Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution
Abstract
1. Introduction
2. Materials and Methods
2.1. Starting Materials and Preparation of Samples
2.2. Instrumentation
2.3. Computational Details
3. Results and Discussion
3.1. Structure and Energetics of Alizarin Red S
3.2. Complexation between Ga(III) and 1,2-Dihydroxy-9,10-anthraquinone-3-sulfonate (ARS)
3.2.1. NMR Studies on the Ga(III)/ARS System
3.2.2. DFT Structural Characterization of the Ga(III)/ARS Complexes
3.2.3. ATR-FTIR Studies on the Ga(III)/ARS System
3.2.4. UV-Visible Absorption and Fluorescence Studies on the Ga(III)/ARS System
3.2.5. TD-DFT Studies on the Ga(III)/ARS System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sato, T.; Imai, M. Characteristics of nitrogen-doped GaAsP light-emitting diodes. Jpn. J. Appl. Phys. 2002, 41, 5995–5998. [Google Scholar] [CrossRef]
- Borra, E.F.; Tremblay, G.; Huot, Y.; Gauvin, J. Gallium liquid mirrors: Basic technology, optical-shop tests and observations. Astron. Soc. Pac. 1997, 109, 319–325. [Google Scholar] [CrossRef]
- Chua, M.-S.; Bernstein, L.R.; Li, R.; So, S.K.S. Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Res. 2006, 26, 1739–1744. [Google Scholar] [PubMed]
- Jakupec, M.A.; Galanski, M.; Arion, V.B.; Hartingerand, C.C.; Keppler, B.K. Antitumour metal compounds: More than theme and variations. Dalton Trans. 2008, 2, 183–194. [Google Scholar] [CrossRef]
- Baran, E.J. La nueva farmacoterapia inorgánica XIX. Compuestos de galio. Latin Am. J. Pharm. 2008, 27, 776–779. [Google Scholar]
- Chen, H.-W. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of taiwan. Bull. Environ. Contam. Toxicol. 2006, 77, 289–296. [Google Scholar] [CrossRef]
- Powe, A.M.; Das, S.; Lowry, M.; El-Zahab, B.; Fakayode, S.O.; Geng, M.L.; Baker, G.A.; Wang, L.; McCarroll, M.E.; Patonay, G.; et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal. Chem. 2010, 82, 4865–4894. [Google Scholar] [CrossRef]
- Novotná, P.; Pacáková, V.; Bosáková, Z.; Štulík, K. High-performance liquid chromatographic determination of some anthraquinone and naphthoquinone dyes occurring in historical textiles. J. Chromatogr. A 1999, 863, 235–241. [Google Scholar] [CrossRef]
- Orska-Gawryś, J.; Surowiec, I.; Kehl, J.; Rejniak, H.; Urbaniak-Walczak, K.; Trojanowicz, M. Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode array detection. J. Chromatogr. A 2003, 989, 239–248. [Google Scholar] [CrossRef]
- Szostek, B.; Orska-Gawrys, J.; Surowiec, I.; Trojanowicz, M. Investigation of natural dyes occurring in historical Coptic textiles by high-performance liquid chromatography with UV–Vis and mass spectrometric detection. J. Chromatogr. A 2003, 1012, 179–192. [Google Scholar] [CrossRef]
- Alves, D.S.; Perez-Fons, L.; Estepa, A.; Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol. 2004, 68, 549–561. [Google Scholar] [CrossRef]
- Norton, S.A. Useful plants of dermatology. IV. Alizarin red and madder. J. Am. Acad. Dermatol. 1998, 39, 484–485. [Google Scholar] [CrossRef]
- Diaz, A.N. Analytical applications of 1,10-anthraquinones: A review. Talanta 1991, 38, 571–588. [Google Scholar] [CrossRef]
- Ghosh, A.; Jose, D.A.; Kaushik, R. Anthraquinones as versatile colorimetric reagent for anions. Sens. Actuators B Chem. 2016, 229, 545–560. [Google Scholar] [CrossRef]
- Diaz, A.N. Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: A review. J. Photochem. Photobiol. A Chem. 1990, 53, 141–167. [Google Scholar] [CrossRef]
- Miliani, C.; Romani, A.; Favaro, G. Acidichromic effects in 1,2-di- and 1,2,4-trihydroxyanthraquinones. A spectrophotometric and Fuorimetric study. J. Phys. Org. Chem. 2000, 13, 141–150. [Google Scholar] [CrossRef]
- Duncan, W.R.; Prezhdo, O.V. Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by ab initio time-domain density functional theory. J. Am. Chem. Soc. 2008, 130, 9756–9762. [Google Scholar] [CrossRef]
- Kaniyankandy, S.; Verma, S.; Mondal, J.A.; Palit, D.K.; Ghosh, H.N. Evidence of multiple electron injection and slow back electron transfer in alizarin-sensitized ultrasmall TiO2 particles. J. Phys. Chem. C 2009, 113, 3593–3599. [Google Scholar] [CrossRef]
- Nawrocka, A.; Krawczyk, S. Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles: A study by electroabsorption (stark effect) spectroscopy. J. Phys. Chem. C 2008, 112, 10233–10241. [Google Scholar] [CrossRef]
- Lima, A.R.F.; Pereira, R.C.; Azevedo, J.; Mendes, A.; de Melo, J.S.S. On the path to aqueous organic redox flow batteries: Alizarin red S alkaline negolyte. Performance evaluation and photochemical studies. J. Mol. Liq. 2021, 336, 116364. [Google Scholar] [CrossRef]
- Safavi, A.; Abdollahi, H.; Mirzajani, R. Simultaneous spectrophotometric determination of Fe(III), Al(III) and Cu(II) by partial least-squares calibration method. Spectrochim. Acta Part A 2006, 63, 196–199. [Google Scholar] [CrossRef]
- Sathish, R.S.; Kumar, M.R.; Rao, G.N.; Kumar, K.A.; Janardhana, C. A water-soluble fluorescent fluoride ion probe based on Alizarin Red S–Al(III) complex. Spectrochim. Acta Part A 2007, 66, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, L.; Geng, F.; Zhang, F.; Xu, M. Design of a dual-signaling sensing system for fluorescent ratiometric detection of Al3+ ion based on the inner-filter effect. Analyst 2011, 136, 4809. [Google Scholar] [CrossRef] [PubMed]
- Supian, S.M.; Ling, T.L.; Heng, L.Y.; Chong, K.F. Quantitative determination of Al(III) ion by using alizarin red S including its microspheres optical sensing Material. Anal. Methods 2013, 5, 2602–2609. [Google Scholar] [CrossRef]
- Epstein, M.; Yariv, S. Visible-spectroscopy study of the adsorption of alizarinate by Al-montmorillonite in aqueous suspensions and in solid state. J. Colloid Interface Sci. 2003, 263, 377–385. [Google Scholar] [CrossRef]
- Biver, T.; Kraiem, M.; Secco, F.; Venturini, M. On the mechanism of indium(III) complex formation with metallochromic indicators. Polyhedron 2018, 156, 6–13. [Google Scholar] [CrossRef]
- Dwivedi, C.D.; Munshi, K.N.; Dey, A.K. Chelate formation of trivalent gallium with 1,2-dihydroxy-3-anthraquinone sulfonic acid. Microchem. J. 1965, 9, 218–226. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Perdew, J.P. Electronic Structure of Solids ’91; Ziesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin, Germany, 1991; Volume 11. [Google Scholar]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces–Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef]
- Burke, K.; Perdew, J.P.; Wang, Y. Derivation of a Generalized Gradient Approximation: The PW91 Density Functional. In Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J.F., Vignale, G., Das, M.P., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 81–111. [Google Scholar]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J. Chem. Phys. 1981, 55, 117–129. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Justino, L.L.G.; Reva, I.; Fausto, R. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices. J. Chem. Phys. 2016, 145, 014304. [Google Scholar] [CrossRef]
- Jaquemin, D.; Perpète, E.A.; Scuseria, G.E.; Ciofini, I.; Adamo, C. TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional versus Long-Range Hybrids. J. Chem. Theory Comput. 2008, 4, 123–135. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Shalaby, A.A.; Mohamed, A.A. Determination of acid dissociation constants of alizarin red S, methyl orange, bromothymol blue and bromophenol blue using a digital camera. RSC Adv. 2020, 10, 11311–11316. [Google Scholar] [CrossRef] [PubMed]
- Fehér, P.P.; Purgel, M.; Joó, F. Performance of exchange–correlation functionals on describing ground state geometries and excitations of alizarin red S: Effect of complexation and degree of deprotonation. Comput. Theor. Chem. 2014, 1045, 113–122. [Google Scholar] [CrossRef]
- Ramos, M.L.; Justino, L.L.G.; Salvador, A.I.N.; de Sousa, A.R.E.; Abreu, P.E.; Fonseca, S.M.; Burrows, H.D. NMR, DFT and luminescence studies of the complexation of Al(III) with 8-hydroxyquinoline-5-sulfonate. Dalton Trans. 2012, 41, 12478–12489. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.L.; Justino, L.L.G.; de Sousa, A.R.E.; Fonseca, S.M.; Geraldes, C.F.G.C.; Burrows, H.D. Structural and photophysical studies on gallium(III) 8-hydroxyquinoline-5-sulfonates. Does excited state decay involve ligand photolabilisation? Dalton Trans. 2013, 42, 3682–3694. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.L.; Justino, L.L.G.; Fonseca, S.M.; Burrows, H.D. NMR, DFT and luminescence studies of the complexation of V(V) oxoions in solution with 8-hydroxyquinoline-5-sulfonate. New J. Chem. 2015, 39, 1488–1497. [Google Scholar] [CrossRef]
- Ramos, M.L.; Justino, L.L.G.; Abreu, P.E.; Fonseca, S.M.; Burrows, H.D. Oxocomplexes of Mo(VI) and W(VI) with 8-hydroxyquinoline-5-sulfonate in solution: Structural studies and the effect of the metal ion on the photophysical behavior. Dalton Trans. 2015, 44, 19076–19089. [Google Scholar] [CrossRef]
- Caldeira, M.M.; Ramos, M.L.; Cavaleiro, A.M.; Gil, V.M.S. Multinuclear NMR study of vanadium(V) complexation with tartaric and citric acids. J. Mol. Struct. 1988, 174, 461–466. [Google Scholar] [CrossRef]
- Ramos, M.L.; Caldeira, M.M.; Gil, V.M.S. NMR study of the complexation of D-galactonic acid with tungsten(VI) and molybdenum(VI). Carbohydr. Res. 1997, 297, 191–200. [Google Scholar] [CrossRef]
- Ramos, M.L.; Caldeira, M.M.; Gil, V.M.S. Multinuclear NMR study of complexation of D-galactaric and D-mannaric acids with tungsten(VI) oxoions. J. Coord. Chem. 1994, 33, 319–329. [Google Scholar] [CrossRef]
- Ramos, M.L.; Caldeira, M.M.; Gil, V.M.S. NMR spectroscopy study of the complexation of L-mannonic acid with tungsten(VI) and molybdenum(VI). Carbohydr. Res. 1997, 299, 209–220. [Google Scholar] [CrossRef]
- Ramos, M.L.; Caldeira, M.M.; Gil, V.M.S. NMR spectroscopy study of the complexation of D-gluconic acid with tungsten(VI) and molybdenum(VI). Carbohydr. Res. 1997, 304, 97–109. [Google Scholar] [CrossRef]
- Ramos, M.L.; Pereira, M.M.; Beja, A.M.; Silva, M.R.; Paixão, J.A.; Gil, V.M.S. NMR and X-ray diffraction studies of the complexation of D-(–)quinic acid with tungsten(VI) and molybdenum(VI). J. Chem. Soc. Dalton Trans. 2002, 10, 2126–2131. [Google Scholar] [CrossRef]
- Ramos, M.L.; Caldeira, M.M.; Gil, V.M.S. Multinuclear NMR study of the complexation of D-glucaric acid with molybdenum(VI) and tungsten(VI). Inorg. Chim. Acta 1991, 180, 219–224. [Google Scholar] [CrossRef]
- Justino, L.L.G.; Ramos, M.L.; Kaupp, M.; Burrows, H.D.; Fiolhais, C.; Gil, V.M.S. Density functional theory study of the oxoperoxo vanadium(V) complexes of glycolic acid. Structural correlations with NMR chemical shifts. Dalton Trans. 2009, 44, 9735–9745. [Google Scholar] [CrossRef]
- Justino, L.L.G.; Ramos, M.L.; Nogueira, F.; Sobral, A.J.F.N.; Geraldes, C.F.G.C.; Kaupp, M.; Burrows, H.D.; Fiolhais, C.; Gil, V.M.S. Oxoperoxo vanadium(V) complexes of L-lactic acid: Density functional theory study of structure and NMR chemical shifts. Inorg. Chem. 2008, 47, 7317–7326. [Google Scholar] [CrossRef]
- Bernstein, L.R.; Tanner, T.; Godfrey, C.; Noll, B. Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. Met.-Based Drugs 2000, 7, 33–47. [Google Scholar] [CrossRef]
- Enyedy, É.A.; Dömötör, O.; Varga, E.; Kiss, T.; Trondl, R.; Hartinger, C.G.; Keppler, B.K. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. J. Inorg. Biochem. 2012, 117, 189–197. [Google Scholar] [CrossRef]
- Lima, C.F.R.A.C.; Taveira, R.J.S.; Costa, J.C.S.; Fernandes, A.M.; Melo, A.; Silva, A.M.S.; Santos, L.M.N.B.F. Understanding M–ligand bonding and mer-/fac isomerism in tris(8-hydroxyquinolinate) metallic complexes. Phys. Chem. Chem. Phys. 2016, 18, 16555–16565. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Lima, C.F.R.A.C.; Santos, L.M.N.B.F. Electron transport materials for organic light-emitting diodes: Understanding the crystal and molecular stability of the tris(8-hydroxyquinolines) of Al, Ga, and In. J. Phys. Chem. C 2014, 118, 21762–21769. [Google Scholar] [CrossRef]
Structure | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Symmetry | C1 | C1 | Cs | C1 | Cs | Cs |
ΔEel | 0.0 | 18.8 | 26.0 | 40.7 | 71.8 | 73.6 |
Δ(ETotal) | 0.0 | 18.1 | 24.8 | 38.1 | 70.4 | 71.0 |
ΔG298K | 0.0 | 15.9 | 19.3 | 36.9 | 60.3 | 62.0 |
P(%)298 | 99.8 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
δ 1H RMN (exp.) a (H4) | Relative Concentration (%) | δ 1H RMN (exp.) a (H4) | Relative Concentration (%) | ||
---|---|---|---|---|---|
Temp. 280.15 K | Temp. 298.15 K | ||||
c1 | 8.07 (I) | 57.5 | c1 | 8.04 (I) | 51.4 |
8.08 (II) | 8.05 (II) | ||||
8.11 (III) | 8.10 (III) | ||||
c2 | 8.14 | 17.2 | c2 | 8.14 (broad) | 24.0 |
Free lig. | 7.96 | 25.3 | Free lig. | 7.96 | 24.6 |
M:L | Structure a | Sym | B3LYP | CAM-B3LYP | B3PW91 | w-B97X-D | ||||
---|---|---|---|---|---|---|---|---|---|---|
ΔG298 | P298 | ΔG298 | P298 | ΔG298 | P298 | ΔG298 | P298 | |||
1:1 | hc (a) | C1 | 0.0 | 86.8 | 0.0 | 69.8 | 0.0 | 77.6 | 0.0 | 52.2 |
hh | C1 | 4.7 | 13.1 | 2.1 | 30.2 | 3.1 | 22.4 | 0.2 | 47.8 | |
hh-T1 | C1 | 21.4 | 0.0 | 21.7 | 0.0 | 18.3 | 0.0 | 23.7 | 0.0 | |
hh-T2 | C1 | 51.2 | 0.0 | 58.8 | 0.0 | 51.0 | 0.0 | 58.1 | 0.0 | |
1:2 | anti-hc (b) | Ci | 0.0 | 98.8 | 0.0 | 96.7 | 0.0 | 97.5 | 0.0 | 87.3 |
syn-hc | Csb | 10.9 | 1.2 | 8.3 | 3.3 | 9.1 | 2.5 | 4.8 | 12.7 | |
anti-hh | Ci | 26.0 | 0.0 | 27.1 | 0.0 | 24.3 | 0.0 | 23.0 | 0.0 | |
syn-hh | Csb | 32.3 | 0.0 | 30.5 | 0.0 | 28.9 | 0.0 | 36.9 | 0.0 | |
anti-hh-T | Ci | 44.0 | 0.0 | 53.5 | 0.0 | 40.2 | 0.0 | 51.8 | 0.0 | |
syn-hh-T | Csb | 48.4 | 0.0 | 58.1 | 0.0 | 44.1 | 0.0 | 58.0 | 0.0 | |
1:3 | fac-hc (c2) | C3b | 0.0 | 61.4 d | 0.0 | 76.7 | 12.2 c | 0.7 | 29.8 c | 0.0 |
mer-hc (c1) | C1 | 1.1 | 38.6 d | 3.0 | 23.3 | 0.0 c | 99.3 | 0.0 c | 100 | |
mer-hh | C1 | 72.1 | 0.0 | 63.9 | 0.0 | 73.4 c | 0.0 | 139.4 c | 0.0 | |
mer-hh-T | C1 | 69.1 | 0.0 | 92.0 | 0.0 | 256.3 c | 0.0 | 316.6 c | 0.0 | |
fac-hh | C3b | 72.9 | 0.0 | 67.2 | 0.0 | 78.5 c | 0.0 | 144.5 c | 0.0 | |
fac-hh-T | C3b | 71.8 | 0.0 | 92.2 | 0.0 | 285.9 c | 0.0 | 204.7 c | 0.0 |
Excited State | Energy (eV) | λcalc. (nm) | λexp. (nm) | f | Major Contributions (%) | Character |
---|---|---|---|---|---|---|
ARS | ||||||
S1 | 3.29 | 377 | 424 | 0.2267 | H→L (100%) | π → π* |
1:1 hc complex (a) | ||||||
S1 | 2.78 | 446 | 482 | 0.1901 | H→L (100%) | π → π* |
1:2 anti-hc complex (b) | ||||||
S1 | 2.84 | 436 | 482 | 0.0000 | H-1→L+1 (41%) + H→L (59%) | π → π* |
S2 | 2.91 | 426 | 0.4307 | H-1→L (52%) + H→L+1 (48%) | π → π* | |
1:3 mer (c1) | ||||||
S1 | 2.85 | 436 | 482 | 0.2675 | H-1→L (26%) + H-1→L+2 (20%) | π → π* |
S3 | 2.90 | 427 | 0.4348 | H→L (24%) + H-1→L (21%) | π → π* | |
1:3 fac (c2) | ||||||
S1 | 2.85 | 435 | 482 | 0.1532 | H-2→L (34%) + H→L+1 (22%) | π → π* |
S2 | 2.85 | 435 | 0.1548 | H-1→L (33%) + H→L+2 (23%) | π → π* | |
S3 | 2.91 | 426 | 0.4244 | H→L (46%) + H-1→L+2 (28%) | π → π* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justino, L.L.G.; Braz, S.; Ramos, M.L. Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution. Photochem 2023, 3, 61-81. https://doi.org/10.3390/photochem3010005
Justino LLG, Braz S, Ramos ML. Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution. Photochem. 2023; 3(1):61-81. https://doi.org/10.3390/photochem3010005
Chicago/Turabian StyleJustino, Licínia L. G., Sofia Braz, and M. Luísa Ramos. 2023. "Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution" Photochem 3, no. 1: 61-81. https://doi.org/10.3390/photochem3010005
APA StyleJustino, L. L. G., Braz, S., & Ramos, M. L. (2023). Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution. Photochem, 3(1), 61-81. https://doi.org/10.3390/photochem3010005