FLAC3D-IMASS Modelling of Rock Mass Damage in Unsupported Underground Mining Excavations: A Safety Factor-Based Framework
Abstract
1. Introduction
2. Development, Implementation and Back-Analysis of the Safety Factor Approach
2.1. Framework for Damage-Based Safety Factor
- Point A corresponds to the elastic stage of rock behaviour, where the material exhibits no damage, and stress is proportional to strain.
- Point B represents the peak strength, where the rock mass achieves its maximum load-bearing capacity.
- Point C marks the strain-softening stage after the peak, where stress decreases as strain progresses, indicating progressive damage.
- Point D indicates the post-failure stage with significant progressive rock fracturing (bulking), where the rock mass is fully caved, and unlined shafts or minimally supported drifts are considered unserviceable.
2.2. FLAC3D Implementation
2.3. Back-Analysis Results in FLAC3D
- The required lithological units are imported into the model (in kg/m3).
- Assign vertical (gravitational) stress with a rate of
- The major and minor horizontal stresses are assigned using the following equation by assuming a combination of lithostatic loading (i.e., Poisson’s effect) and tectonic stress (i.e., TSF approach):
3. Pillar Extraction Case Study
3.1. Overview of Plunge and Bellout Configurations in Board and Pillar Layout
3.2. FLAC3D Model Setup for Bellout for Case Study Stability Assessment
- Prediction of the maximum unsupported plunge depth under varying rock mass conditions.
- Evaluation of the effectiveness of clean coal beam in unsupported plunges.
- Assessment of maximum excavation advancement (5.0, 10.0, or 15.0 m) at which the stability of the unsupported roof is preserved.
- Assessment of the fracturing and damage responses of weak carbonaceous siltstone (XT) on the immediate plunge roof.
- Prediction of the unsupported roof stability in bellouts of varying geometry.
- Evaluation of the effectiveness of coal beam in unsupported bellouts.
- Assessment of fracturing and damage response of weak XT on the immediate roof.
3.3. Stability Assessment of Plunge Using the SF Approach in FLAC3D-IMASS
3.4. Stability Assessment of Bellout Structures Using the SF Approach in FLAC3D-IMASS
4. Technical Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, A.J.; Mandal, P.K.; Ghosh, C.N.; Sinha, A. Extraction of locked-up coal by strengthening of rib pillars with FRP—A comparative study through numerical modelling. Int. J. Min. Sci. Technol. 2017, 27, 261–267. [Google Scholar] [CrossRef]
- Singh, R. Staggered development of a thick coal seam for full height working in a single lift by the blasting gallery method. Int. J. Rock Mech. Min. Sci. 2004, 41, 745–759. [Google Scholar] [CrossRef]
- Zhang, D.; Bai, J.; Wang, R.; Deng, M.; Yan, S.; Zhu, Q.; Fu, H. Investigation on instability mechanism and control of abandoned roadways in coal pillars recovery face: A case study. Undergr. Space 2025, 20, 119–139. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, J.; Zhou, N. Study and discussion of short-strip coal pillar recovery with cemented paste backfill. Int. J. Rock Mech. Min. Sci. 2018, 104, 147–155. [Google Scholar] [CrossRef]
- Babanouri, N.; Beyromvand, H.; Dehghani, H. Evaluation of different methods of pillar recovery in coal mining by numerical simulation: A case study. Env. Earth Sci. 2023, 82, 110. [Google Scholar] [CrossRef]
- Putra, F.; Meiharriko, H.R.; Hamman, J.P.E. The Geotechnical Aspects of a Pillar Recovery Project in the DOZ Cave Mine. In Proceedings of the 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023. [Google Scholar]
- Chen, Y.; Ma, S.; Cao, Q. Extraction of the remnant coal pillar in regular and irregular shapes: A case study. J. Loss Prev. Process Ind. 2018, 55, 191–203. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.; Chen, D.; Gao, Y.; Xie, S.; Meng, Y. Research on the Fracture Mechanism and Pressure Relief Control Technology of the Thick and Hard Roof in a Coal Pillar Recovery Working Face. Int. J. Geomech. 2025, 25, 04025063. [Google Scholar] [CrossRef]
- Christopher, M. Empirical methods for coal pillar design. In Proceedings of the Second International Workshop on Coal Pillar Mechanics and Design, Vail, CO, USA, 6 June 1999; pp. 145–154. [Google Scholar]
- Martin, C.D.; Maybee, W.G. The strength of hard-rock pillars. Int. J. Rock Mech. Min. Sci. 2000, 37, 1239–1246. [Google Scholar] [CrossRef]
- Esterhuizen, G.S.; Dolinar, D.R.; Ellenberger, J.L. Pillar strength in underground stone mines in the United States. Ternational J. Rock Mech. Min. Sci. 2011, 48, 42–50. [Google Scholar] [CrossRef]
- Canbulat Ismet. An Evaluation of Time to Failure of Coal Pillars in Australia. In Proceedings of the 3rd International Workshop on Coal Pillar Mechanics and Design, Morgantown, WV, USA, 26 July 2010; pp. 94–105. [Google Scholar]
- Lunder, P.J.; Pakalnis, R.C. Determination of the strength of hard-rock mine pillars. Bull. Can. Inst. Min. Metall. Pet. 1997, 90, 51–55. [Google Scholar]
- Tawadrous, A.S.; Katsabanis, P.D. Prediction of surface crown pillar stability using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 917–931. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Shi, X.; Wei, W.; Wu, B. Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods. Trans. Nonferrous Met. Soc. China 2011, 21, 2734–2743. [Google Scholar] [CrossRef]
- Ghasemi, E.; Ataei, M.; Shahriar, K. An intelligent approach to predict pillar sizing in designing room and pillar coal mines. Int. J. Rock Mech. Min. Sci. 2014, 65, 86–95. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards 2015, 79, 291–316. [Google Scholar] [CrossRef]
- Dzimunya, N.; Fujii, Y.; Kawamura, Y. Integrating the effect of abutments in estimating the average vertical stress of elastic hard rock pillars by combining numerical modelling and artificial neural networks. Undergr. Space 2023, 13, 121–135. [Google Scholar] [CrossRef]
- Liang, W.; Luo, S.; Zhao, G.; Wu, H. Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms. Mathematics 2020, 8, 765. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, G.S.P.; Behera, B. A Machine Learning Model for Evaluation of Chain Pillar Stability in Deep Longwall Workings in India. Min. Met. Explor. 2023, 40, 2119–2137. [Google Scholar] [CrossRef]
- Idris, M.A.; Saiang, D.; Nordlund, E. Stochastic assessment of pillar stability at Laisvall mine using Artificial Neural Network. Tunn. Undergr. Space Technol. 2015, 49, 307–319. [Google Scholar] [CrossRef]
- Ding, H.; Li, G.; Dong, X.; Lin, Y. Prediction of Pillar Stability for Underground Mines Using the Stochastic Gradient Boosting Technique. IEEE Access 2018, 6, 69253–69264. [Google Scholar] [CrossRef]
- Mortazavi, A.; Hosseiniyan, S.J. Numerical Analysis of Pillar Width Selection in Multiple Oil Storage Caverns. Geotech. Geol. Eng. 2020, 38, 3025–3040. [Google Scholar] [CrossRef]
- Saadat, M.; Khishvand, M.; Seccombe, A. Estimation of pillar strength and rock mass properties using FLAC3D and 3DEC: A case study from Australian mining operations [Abstract]. In Proceedings of the 1st ISRM Commission Conference on Estimation of Rock Mass Strength and Deformability, Lima, Peru, 6 December 2024; Sri Lankan Rock Mechanics & Engineering Society Colombo: Colombo, Sri Lanka, 2024; pp. 37–38. [Google Scholar]
- Li, W.; Bai, J.; Peng, S.; Wang, X.; Xu, Y. Numerical Modeling for Yield Pillar Design: A Case Study. Rock Mech. Rock Eng. 2015, 48, 305–318. [Google Scholar] [CrossRef]
- Hamediazad, F.; Bahrani, N. Simulation of hard rock pillar failure using 2D continuum-based Voronoi tessellated models: The case of Quirke Mine, Canada. Comput. Geotech. 2022, 148, 104808. [Google Scholar] [CrossRef]
- Mortazavi, A.; Hassani, F.P.; Shabani, M. A numerical investigation of rock pillar failure mechanism in under-ground openings. Comput. Geotech. 2009, 36, 691–697. [Google Scholar] [CrossRef]
- Wang, S.-L.; Hao, S.-P.; Chen, Y.; Bai, J.-B.; Wang, X.-Y.; Xu, Y. Numerical investigation of coal pillar failure under simultaneous static and dynamic loading. Int. J. Rock Mech. Min. Sci. 2016, 84, 59–68. [Google Scholar] [CrossRef]
- Garza-Cruz, T.; Pierce, M.; Board, M. Effect of Shear Stresses on Pillar Stability: A Back Analysis of the Troy Mine Experience to Predict Pillar Performance at Montanore Mine. Rock Mech. Rock Eng. 2019, 52, 4979–4996. [Google Scholar] [CrossRef]
- Sunkpal, M.; Sherizadeh, T. Exploring the Deformation Mechanics of Coal Ribs Using the Distinct Element Modeling Approach. Rock Mech. Rock Eng. 2022, 55, 2879–2898. [Google Scholar] [CrossRef]
- Sinha, S.; Walton, G. Application of an Integrated 3D–2D Modeling Approach for Pillar Support Design in a Western US Underground Coal Mine. Geosciences 2023, 13, 333. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, H.; Li, C.; Zhou, J. Enhancing safety, sustainability, and economics in mining through innovative pillar design: A state-of-the-art review. J. Saf. Sustain. 2024, 1, 53–73. [Google Scholar] [CrossRef]
- Dzimunya, N.; Fujii, Y.; Li, Z.; Amagu Amagu, C. Assessing Pillar Design Strategies in Hard Rock Room-and-Pillar Mining: A Review and Case Studies from the Great Dyke of Zimbabwe. Min. Met. Explor. 2025, 42, 685–704. [Google Scholar] [CrossRef]
- Feng, G.; Wang, P. Simulation of recovery of upper remnant coal pillar while mining the ultra-close lower panel using longwall top coal caving. Int. J. Min. Sci. Technol. 2020, 30, 55–61. [Google Scholar] [CrossRef]
- Fan, F.; Zhikai, Y.; Shaojie, C.; Songtao, H.; Xingdong, Z.; Zhaowen, D. Optimization of the Roof Protection Layer for Remnant Pillars via the Reengineering of the Mechanical Environment of an Overlying Artificial Roof. Int. J. Geomech. 2025, 25, 04025205. [Google Scholar] [CrossRef]
- Sjoberg, J.S. Failure modes and pillar behaviour in the Zinkgruvan mine. In Proceedings of the 33rd U.S. Symposium on Rock Mechanics (USRMS), Santa Fe, NM, USA, 8–10 June 1992. [Google Scholar]
- Frith, R.; Reed, G. Coal pillar design when considered a reinforcement problem rather than a suspension problem. Int. J. Min. Sci. Technol. 2018, 28, 11–19. [Google Scholar] [CrossRef]
- Ghasemi, E.; Shahriar, K. A new coal pillars design method in order to enhance safety of the retreat mining in room and pillar mines. Saf. Sci. 2012, 50, 579–585. [Google Scholar] [CrossRef]
- Ghasemi, E.; Shahriar, K.; Sharifzadeh, M. A new method for risk assessment of pillar recovery operation. Saf. Sci. 2010, 48, 1304–1312. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Du, K.; Dias, D. Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms. Int. J. Min. Sci. Technol. 2023, 33, 1019–1036. [Google Scholar] [CrossRef]
- Ghasemi, E.; Kalhori, H.; Bagherpour, R. Stability assessment of hard rock pillars using two intelligent classification techniques: A comparative study. Tunn. Undergr. Space Technol. 2017, 68, 32–37. [Google Scholar] [CrossRef]
- Ahmad, M.; Al-Shayea, N.A.; Tang, X.-W.; Jamal, A.; MAl-Ahmadi, H.; Ahmad, F. Predicting the Pillar Stability of Underground Mines with Random Trees and C4.5 Decision Trees. Appl. Sci. 2020, 10, 6486. [Google Scholar] [CrossRef]
- Zvarivadza, T.; Grobler, H.; Olubambi, P.A.; Onifade, M.; Khandelwal, M. Hybrid pillar stress analysis: Integrating numerical modelling, machine learning, and geostatistics for improved stability in hardrock mining. Results Earth Sci. 2025, 3, 100129. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. FLAC3D—Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 9.0 2023; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2023.
- Tuncay, D.; Tulu, I.B.; Klemetti, T. Investigating different methods used for approximating pillar loads in longwall coal mines. Int. J. Min. Sci. Technol. 2021, 31, 23–32. [Google Scholar] [CrossRef]
- Napa-García, G.F.; Câmara, T.R.; Navarro Torres, V.F. Optimization of room-and-pillar dimensions using automated numerical models. Int. J. Min. Sci. Technol. 2019, 29, 797–801. [Google Scholar] [CrossRef]
- Jin, G.; Wang, L.; Zhang, J.; Hu, M.; Duan, N. Roadway layout for recycling residual coal pillar in room-and-pillar mining of thick coal seam. Int. J. Min. Sci. Technol. 2015, 25, 729–734. [Google Scholar] [CrossRef]
- Zheng, H.; Mooney, M.; Gutierrez, M. Surrogate model for 3D ground and structural deformations in tunneling by the sequential excavation method. Comput. Geotech. 2023, 154, 105142. [Google Scholar] [CrossRef]
- Shekarchizadeh, M.; Najafi, M.; Fatehi Marji, M. Numerical Simulation of Appropriate Design for Selecting Tunnel Support Systems in Squeezing Grounds (Tunnel No. 2 in Tabas Coal Mine, Iran). Adv. Civ. Eng. 2025, 2025, 4398231. [Google Scholar] [CrossRef]
- Guo, J.; Huang, W.; Feng, G.; Bai, J.; Li, L.; Wang, Z.; Yu, L.; Wen, X.; Zhang, J.; Feng, W. Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model. Int. J. Min. Sci. Technol. 2024, 34, 491–505. [Google Scholar] [CrossRef]
- Saadat, M.; Khishvand, M.; Seccombe, A. FLAC3D Simulation of Caving Mechanism and Strata Fracture Response in Underground Mining. Mining 2024, 4, 818–840. [Google Scholar] [CrossRef]
- Fuenzalida, M.; Pierce, M.; Katsaga, T. REBOP–FLAC3D hybrid approach to cave modelling. In Proceedings of the Caving 2018: Fourth International Symposium on Block and Sublevel Caving, Australian Centre for Geomechanics, Perth, Australia, 15–17 October 2018; pp. 297–312. [Google Scholar] [CrossRef]
- Cancino Martínez, C.; Fuenzalida, M.; Kamp, C. Numerical modeling of cave propagation and breakthrough timing. In Proceedings of the MassMin 2024: International Conference & Exhibition on Mass Mining, Luleå University of Technology, Luleå, Sweden, 17–19 September 2024; pp. 548–568. [Google Scholar] [CrossRef]
- Ghazvinian, E.; Garza-Cruz, T.; Bouzeran, L.; Fuenzalida, M.; Cheng, Z.; Cancino, C.; Pierce, M. Theory and Implementation of the Itasca Constitutive Model for Advanced Strain Softening (IMASS). In Proceedings of the Eighth International Conference and Exhibition on Mass Mining (MassMin 2020), Santiago, Chile, 9–12 December 2020. [Google Scholar]
- Ghazvinian, E.; Fuenzalida, M.; Orrego, C.; Pierce, M. Back analysis of cave propagation and subsidence at Cadia East Mine. In Proceedings of the MassMin 2020: Eighth International Conference & Exhibition on Mass Mining, University of Chile, Santiago, Chile, 4–8 October 2020; pp. 535–550. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, H.; Tan, X.; Jin, Y.; Wang, J.; Tang, B. A Stability Analysis of an Abandoned Gypsum Mine Based on Numerical Simulation Using the Itasca Model for Advanced Strain Softening Constitutive Model. Appl. Sci. 2023, 13, 12570. [Google Scholar] [CrossRef]
- Vidal, R.; Vallejos, J.; Cuello, D.; Cifuentes, C. Back analysis of caving propagation using numerical models in Esmeralda Sur mine. In Proceedings of the MassMin 2024: International Conference & Exhibition on Mass Mining, Luleå University of Technology, Luleå, Sweden, 17–19 September 2024; pp. 599–605. [Google Scholar] [CrossRef]
- Marinos, V.; Marinos, P.; Hoek, E. The geological strength index: Applications and limitations. Bull. Eng. Ing. Geol. Environ. 2005, 64, 55–65. [Google Scholar] [CrossRef]
- Bewick, R.P.; Kaiser, P.K.; Amann, F. Strength of massive to moderately jointed hard rock masses. J. Rock Mech. Geotech. Eng. 2019, 11, 562–575. [Google Scholar] [CrossRef]
- Fuentes-Espinoza, M.; Andersson, U.; Zhang, P. Evaluation of structurally controlled rockfall hazard for underground excavations. In Proceedings of the MassMin 2024: International Conference & Exhibition on Mass Mining, Luleå University of Technology, Luleå, Sweden, 17–19 September 2024; Johansson, D., Schunnesson, H., Eds.; Luleå University of Technology: Kiruna, Sweden; pp. 1066–1082. [Google Scholar]
- Nemcik, J.; Gale, W.; Fabjanczyk, M. Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling. In Coal 2006: Coal Operators’ Conference; Aziz, N., Ed.; University of Wollongong & the Australasian Institute of Mining and Metallurgy: Wollongong, Australia, 2006. [Google Scholar]
- Sherizadeh, T.; Kulatilake, P.H.S.W. Assessment of roof stability in a room and pillar coal mine in the U.S. using three-dimensional distinct element method. Tunn. Undergr. Space Technol. 2016, 59, 24–37. [Google Scholar] [CrossRef]
- Rashed, G.; Miller, T.; Evanek, N. Evaluating Roof Stability in an Underground Stone Mine Under High Horizontal Stress: Insight from Numerical Modeling and Field Observation with Mitigation Strategy. In Proceedings of the SME Annual Meeting, Society for Mining, Metallurgy & Exploration, Society for Mining, Metallurgy & Exploration, Denver, CO, USA, 23–26 February2025. [Google Scholar]
- Tulu, I.B.; Esterhuizen, G.S.; Klemetti, T.; Murphy, M.M.; Sumner, J.; Sloan, M. A case study of multi-seam coal mine entry stability analysis with strength reduction method. Int. J. Min. Sci. Technol. 2016, 26, 193–198. [Google Scholar] [CrossRef]
- Mark, C.; Molinda, G.M. The Coal Mine Roof Rating (CMRR)—A decade of experience. Int. J. Coal Geol. 2005, 64, 85–103. [Google Scholar] [CrossRef]
- Wang, B.; Wang, D.; Du, Y.; Zhu, Q.; Li, T. Study on the mechanism of floor failure control under different roof pene-tration degrees based on a FLAC3D–PFC3D model. Eng. Fail. Anal. 2025, 171, 109343. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. A numerical approach to investigate the effects of rock texture on the damage and crack propagation of a pre-cracked granite. Comput. Geotech. 2019, 111, 89–111. [Google Scholar] [CrossRef]
- Zhu, X.; Si, G.; Zhang, C.; Moon, J.-S.; Oh, J. Numerical analysis of hydro-mechanical coupling behaviour during shearing of rock fractures based on an improved friction factor model. J. Rock Mech. Geotech. Eng. 2025, in press. [Google Scholar] [CrossRef]
- Rezaee, H.; Noorian-Bidgoli, M. Numerical and experimental investigation of the influence of temperature and grain size on the fracture behavior of rock. J. Rock Mech. Geotech. Eng. 2025, 17, 1102–1119. [Google Scholar] [CrossRef]
- Das, K.; GShiva, K. Optimum Extraction of Pillars by FLAC-3D Where Surface Features is the Major Constrain. In Proceedings of the ISRM Regional Symposium–EUROCK, Vigo, Spain, 27 May 2014. [Google Scholar]
- Zhao, X.; Jiang, J.; Lan, B. An integrated method to calculate the spatial distribution of overburden strata failure in longwall mines by coupling GIS and FLAC3D. Int. J. Min. Sci. Technol. 2015, 25, 369–373. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, S.; Hu, T.; Zhang, C.; Guo, Y.; Li, F.; Huang, J. Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining. Processes 2025, 13, 1753. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D.; Coggan, J. Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach. Comput. Geotech. 2014, 55, 448–460. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Wang, Z.; Li, Z.; Zhang, H.; Song, S. The influence of inter-band rock on rib spalling in longwall panel with large mining height. Int. J. Min. Sci. Technol. 2024, 34, 427–442. [Google Scholar] [CrossRef]
- Mao, P.; Hashikawa, H.; Sasaoka, T.; Shimada, H.; Wan, Z.; Hamanaka, A.; Oya, J. Numerical Investigation of Roof Stability in Longwall Face Developed in Shallow Depth under Weak Geological Conditions. Sustainability 2022, 14, 1036. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Shan, C.; Larsson, S.; Johansson, F. Normalizing Large Scale Sensor-Based MWD Data: An Automated Method toward A Unified Database. Sensors 2024, 24, 1209. [Google Scholar] [CrossRef]
- Elmo, D. The risk of confusing model calibration and model validation with model acceptance. In Proceedings of the SSIM 2023: Third International Slope Stability in Mining Conference, Perth, Australia, 14–16 November 2023; Dight, P.M., Ed.; Australian Centre for Geomechanics: Crawley, Australia, 2023; pp. 333–342. [Google Scholar]
- Cundall, P.A. The Art of Numerical Modeling in Geomechanics. In Geo-Congress 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Zhang, D.; Song, D.; Zhang, L.; Luo, B. Mechanical Behavior and Stress Mechanism of Roof Cutting Gob-Side Entry Retaining in Medium-Thick Coal Seams. Processes 2025, 13, 2649. [Google Scholar] [CrossRef]
- Junthong, P.; Khamrat, S.; Sartkaew, S.; Fuenkajorn, K. Determination of time-dependent strengths of salt pillars based on strain energy principle. Int. J. Min. Sci. Technol. 2019, 29, 273–279. [Google Scholar] [CrossRef]
- Sun, C.; Li, G.; Gomah, M.E.; Xu, J.; Sun, Y. Creep characteristics of coal and rock investigated by nanoindentation. Int. J. Min. Sci. Technol. 2020, 30, 769–776. [Google Scholar] [CrossRef]
Lithology | Generalized Hoek-Brown Parameters | ||||
---|---|---|---|---|---|
UCSi | E | GSI | mi | ||
[MPa] | [GPa] | [-] | [-] | [-] | |
CO | 9 | 5 | 50 | 8 | 0.75 |
XT | 15 | 7 | 40 | 12 | 0.35 |
SS | 45 | 17.7 | 65 | 12 | 0.75 |
ST | 18 | 10.6 | 55 | 12 | 0.75 |
Lithology | Generalized Hoek-Brown Parameters | ||||
---|---|---|---|---|---|
UCSi | E | GSI | mi | ||
[MPa] | [GPa] | [-] | [-] | [-] | |
ST | 19 | 5.7 | 60 | 12 | 0.75 |
XT | 13 | 4 | 40 | 8 | 0.35 |
COx | 7.8 | 3.5 | 45 | 8 | 0.35 |
CO | 7 | 2.5 | 50 | 10 | 0.75 |
SS | 24 | 7.2 | 65 | 17 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadat, M.; Khishvand, M.; Seccombe, A. FLAC3D-IMASS Modelling of Rock Mass Damage in Unsupported Underground Mining Excavations: A Safety Factor-Based Framework. Mining 2025, 5, 60. https://doi.org/10.3390/mining5040060
Saadat M, Khishvand M, Seccombe A. FLAC3D-IMASS Modelling of Rock Mass Damage in Unsupported Underground Mining Excavations: A Safety Factor-Based Framework. Mining. 2025; 5(4):60. https://doi.org/10.3390/mining5040060
Chicago/Turabian StyleSaadat, Mahdi, Mattin Khishvand, and Andrew Seccombe. 2025. "FLAC3D-IMASS Modelling of Rock Mass Damage in Unsupported Underground Mining Excavations: A Safety Factor-Based Framework" Mining 5, no. 4: 60. https://doi.org/10.3390/mining5040060
APA StyleSaadat, M., Khishvand, M., & Seccombe, A. (2025). FLAC3D-IMASS Modelling of Rock Mass Damage in Unsupported Underground Mining Excavations: A Safety Factor-Based Framework. Mining, 5(4), 60. https://doi.org/10.3390/mining5040060