de salmueras de fermentatición. Grasas Aceites 1979, 30, 361–367. [Google Scholar]
- Steensels, J.; Verstrepen, K.J. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.R. Quantifying the Complexities of Saccharomyces cerevisiae’s Ecosystem Engineering via Fermentation. Ecology 2008, 89, 2077–2082. [Google Scholar] [CrossRef]
- Péter, G. Biodiversity of Zygosaccharomyces species in food systems. Acta Aliment. 2022, 51, 43–51. [Google Scholar] [CrossRef]
- James, S.A.; Stratford, M. Spoilage yeasts with emphasis on the genus Zygosaccharomyces. In Yeasts in Food; Elsevier: Amsterdam, The Netherlands, 2003; pp. 171–191. [Google Scholar]
- Nigro, F.; Antelmi, I.; Labarile, R.; Sion, V.; Pentimone, I. Biological control of olive anthracnose. Acta Hortic. 2018, 1199, 439–444. [Google Scholar] [CrossRef]
- Kogej, T.; Ramos, J.; Plemenitaš, A.; Gunde-Cimerman, N. The Halophilic Fungus Hortaea werneckii and the Halotolerant Fungus Aureobasidium pullulans Maintain Low Intracellular Cation Concentrations in Hypersaline Environments. Appl. Environ. Microbiol. 2005, 71, 6600–6605. [Google Scholar] [CrossRef]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. 2018, 63, 129–140. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production—Producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Di Miceli, C.; Alfonzo, A.; Settanni, L.; Gaglio, R.; Caruso, T.; Moschetti, G.; Francesca, N. Effects of irrigation treatments on the quality of table olives produced with the Greek-style process. Ann. Microbiol. 2017, 67, 37–48. [Google Scholar] [CrossRef]
- Pino, A.; Vaccalluzzo, A.; Solieri, L.; Romeo, F.V.; Todaro, A.; Caggia, C.; Arroyo-López, F.N.; Bautista-Gallego, J.; Randazzo, C.L. Effect of Sequential Inoculum of Beta-Glucosidase Positive and Probiotic Strains on Brine Fermentation to Obtain Low Salt Sicilian Table Olives. Front. Microbiol. 2019, 10, 174. [Google Scholar] [CrossRef]
- Pino, A.; De Angelis, M.; Todaro, A.; Van Hoorde, K.; Randazzo, C.L.; Caggia, C. Fermentation of Nocellara Etnea Table Olives by Functional Starter Cultures at Different Low Salt Concentrations. Front. Microbiol. 2018, 9, 1125. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Mazzaglia, A.; Caggia, C. Giarraffa and Grossa di Spagna naturally fermented table olives: Effect of starter and probiotic cultures on chemical, microbiological and sensory traits. Food Res. Int. 2014, 62, 1154–1164. [Google Scholar] [CrossRef]
- De Bellis, P.; Valerio, F.; Sisto, A.; Lonigro, S.L.; Lavermicocca, P. Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacilli paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 2010, 140, 6–13. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.; Bozoudi, D.; Tsaltas, D. Enterococci Isolated from Cypriot Green Table Olives as a New Source of Technological and Probiotic Properties. Fermentation 2018, 4, 48. [Google Scholar] [CrossRef]
- Yalçınkaya, S.; Kılıç, G.B. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J. Food Sci. Technol. 2019, 56, 2027–2037. [Google Scholar] [CrossRef]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT 2017, 84, 64–72. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Kamilari, E.; Tsaltas, D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front. Microbiol. 2020, 11, 1128. [Google Scholar] [CrossRef]
- Idoui, T.; Boudjerda, J.; Leghouchi, E.; Karam, N.-E. Naturally fermented Jijelian black olives: Microbiological characteristics and isolation of lactic acid bacteria. Grasas Aceites 2009, 60, 516–520. [Google Scholar] [CrossRef]
- Kumral, A.; Basoglu, F.; Sahin, I. Effect of the use of different lactic straters on the microbiological and physicochemical characteristics of naturally black table olives of Gemilk cultivar. J. Food Process. Preserv. 2009, 33, 651–664. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Schirone, M.; Ciarrocchi, A.; Fasoli, G.; Suzzi, G.; Corsetti, A. Lactobacilli pentosus dominates spontaneous fermentation of Italian table olives. LWT-Food Sci. Technol. 2014, 57, 710–717. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Ribbera, A.; Pitino, I.; Romeo, F.V.; Caggia, C. Diversity of bacterial population of table olives assessed by PCR-DGGE analysis. Food Microbiol. 2012, 32, 87–96. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Pramateftaki, P.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C.; Panagou, E.Z. Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT Food Sci. Technol. 2013, 50, 353e356. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Russo, N.; Pino, A.; Mazzaglia, A.; Ferrante, M.; Conti, G.O.; Caggia, C. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale. Food Chem. Toxicol. 2018, 115, 491–498. [Google Scholar] [CrossRef]
- Albayrak, Ç.B.; Kamber, A. Microflora of Naturally Fermented Table Olives and Characterization of Their Lactic Acid Bacteria. Adnan Menderes Üniversitesi Ziraat Fakültesi Derg. 2020, 17, 45–52. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Calero-Delgado, B.; Rodríguez-Gómez, F.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Biodiversity and Multifunctional Features of Lactic Acid Bacteria Isolated From Table Olive Biofilms. Front. Microbiol. 2019, 10, 836. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Durante, M.; Ramires, F.A.; Grieco, F.; Tommasi, L.; Perbellini, E.; Falco, V.; Tasioula-Margari, M.; Logrieco, A.F.; Mita, G.; et al. New process for production of fermented black table olives using selected autochthonous microbial resources. Front. Microbiol. 2015, 6, 1007. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; La Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef]
- Papadelli, M.; Zoumpopoulou, G.; Georgalaki, M.; Anastasiou, R.; Manolopoulou, M.; Lytra, I.; Papadimitriou, K.; Tsakalidou, E. Evaluation of Two Lactic Acid Bacteria Starter Cultures for the Fermentation of Natural Black Table Olives (Olea europaea L cv Kalamon). Pol. J. Microbiol. 2015, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, L.; Scarpellini, M.; Vecchio, A.; Planeta, D. Microbiological and safety evaluation of green table olives marketed in Italy. Ann. Microbiol. 2011, 61, 843–851. [Google Scholar] [CrossRef]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacilli plantarum, L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef]
- Peres, C.M.; Peres, C.; Hernández-Mendoza, A.; Malcata, F.X. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria—With an emphasis on table olives. Trends Food Sci. Technol. 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Venegas-Ortega, M.G.; Flores-Gallegos, A.C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Martínez-Hernández, J.L.; Nevárez-Moorillón, G.V. Multi-Functional Potential of Presumptive Lactic Acid Bacteria Isolated from Chihuahua Cheese. Foods 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, A.; Perpetuini, G.; Schirone, M.; Tofalo, R.; Suzzi, G. Application of starter cultures to table olive fermentation: An overview on the experimental studies. Front. Microbiol. 2012, 3, 248. [Google Scholar] [CrossRef]
- Montoro, B.P.; Benomar, N.; Lavilla Lerma, L.; Castillo Gutiérrez, S.; Gálvez, A.; Abriouel, H. Fermented Aloreña Table Olives as a Source of Potential Probiotic Lactobacilli pentosus Strains. Front. Microbiol. 2016, 7, 1583. [Google Scholar] [CrossRef]
Yeast Species | Olives Fruits/Cultivar | Country of Origin | References |
---|---|---|---|
Aureobasidum pullulans | Aloreña | Spain | [57,58] |
Nyons | France | [23] | |
Kalamata/Konservolia/Gemlik/ Cypriot | Greece | [28,37,39,52,59] | |
Aureobasidium spp. | Kalamata | Greece | [61] |
Barnettozyma californica | Kalamata | Greece | [28] |
Bullera variabilis | Black olives | Tunisia | [62] |
Brettanomyces custersianus | Konservolia | Greece | [37,63] |
Candida aaseri/butyri | Arbequina | Spain | [25] |
Gemlik | Turkey | [64] | |
Nocellara messinese | Italy | [55] | |
Konservolia | Greece | [59] | |
Candida atlantica | Nyons | France | [23] |
Gemlik | Turkey | [64] | |
Candida blattariae | Konservolia | Greece | [59] |
Candida boidinii | Nyons | France | [23] |
Nocellara messinese | Italy | [55] | |
Galega/Cordovil/Negrinha de Freixo | Portugal | [22,65,66] | |
Arbequina | Spain | [25,67] | |
Konservolia/Kalamata | Greece | [28,59] | |
Gemlik | Turkey | [64] | |
Bosana/Cellina di Nardò/Istrana nera/Peranzana/Nocellara del Belice/Nocellara Messinese/Leccino/Leucocarpa | Italy | [21,54,55,56,68] | |
Candida cf apicola | Aloreña | Spain | [57] |
Candida citrea | Galega/Cordovil | Portugal | [66] |
Candida diddensiae | Aloreña/Arbequina | Spain | [19,25,58] |
Bosana/Nocellara del Bellice /Nocellara messinese/ Cypriot/Kalamata/Picual | Italy | [52,54,55] | |
Candida ethanolica | Amfissis | Greece | [69] |
Candida famata | Leucocarpa | Italy | [68] |
Gemlik | Turkey | [39] | |
Candida glabrata | Galega | Portugal | [65] |
Candida glaebosa | Arbequina | Spain | [67] |
Candida gropengiesseri | Arbequina | Spain | [67] |
Candida intermedia | Leucocarpa | Italy | [68] |
Candida ishiwadae | Cellina di Nardò | Italy | [56] |
Candida krusei | Carolea/Leucocarpa | Italy | [68] |
Galega | Portugal | [65] | |
Candida membranaefaciens | Arbequina/Aloreña | Spain | [19,25,67] |
Gemlik | Turkey | [39] | |
Negrinha de Freixo/Galega/Cordovil | Portugal | [22,66] | |
Candida molendinolei | Kalamata | Greece | [28] |
Candida naeodendra | Kalamata | Greece | [28] |
Candida norvegica | Negrinha de Freixo/Galega/Cordovil | Portugal | [22,66] |
Candida oleophila | Galega/Cordovil | Portugal | [66] |
Candida olivae | Konservolia | Greece | [59] |
Candida parapsilosis | Arbequina | Spain | [25] |
Brandofino/Nocellara del Belice/Passanulara | Italy | [51] | |
Candida pelliculosa | Gemlik | Turkey | [39] |
Candida sake | Galega/Cordovil | Portugal | [66] |
Candida silvae | Galega/Cordovil | Portugal | [66] |
Konservolia | Greece | [59] | |
Candida sorbosa | Arbequina olives | Spain | [67] |
Candida tartarivorans | Cellina di Nardò | Italy | [21] |
Candida tropicalis | Negrinha de Freixo | Portugal | [22] |
Nocellara messinese | Italy | [55] | |
Candida utilis | Galega | Portugal | [65] |
Candida valida | Galega/Cordovil | Portugal | [66] |
Candida sp. | Kalamata | Greece | [61] |
Nyons | France | [23] | |
Leccino | Italy | [21] | |
Citeromyces matriensis | Galega/Cordovil | Portugal | [66] |
Citeromyces nyonsensis | Azeitera | Spain | [60] |
Nyons | France | [23] | |
Cryptococcus albidus | Black olives | Tunisia | [62] |
Gemlik | Turkey | [39] | |
Leucocarpa | Italy | [68] | |
Cryptococcus carnescens | Nyons | France | [23] |
Cryptococcus flavus | Arbequina | Spain | [67] |
Cryptococcus laurentii | Gemlik | Turkey | [39] |
Black olives | Tunisia | [62] | |
Cryptococcus macerans | Aloreña | Spain | [57] |
Cryptococcus magnus | Nyons | France | [23] |
Cryptococcus saitoi | Gemlik | Turkey | [39] |
Cystofilobasidium capitatum | Konservolia | Greece | [59] |
Debaryomyces carsonii | Cellina di Nardò | Italy | [21] |
Debaryomyces etchellsii | Leccino | Italy | [21] |
Debaryomyces hansenii | Aloreña | Spain | [19,58] |
Konservolia | Greece | [59] | |
Black olives | Tunisia | [62] | |
Cellina di Nardò/Kalamata | Italy | [21,47,52] | |
Negrinha de Freixo | Portugal | [22] | |
Dekkera bruxellensis | Black olives | Tunisia | [62] |
Galactomyces reessii | Negrinha de Freixo | Portugal | [22] |
Guehomyces pullulans | Kalamata | Greece | [47] |
Kloeckera apiculata | Galega/Cordovil | Portugal | [66] |
Gemlik | Turkish | [39] | |
Kloeckera spp. | Galega | Portugal | [65] |
Kluyveromyces lactis | Arbequina | Spain | [25] |
Lodderomyces elongisporus | Aloreña | Spain | [58] |
Metschnikowia pulcherrima | Konservolia | Greece | [59] |
Galega/Cordovil | Portugal | [66] | |
Meyerozyma sp. | Gemlik | Turkey | [64] |
Meyerozyma guilliermondii | Cypriot/Kalamata | Italy | [52] |
Nakazawaea molendini-olei | Bosana | Italy | [54] |
Ogataeae spp. | Kalamata | Greece | [61] |
Pichia anomala/Wickerhamomyces anomalus | Gemlik | Turkey | [39,64] |
Arbequina | Spain | [25,67] | |
Bella di Cerignola/Cellina di Nardò/Bosana/Brandofino/Passanulara/Nocellara dell’Etna/Nocellara messinese | Italy | [21,47,51,52,53,54,55,56] | |
Negrinha de Freixo | Portugal | [22] | |
Nyons | France | [23] | |
Konservolia | Greece | [37,59,69] | |
Pichia carsonii | Arbequina | Spain | [67] |
Pichia farinosa | Black olives | Greece | [62] |
Pichia fermentans | Galega/Cordovil | Portugal | [66] |
Pichia galeiformis/Pichia manshurica | Peranzana/Nocellara del Belice, Cellina di Nardò | Italy | [56] |
Manzanilla/Hojiblanca/Gordal/Aloreña | Spain | [57,70,71] | |
Konservolia/Kalamata | Greece | [28,37,59] | |
Negrinha de Freixo | Portugal | [22] | |
Pichia kluyveri | Arbequina | Spain | [25,67] |
Konservolia | Greece | [59] | |
Brandofino/Castriciana/Manzanilla/Nocellara del Belice/Passanulara | Italy | [51] | |
Pichia kudriavzevii | Nocellara messinese | Italy | [55] |
Gemlik | Turkey | [64] | |
Pichia membranifaciens | Kalamata | Greece | [47] |
Nyons | France | [23] | |
Gordal | Spain | [71] | |
Konservolia | Greece | [37,69] | |
Galega/Cordovil | Portugal | [66] | |
Cellina di Nardò/Leccino | Italy | [21] | |
Pichia mexicana | Nocellara messinese | Italy | [55] |
Pichia rhodanensis | Arbequina | Spain | [25] |
Pichia sp. | Aloreña | Spain | [57] |
Kalamata | Greece | [61] | |
Cellina di Nardò/Leccino | Italy | [21] | |
Priceomyces carsonii | Nyons | France | [23] |
Rhodosporidium capitatum | Galega/Cordovil | Portugal | [66] |
Rhodotorula diobovatum | Konservolia | Greece | [59] |
Rhodotolura glutinis | Arbequina olives | Spain | [25] |
Negrinha de Freixo | Portugal | [22] | |
Rhodotolura graminis | Negrinha de Freixo | Portugal | [22] |
Rhodotorula mucilaginosa | Konservolia | Greece | [59] |
Saccharomyces cerevisiae | Nocellara dell’Etna/Bosana/Cellina di Nardò/Leccino/Istrana nera, bianca/Peranzana/Nocellara del Belice/Bella di Cerignola/Nocellara messinese/Kalamata | Italy | [52,53,54,55,56] |
Aloreña/Manzanilla | Spain | [19,57,58] | |
Negrinha de Freixo/Galega/Cordovil | Portugal | [22,66] | |
Kalamata/Konservolia | Greece | [21,28,47,59,63] | |
Gemlik | Turkey | [39] | |
Nyons | France | [23] | |
Saccharomyces dairensis | Arbequina olives | Spain | [67] |
Saccharomyces kluyveri | Gemlik | Turkey | [39] |
Saccharomyces paradoxus | Nyons | France | [23] |
Saccharomyces sp. | Gemlik | Turkey | [64] |
Kalamata | Greece | [61] | |
Peranzana Alta Daunia | Italy | [49] | |
Schwanniomyces etchellsii | Gemlik | Turkey | [64] |
Nyons | France | [23] | |
Konservolia | Greece | [37] | |
Sporobolomyces roseus | Black olives | Greece | [62] |
Galega/Cordovil | Portugal | [66] | |
Torulaspora delbrueckii | Galega/Cordovil | Portugal | [66] |
Black olives | Greece | [62] | |
Trichosporum pullulans | Galega/Cordovil | Portugal | [66] |
Wickerhamomyces sydowiorum | Konservolia | Greece | [37] |
Wickerhamomyces spp. | Kalamata | Greece | [61] |
Zygoascus hellenicus | Gemlik | Turkey | [64] |
Nocellara messinese | Italy | [55] | |
Zygoascus meyerae | Nocellara messinese | Italy | [55] |
Zygosaccharomyces bailii | Black olives | Greece | [62] |
Zygosaccharomyces mrakii | Gemlik | Turkey | [39] |
Aloreña | Spain | [19,57] | |
Leccino | Italy | [21] | |
Zygosaccharomyces bisporus | Cypriot | Italy | [52] |
Zygosaccharomyces sp. | Gemlik | Turkey | [39] |
Zygotorulaspora mrakii | Nyons | France | [23] |
Aloreña | Spain | [54,58] | |
Zygowilliopsis californica | Konservolia | Greece | [59] |
Identified Species | Olives Fruits/Cultivar | Country of Origin | References |
---|---|---|---|
Enterococcus casseliflavus species group | Bella di Cerignola | Italy | [97] |
Enterococcus durans | Cellina di Nardò/Itrana bianca/ Bella di Cerignola | Italy | [48] |
Enterococcus faecalis | Green olives | Italy | [5] |
Enterococcus faecium | Cypriot | Cyprus | [98] |
Green and black olives | Tukey | [99] | |
Tonda di Cagliari | Italy | [100] | |
Enterococcus italicus | Bella di Cerignola | Italy | [97] |
Ligilactobacillus acidipiscis | Black and green olives | Turkey | [99] |
Companilactobacillus alimentarius | Black olives | Turkey | [99] |
Lacticaseibacillus brantae | Picual | Cyprus | [101] |
Levilactobacillus brevis | Black olives/Chemlal/Hamra/Sigoise | Algeria | [102] |
Green olives/Bella di Cerignola | Italy | [97] | |
Gemlik | Turkey | [103] | |
Cypriot/Kalamata/Picual | Cyprus | [52] | |
Lacticaseibacillus casei | Green olives/Bella di Cerignola/Cellina di Nardò/Itrana nera/Nocellara del Belice/Itrana bianca/Nocellara Etnea/Grossa di Spagna | Italy | [94,97,104,105] |
Lacticaseibacillus casei ssp. tolerens | Black olives/Chemlal/Hamra/Sigoise | Algeria | [102] |
Secundilactobacillus collinoides | Green olives/Tonda di Cagliari | Italy | [100] |
Loigolactobacillus coryniformis | Green olives/Bella di Cerignola/Geracese/Nocellara del Belice | Italy | [93,97,105] |
Aloreña | Spain | [57] | |
Latilactobacillus curvatus | Black olives/Chemlal/Hamra/Sigoise | Algeria | [102] |
Cypriot/Kalamata/Picual | Cyprus | [52] | |
Lactobacillus delbrueckii | Cypriot/Kalamata/Picual | Cyprus | [52] |
Companilactobacillus farciminis | Green olives | Turkey | [99] |
Limosilactobacillus fermentum | Black olives/Peranzana/Bella di Cerignola | Italy | [104] |
Lactobacillus helveticus | Black olives/Cellina di Nardò | Italy | [104] |
Lactobacillus japonicus | Picual | Cyprus | [101] |
Lentilactobacillus kefiri | Cypriot/Kalamata/Picual | Cyprus | [52] |
Liquorilactobacillus mali | Natural green olives Bella di Cerignola | Italy | [97] |
Lacticaseibacillus manihotivorans | Picual | Cyprus | [101] |
Levilactobacillus namurensis | Black olives | Turkey | [99] |
Lacticaseibacillus paracasei | Green olives/Bella di Cerignola | Italy | [97] |
Secundilactobacillus paracollinoides | Green olives/Geracese | Italy | [105] |
Green olives/Aloreña | Spain | [57] | |
Lentilactobacillus parafarraginis | Picual | Cyprus | [101] |
Lentilactobacillus parakefiri | Picual | Cyprus | [101] |
Companilactobacillus paralimentarius | Cypriot/Kalamata/Picual | Cyprus | [52] |
Lactiplantibacillus paraplantarum | Black olives/Conservolea/Kalamata | Greece | [106] |
Green olives/Tonda di Cagliari | Italy | [5,100] | |
Black olives/Galega/Cobrançosa | Portugal | [16,17] | |
Green olives/Arbequina | Spain | [25] | |
Lactiplantibacillus pentosus | Black olives/Conservolea/Kalamata/Amfissis | Greece | [18,63,106] |
Green and black olives/Bella di Cerignola/Cellina di Nardò/ Itrana nera/Peranzana/Nocellara del Belice/Itrana bianca/Bella di Cerignola/Tonda di Cagliari/Giarraffa/ Grossa di Spagna/Nocellara Etnea | Italy | [5,93,94,95,96,97,100,104,107] | |
Cobrançosa | Portugal | [17] | |
Green and black olive | Turkey | [108] | |
Arbequina/Aloreña Gordal/Manzanilla | Spain | [25,57,67,71,109] | |
Lactiplantibacillus plantarum | Chemlal/Hamra/Sigoise | Algeria | [102] |
Conservolea/Kalamata/Halkidiki/Bella di Cerignola | Greece | [11,37,47,97,110] | |
Cellina di Nardò/Leccino/Green olives/Itrana nera/Peranzana/Itrana bianca/Nocellara del Belice/Bella di Cerignola/Nocellara Etnea/Geracese/Tonda di Cagliari/Giarraffa/Grossa di Spagna | Italy | [5,21,93,94,95,96,97,100,104,105,107,110,111] | |
Cobrançosa/Galega | Portugal | [16,17] | |
Arbequina/Aloreña/Manzanilla/Gordal | Spain | [19,25,67] | |
Cypriot/Picual/Kalamata | Cyprus | [52,101] | |
Black and green olives | Turkey | [99] | |
Lacticaseibacillus rhamnosus | Nocellara Etnea/Bella di Cerignola | Italy | [97,107] |
Paucilactobacillus suebicus | Aloreña | Spain | [57] |
Lactobacilli sp. | Aloreña | Spain | [57] |
Paucilactobacillus vaccinostercus | Bella di Cerignola | Italy | [97] |
Aloreña | Spain | [57] | |
Lactobacilli veridesens | Chemlal/Hamra/Sigoise | Algeria | [102] |
Lactococcus lactis | Aloreña | Spain | [57] |
Cypriot/Kalamata/Picual | Cyprus | [52] | |
Leuconostoc cremoris | Gemlik | Turkey | [103] |
Leuconostoc carnosum | Cypriot/Kalamata/Picual | Cyprus | [52] |
Leuconostoc mesenteroides | Chemlal/Hamra/Sigoise | Algeria | [102] |
Conservolea/Kalamata/Amfissis | Greece | [47,63,106,110] | |
Bella di Cerignola/Green olives/Grossa di Spagna | Italy | [5,96,97] | |
Leuconostoc mesenteroides ssp. mesenteroides | Kalamata | Greece | [112] |
Leuconostoc paramesenteroides | Gemlik | Turkey | [103] |
Leuconostoc pseudomesenteroides | Conservolea/Kalamata/Amfissis | Greece | [63,106] |
Aloreña | Spain | [57] | |
Pediococcus acidilactici | Green olives | Italy | [113] |
Pediococcus ethanolidurans | Conservolea | Greece | [106] |
Pediococcus parvulus | Green olives/Geracese/Tonda di Cagliari | Italy | [5,100,105] |
Aloreña | Spain | [57] | |
Cobrançosa | Portugal | [17] | |
Pediococcus pentosaceus | Nocellara del Belice | Italy | [93,111] |
Pediococcus sp. | Aloreña | Spain | [57] |
Streptococcus thermophilus | Geracese | Italy | [105] |
Cypriot/Kalamata/Picual | Cyprus | [52] | |
Weissella paramesenteroides | Bella di Cerignola | Italy | [97] |
Cypriot/Kalamata/Picual | Cyprus | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.; Rodrigues, N.; Ramalhosa, E. A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive. Appl. Microbiol. 2025, 5, 52. https://doi.org/10.3390/applmicrobiol5020052
Martins F, Rodrigues N, Ramalhosa E. A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive. Applied Microbiology. 2025; 5(2):52. https://doi.org/10.3390/applmicrobiol5020052
Chicago/Turabian StyleMartins, Fátima, Nuno Rodrigues, and Elsa Ramalhosa. 2025. "A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive" Applied Microbiology 5, no. 2: 52. https://doi.org/10.3390/applmicrobiol5020052
APA StyleMartins, F., Rodrigues, N., & Ramalhosa, E. (2025). A Review of the Microbial Dynamics of Natural and Traditional Fermentations of Table Olive. Applied Microbiology, 5(2), 52. https://doi.org/10.3390/applmicrobiol5020052