Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review
Abstract
1. Introduction
2. Molecular Interplay Between Oxidative Stress and Inflammation
2.1. Reactive Oxygen Species as Pro-Inflammatory Signaling
2.2. Redox Regulation of Transcription Factors
2.3. Crosstalk Between NF-κB and Nrf2 Signaling Pathways
2.4. Mitochondrial Dysfunction and NLRP3 Inflammasome Activation
2.5. Immune Cell Modulation by ROS
2.6. Epigenetic Control of Redox and Inflammatory Pathways
2.7. Metabolic Reprogramming: The Immunometabolic–Redox Interface
3. Pathologies Associated with Oxidative Stress and Chronic Inflammation
3.1. Cardiovascular Diseases
3.2. Neurodegenerative Diseases
3.3. Diabetes and Metabolic Syndrome
3.4. Cancer
3.5. Autoimmune and Inflammatory Disorders
3.6. Renal Diseases
3.7. Pulmonary Diseases
3.8. Liver Diseases
3.9. Skin and Reproductive Disorders
3.10. Aging
4. Established Therapeutic Strategies Targeting Oxidative Stress and Inflammation
4.1. Direct Antioxidant Agents
4.1.1. Vitamin C (Ascorbic Acid)
4.1.2. Vitamin E (Tocopherols and Tocotrienols)
4.1.3. N-Acetylcysteine (NAC)
4.1.4. Coenzyme Q10 (CoQ10)
4.2. Conventional Anti-Inflammatory Agents
4.2.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
4.2.2. Corticosteroids
4.3. Targeted Biologics and Small-Molecule Inhibitors
4.4. Immunometabolic Agents
4.5. Natural Polyphenols and Nutraceuticals
4.5.1. Natural Polyphenols (Curcumin, Resveratrol, and Others)
4.5.2. Omega-3 Fatty Acids and Vitamin D
5. Limitations and Challenges of Established Therapeutic Strategies
5.1. Poor Bioavailability and Inefficient Delivery
5.2. Lack of Target Specificity and Biomarker Reliability
5.3. Disease and Patient Heterogeneity
5.4. Limitations of Monotherapy Approaches
5.5. Safety Risks and Long-Term Uncertainty
5.6. Regulatory and Quality Control Challenges
5.7. Practical Barriers: Adherence and Accessibility
6. Emerging Strategies and Perspectives Targeting Chronic Oxidation-Inflammation Related Diseases
6.1. Catalytic Enzyme Mimetics
6.1.1. Manganese Porphyrins
6.1.2. Manganese Salens
6.1.3. Nanozyme and Single-Atom Mimetics (SAzymes)
6.2. Mitochondria-Targeted Antioxidants
6.3. Nrf2 Pathway Activation
6.4. Immunometabolic Modulators
6.4.1. Itaconate and Its Derivatives
6.4.2. Metformin and AMPK Activators
6.4.3. Sirtuin Activators (SRT2104 and Related STACs)
6.5. Nanotechnology-Enabled Targeting
6.5.1. Cerium Oxide Nanoparticles (CeO2 NPs)
6.5.2. Manganese-Based Nanozymes (MnO2/Mn3O4)
6.5.3. Polymeric Micelles and Nanogels
6.5.4. Hybrid Nanocarriers with Polyphenols and Anti-Inflammatory Agents
6.6. Combination and Synergistic Therapies
6.7. Stem Cell-Derived Therapies and Exosomes
6.8. Integrated Lifestyle and Digital Therapeutics
6.9. Regulatory and Ethical Considerations
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEOL10150 | Metalloporphyrin Antioxidant Compound AEOL-10150 |
AICAR | 5-Aminoimidazole-4-carboxamide ribonucleotide |
AKT | Protein Kinase B |
ALA | Alpha-Lipoic Acid |
ALS | Amyotrophic Lateral Sclerosis |
AMPK | AMP-activated Protein Kinase |
AP-1 | Activator Protein 1 |
ARE | Antioxidant Response Element |
ATP | Adenosine Triphosphate |
BMX001/BMX010 | Manganese Porphyrin Antioxidants |
CANTOS | Canakinumab Anti-inflammatory Thrombosis Outcomes Study |
CAT | Catalase |
CBP | CREB-binding Protein |
CD36 | Cluster of Differentiation 36 |
CKD | Chronic Kidney Disease |
COVID-19 | Coronavirus Disease 2019 |
COX-1/2 | Cyclooxygenase-1/2 |
CRP | C-reactive Protein |
DAMP | Damage-associated Molecular Pattern |
DHA | Docosahexaenoic Acid |
DKD | Diabetic Kidney Disease |
EMT | Epithelial–Mesenchymal Transition |
EPA | Eicosapentaenoic Acid |
EUK-134/207 | Manganese Salen Antioxidant Compounds |
FEV1 | Forced Expiratory Volume in 1 sec |
FOXO3 | Forkhead Box O3 |
FOXP3 | Forkhead Box P3 (Treg marker) |
GFR | Glomerular Filtration Rate |
GLP-1 | Glucagon-like Peptide-1 |
GSTM1 | Glutathione S-transferase Mu 1 |
HDAC | Histone Deacetylase |
HIF-1α | Hypoxia-inducible Factor-1 alpha |
HO-1 | Heme Oxygenase-1 |
LPS | Liposaccharides |
References
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Fioranelli, M.; Roccia, M.G.; Flavin, D.; Cota, L. Regulation of inflammatory reaction in health and disease. Int. J. Mol. Sci. 2021, 22, 5277. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204. [Google Scholar] [CrossRef]
- Orlando, F.A.; Mainous III, A.G. Editorial: Inflammation and chronic disease. Frontiers Media SA 2024, 11, 1434533. [Google Scholar] [CrossRef]
- Ashique, S.; Mishra, N.; Mantry, S.; Garg, A.; Kumar, N.; Gupta, M.; Kar, S.K.; Islam, A.; Mohanto, S.; Subramaniyan, V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 417–448. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Lee, H.; Jose, P.A. Coordinated contribution of NADPH oxidase-and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction. Front. Pharmacol. 2021, 12, 670076. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared principles in NF-κB signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-q.; Zhao, L.-l.; Hong, C.; Zou, Q.-m.; Su, J.-x.; Li, S.-j.; Zhou, X.-f.; Li, Z.-s.; Deng, B.; Cao, J. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol. Sin. 2024, 45, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Quatrana, A.; Petrillo, S.; Torda, C.; De Santis, E.; Bertini, E.; Piemonte, F. Redox homeostasis and inflammation in fibroblasts of patients with Friedreich Ataxia: A possible cross talk. Front. Mol. Neurosci. 2025, 18, 1571402. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Y.; Song, K.; Tu, B.; Lin, L.-C.; Sun, H.; Zhou, Y.; Li, R.; Shi, Y.; Yang, J.-J.; Zhang, Y. Crosstalk between oxidative stress and epigenetic marks: New roles and therapeutic implications in cardiac fibrosis. Redox Biol. 2023, 65, 102820. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Du, Y.-T.; Long, Y.; Tang, W.; Liu, X.-F.; Dai, F.; Zhou, B. Prooxidative inhibition against NF-κB-mediated inflammation by pharmacological vitamin C. Free Radic. Biol. Med. 2022, 180, 85–94. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609. [Google Scholar] [CrossRef]
- Nurcahyanti, A.D.R.; Cokro, F.; Wulanjati, M.P.; Mahmoud, M.F.; Wink, M.; Sobeh, M. Curcuminoids for metabolic syndrome: Meta-analysis evidences toward personalized prevention and treatment management. Front. Nutr. 2022, 9, 891339. [Google Scholar] [CrossRef]
- Al Mamun, A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Polyphenols targeting NF-κB pathway in neurological disorders: What we know so far? Int. J. Biol. Sci. 2024, 20, 1332. [Google Scholar] [CrossRef]
- Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019, 8, 2252–2267. [Google Scholar] [CrossRef]
- Bellanti, F.; Coda, A.R.D.; Trecca, M.I.; Buglio, A.L.; Serviddio, G.; Vendemiale, G. Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress. Antioxidants 2025, 14, 656. [Google Scholar] [CrossRef]
- Baird, L.; Yamamoto, M. The Keap1-Nrf2 pathway: From mechanism to medical applications. In Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2020; pp. 125–147. [Google Scholar]
- Ma, C.; Li, H.; Lu, S.; Li, X. Thyroid-associated ophthalmopathy: The role of oxidative stress. Front. Endocrinol. 2024, 15, 1400869. [Google Scholar] [CrossRef]
- Mei, Y.; Wang, Z.; Zhang, Y.; Wan, T.; Xue, J.; He, W.; Luo, Y.; Xu, Y.; Bai, X.; Wang, Q. FA-97, a new synthetic caffeic acid phenethyl ester derivative, ameliorates DSS-induced colitis against oxidative stress by activating Nrf2/HO-1 pathway. Front. Immunol. 2020, 10, 2969. [Google Scholar] [CrossRef]
- Sul, O.-J.; Ra, S.W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 2021, 26, 6949. [Google Scholar] [CrossRef]
- Fakhri, S.; Abbaszadeh, F.; Moradi, S.Z.; Cao, H.; Khan, H.; Xiao, J. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxid. Med. Cell. Longev. 2022, 2022, 8100195. [Google Scholar] [CrossRef] [PubMed]
- Strowitzki, M.J.; Cummins, E.P.; Taylor, C.T. Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or ubiquitous? Cells 2019, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Bae, T.; Hallis, S.P.; Kwak, M.-K. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp. Mol. Med. 2024, 56, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.E.; Kim, D.H.; Lee, J.S. FoxO transcription factors: Applicability as a novel immune cell regulators and therapeutic targets in oxidative stress-related diseases. Int. J. Mol. Sci. 2022, 23, 11877. [Google Scholar] [CrossRef]
- Atsaves, V.; Leventaki, V.; Rassidakis, G.Z.; Claret, F.X. AP-1 transcription factors as regulators of immune responses in cancer. Cancers 2019, 11, 1037. [Google Scholar] [CrossRef]
- Dai, W.-C.; Chen, T.-H.; Peng, T.-C.; He, Y.-C.; Hsu, C.-Y.; Chang, C.-C. Blockade of the STAT3/BCL-xL Axis Leads to the Cytotoxic and Cisplatin-Sensitizing Effects of Fucoxanthin, a Marine-Derived Carotenoid, on Human Bladder Urothelial Carcinoma Cells. Mar. Drugs 2025, 23, 54. [Google Scholar] [CrossRef]
- Gao, W.; Guo, L.; Yang, Y.; Wang, Y.; Xia, S.; Gong, H.; Zhang, B.-K.; Yan, M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 2022, 9, 809952. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Et. Biophys. Acta BBA-Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Shu, Q.; Xie, H.; Zhao, L.; Wu, P.; Du, Y.; Lu, J.; He, Y.; Wang, X.; Peng, H. Protective effects of triptolide against oxidative stress in retinal pigment epithelium cells via the PI3K/AKT/Nrf2 pathway: A network pharmacological method and experimental validation. Aging 2024, 16, 3955. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Trevino, I.; Mccauley, L.; Hannigan, L.; Probst, B.; Ferguson, D.; Wigley, C. Fo006 the nrf2 activator bardoxolone methyl inhibits cyst formation, reduces inflammation, and improves mitochondrial function in cellular models of polycystic kidney disease. Nephrol. Dial. Transplant. 2019, 34, gfz096.FO006. [Google Scholar] [CrossRef]
- Chin, M.P.; Bakris, G.L.; Block, G.A.; Chertow, G.M.; Goldsberry, A.; Inker, L.A.; Heerspink, H.J.; O’Grady, M.; Pergola, P.E.; Wanner, C. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: Post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am. J. Nephrol. 2018, 47, 40–47. [Google Scholar] [CrossRef]
- Wanner, C.; Bakris, G.; Block, G.; Chin, M.; Goldsberry, A.; Inker, L.; Meyer, C.; O’Grady, M.; Pergola, P.; Warnock, D. FO022 bardoxolone methyl prevents egfr decline in patients with chronic kidney disease stage 4 and type 2 diabetes-post-hoc analyses from beacon. Nephrol. Dial. Transplant. 2018, 33, i10. [Google Scholar] [CrossRef]
- Kavyani, Z.; Najafi, K.; Naghsh, N.; Karvane, H.B.; Musazadeh, V. The effects of curcumin supplementation on biomarkers of inflammation, oxidative stress, and endothelial function: A meta-analysis of meta-analyses. Prostaglandins Other Lipid Mediat. 2024, 174, 106867. [Google Scholar] [CrossRef]
- Helou, D.G.; Martin, S.F.; Pallardy, M.; Chollet-Martin, S.; Kerdine-Römer, S. Nrf2 involvement in chemical-induced skin innate immunity. Front. Immunol. 2019, 10, 1004. [Google Scholar] [CrossRef]
- Vallion, R.; Kerdine-Römer, S. Regulation of the immune response to contact sensitizers by Nrf2. Contact Dermat. 2022, 87, 13–19. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef]
- Qiu, Y.; Huang, Y.; Chen, M.; Yang, Y.; Li, X.; Zhang, W. Mitochondrial DNA in NLRP3 inflammasome activation. Int. Immunopharmacol. 2022, 108, 108719. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Narendra, D.; Tanaka, A.; Suen, D.-F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef]
- Wang, W.; Chang, R.; Wang, Y.; Hou, L.; Wang, Q. Mitophagy-dependent mitochondrial ROS mediates 2, 5-hexanedione-induced NLRP3 inflammasome activation in BV2 microglia. Neurotoxicology 2023, 99, 50–58. [Google Scholar] [CrossRef]
- Le Gal, K.; Wiel, C.; Ibrahim, M.X.; Henricsson, M.; Sayin, V.I.; Bergo, M.O. Mitochondria-targeted antioxidants MitoQ and MitoTEMPO do not influence BRAF-driven malignant melanoma and KRAS-driven lung cancer progression in mice. Antioxidants 2021, 10, 163. [Google Scholar] [CrossRef]
- Wang, W.-W.; Han, R.; He, H.-J.; Wang, Z.; Luan, X.-Q.; Li, J.; Feng, L.; Chen, S.-Y.; Aman, Y.; Xie, C.-L. Delineating the role of mitophagy inducers for Alzheimer disease patients. Aging Dis. 2021, 12, 852. [Google Scholar] [CrossRef]
- Zheng, W.; Li, K.; Zhong, M.; Wu, K.; Zhou, L.; Huang, J.; Liu, L.; Chen, Z. Mitophagy activation by rapamycin enhances mitochondrial function and cognition in 5× FAD mice. Behav. Brain Res. 2024, 463, 114889. [Google Scholar] [CrossRef]
- Nagasu, H.; Sogawa, Y.; Kidokoro, K.; Itano, S.; Yamamoto, T.; Satoh, M.; Sasaki, T.; Suzuki, T.; Yamamoto, M.; Wigley, W.C. Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function. FASEB J. 2019, 33, 12253. [Google Scholar] [CrossRef]
- Pérez, S.; Rius-Pérez, S. Macrophage polarization and reprogramming in acute inflammation: A redox perspective. Antioxidants 2022, 11, 1394. [Google Scholar] [CrossRef]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, J.; Chen, W.; Li, W.; Chen, Z. Vascular macrophages in atherosclerosis. J. Immunol. Res. 2019, 2019, 4354786. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, G. Mitochondria orchestrate T cell fate and function. Nat. Immunol. 2021, 22, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Hassanizadeh, S.; Shojaei, M.; Bagherniya, M.; Orekhov, A.N.; Sahebkar, A. Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. BioFactors 2023, 49, 512–533. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
- Xia, T.; Fu, S.; Yang, R.; Yang, K.; Lei, W.; Yang, Y.; Zhang, Q.; Zhao, Y.; Yu, J.; Yu, L. Advances in the study of macrophage polarization in inflammatory immune skin diseases. J. Inflamm. 2023, 20, 33. [Google Scholar] [CrossRef]
- Wigerblad, G.; Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 2023, 23, 274–288. [Google Scholar] [CrossRef]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Absalón-Aguilar, A.; Nuñez-Aguirre, M.; Pérez-Fragoso, A.; Carrillo-Vázquez, D.A.; Maravillas-Montero, J.L.; Mejía-Domínguez, N.R.; Llorente, L.; Alcalá-Carmona, B.; Lira-Luna, J. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity. Cells 2021, 10, 2545. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P.; Mottola, F.; Das, S.; Hussain, A.; Ashour, A.; Rocco, L.; Govindasamy, K.; Rosas, I.M.; Roychoudhury, S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024, 13, 1846. [Google Scholar] [CrossRef] [PubMed]
- García-Guede, Á.; Vera, O.; Ibáñez-de-Caceres, I. When oxidative stress meets epigenetics: Implications in cancer development. Antioxidants 2020, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-J.; Zhang, H.; Yang, F.; Liu, Y.; Chen, G. DNA methylation sustains “inflamed” memory of peripheral immune cells aggravating kidney inflammatory response in chronic kidney disease. Front. Physiol. 2021, 12, 637480. [Google Scholar] [CrossRef]
- Calle-Fabregat, C.d.l.; Morante-Palacios, O.; Ballestar, E. Understanding the relevance of DNA methylation changes in immune differentiation and disease. Genes 2020, 11, 110. [Google Scholar] [CrossRef]
- Zheng, X.; Sawalha, A.H. The role of oxidative stress in epigenetic changes underlying autoimmunity. Antioxid. Redox Signal. 2022, 36, 423–440. [Google Scholar] [CrossRef]
- Jasim, S.A.; Altalbawy, F.M.; Abohassan, M.; Oghenemaro, E.F.; Bishoyi, A.K.; Singh, R.P.; Kaur, P.; Sivaprasad, G.; Mohammed, J.S.; Hulail, H.M. Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge. Cell Biochem. Biophys. 2024, 83, 1375–1386. [Google Scholar] [CrossRef]
- Hua, C.-C.; Liu, X.-M.; Liang, L.-R.; Wang, L.-F.; Zhong, J.-C. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases. Front. Cardiovasc. Med. 2022, 8, 784044. [Google Scholar] [CrossRef]
- Raucci, A.; Macrì, F.; Castiglione, S.; Badi, I.; Vinci, M.C.; Zuccolo, E. MicroRNA-34a: The bad guy in age-related vascular diseases. Cell. Mol. Life Sci. 2021, 78, 7355–7378. [Google Scholar] [CrossRef]
- Ibáñez-Cabellos, J.S.; Pallardó, F.V.; García-Giménez, J.L.; Seco-Cervera, M. Oxidative stress and epigenetics: miRNA involvement in rare autoimmune diseases. Antioxidants 2023, 12, 800. [Google Scholar] [CrossRef]
- Laggerbauer, B.; Engelhardt, S. MicroRNAs as therapeutic targets in cardiovascular disease. J. Clin. Investig. 2022, 132, e159179. [Google Scholar] [CrossRef]
- López-Armas, G.C.; Yessenbekova, A.; González-Castañeda, R.E.; Arellano-Arteaga, K.J.; Guerra-Librero, A.; Ablaikhanova, N.; Florido, J.; Escames, G.; Acuña-Castroviejo, D.; Rusanova, I. Role of c-miR-21, c-miR-126, redox status, and inflammatory conditions as potential predictors of vascular damage in T2DM patients. Antioxidants 2022, 11, 1675. [Google Scholar] [CrossRef]
- Hu, T.; Liu, C.-H.; Lei, M.; Zeng, Q.; Li, L.; Tang, H.; Zhang, N. Metabolic regulation of the immune system in health and diseases: Mechanisms and interventions. Signal Transduct. Target. Ther. 2024, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.; Firestein, B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.N.; Theiss, A.L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 2020, 11, 285–304. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Tannahill, G.á.; Curtis, A.; Adamik, J.; Palsson-McDermott, E.; McGettrick, A.; Goel, G.; Frezza, C.; Bernard, N.; Kelly, B.; Foley, N. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef]
- Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.; Huang, S.C.-C.; Griss, T. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016, 24, 158–166. [Google Scholar] [CrossRef]
- Pålsson-McDermott, E.M.; O’Neill, L.A. Gang of 3: How the Krebs cycle-linked metabolites itaconate, succinate, and fumarate regulate macrophages and inflammation. Cell Metab. 2025, 37, 1049–1059. [Google Scholar] [CrossRef]
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.; Higgins, M.; Hams, E. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556, 113–117. [Google Scholar] [CrossRef]
- Bambouskova, M.; Gorvel, L.; Lampropoulou, V.; Sergushichev, A.; Loginicheva, E.; Johnson, K.; Korenfeld, D.; Mathyer, M.E.; Kim, H.; Huang, L.-H. Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 2018, 556, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Cai, C. Research progress on the mechanism of itaconate regulating macrophage immunometabolism. Front. Immunol. 2022, 13, 937247. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lv, H.; Wen, Z.; Ci, X.; Peng, L. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-κB pathway in macrophages and in acute lung injury. Front. Immunol. 2017, 8, 1518. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Mosalmanzadeh, N.; Pence, B.D. Oxidized low-density lipoprotein and its role in immunometabolism. Int. J. Mol. Sci. 2024, 25, 11386. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The role of oxidative stress in atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022, 17, 23. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Wu, Q.; Zou, C. Microglial dysfunction in neurodegenerative diseases via RIPK1 and ROS. Antioxidants 2022, 11, 2201. [Google Scholar] [CrossRef]
- Phillips, M.C.; Picard, M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl. Neurodegener. 2024, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-M. Mitochondrial Dysfunction in Neurodegenerative Diseases. Cells 2025, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Haikal, C.; Weissert, R. Aging, peripheral inflammation, and neurodegeneration. Front. Media SA 2024, 16, 1529026. [Google Scholar]
- Percy, K.C.M.; Liu, Z.; Qi, X. Mitochondrial dysfunction in Alzheimer’s disease: Guiding the path to targeted therapies. Neurotherapeutics 2025, 22, e00525. [Google Scholar] [CrossRef]
- Scarian, E.; Viola, C.; Dragoni, F.; Di Gerlando, R.; Rizzo, B.; Diamanti, L.; Gagliardi, S.; Bordoni, M.; Pansarasa, O. New insights into oxidative stress and inflammatory response in neurodegenerative diseases. Int. J. Mol. Sci. 2024, 25, 2698. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V.; Enyedi, M. Decoding neurodegeneration: A review of molecular mechanisms and therapeutic advances in Alzheimer’s, parkinson’s, and ALS. Int. J. Mol. Sci. 2024, 25, 12613. [Google Scholar] [CrossRef]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and oxidative stress: An integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of oxidative stress and inflammation in diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Stanimirovic, J.; Radovanovic, J.; Banjac, K.; Obradovic, M.; Essack, M.; Zafirovic, S.; Gluvic, Z.; Gojobori, T.; Isenovic, E.R. Role of C-reactive protein in diabetic inflammation. Mediat. Inflamm. 2022, 2022, 3706508. [Google Scholar] [CrossRef]
- Venkatesan, K.; Paulsamy, P.; Alqahtani, S.; Asiri, Y.I.; Alqahtani, T.; Alqahtani, A.; Sivadasan, D.; Ahmed, R.; Elfadil, H.; Asseri, K.A. An update on the role of inflammation in insulin resistance and islet β cell failure-A crosstalk between immune cells, adipose tissue, cytokines, and oxidative stress. Lett. Drug Des. Discov. 2025, 22, 100023. [Google Scholar] [CrossRef]
- Tiwari, R.; Mondal, Y.; Bharadwaj, K.; Mahajan, M.; Mondal, S.; Sarkar, A. Reactive Oxygen Species (ROS) and Their Profound Influence on Regulating Diverse Aspects of Cancer: A Concise Review. Drug Dev. Res. 2025, 86, e70107. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, S.; Yang, L.; Song, P.; Liu, Z.; Liu, X.; Yan, X.; Dong, Q. Roles of reactive oxygen species in inflammation and cancer. MedComm 2024, 5, e519. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, X.; Sun, S.-c. NF-κB in inflammation and cancer. Cell. Mol. Immunol. 2025, 22, 811–839. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Garcia, V.; Estupiñan-Jiménez, J.R.; Vivas-Mejia, P.E.; Gonzalez-Villasana, V.; Vázquez-Guillén, J.M.; Resendez-Perez, D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front. Oncol. 2022, 12, 980694. [Google Scholar] [CrossRef]
- Glorieux, C.; Enríquez, C.; González, C.; Aguirre-Martínez, G.; Buc Calderon, P. The multifaceted roles of NRF2 in cancer: Friend or foe? Antioxidants 2024, 13, 70. [Google Scholar] [CrossRef]
- O’Rourke, S.A.; Shanley, L.C.; Dunne, A. The Nrf2-HO-1 system and inflammaging. Front. Immunol. 2024, 15, 1457010. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
- Song, X.; Liang, H.; Nan, F.; Chen, W.; Li, J.; He, L.; Cun, Y.; Li, Z.; Zhang, W.; Zhang, D. Autoimmune Diseases: Molecular Pathogenesis and Therapeutic Targets. MedComm 2025, 6, e70262. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Liu, X. Rheumatoid arthritis: Pathogenesis and therapeutic advances. MedComm 2024, 5, e509. [Google Scholar] [CrossRef]
- Calvez, V.; Puca, P.; Di Vincenzo, F.; Del Gaudio, A.; Bartocci, B.; Murgiano, M.; Iaccarino, J.; Parand, E.; Napolitano, D.; Pugliese, D. Novel Insights into the Pathogenesis of Inflammatory Bowel Diseases. Biomedicines 2025, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Chiuariu, T.; Șalaru, D.; Ureche, C.; Vasiliu, L.; Lupu, A.; Lupu, V.V.; Șerban, A.M.; Zăvoi, A.; Benchea, L.C.; Clement, A. Cardiac and renal fibrosis, the silent killer in the cardiovascular continuum: An up-to-date. J. Cardiovasc. Dev. Dis. 2024, 11, 62. [Google Scholar] [CrossRef]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease—Potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef] [PubMed]
- Vodošek Hojs, N.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 2020, 9, 925. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling Ariadne’s thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef]
- Barnes, P.J.; Anderson, G.P.; Fagerås, M.; Belvisi, M.G. Chronic lung diseases: Prospects for regeneration and repair. Eur. Respir. Rev. 2021, 30, 200213. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Fazleen, A.; Wilkinson, T. The emerging role of proteases in α1-antitrypsin deficiency and beyond. ERJ Open Res. 2021, 7, 00494–2021. [Google Scholar] [CrossRef]
- Albano, G.D.; Gagliardo, R.P.; Montalbano, A.M.; Profita, M. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants 2022, 11, 2237. [Google Scholar] [CrossRef]
- Saha, P.; Talwar, P. Idiopathic pulmonary fibrosis (IPF): Disease pathophysiology, targets, and potential therapeutic interventions. Mol. Cell. Biochem. 2024, 479, 2181–2194. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, G.; Heo, S.-Y.; Roh, Y.-S. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, N.; Wecklein, S.; Demuth, P.; Hasselwander, S.; Kemper, T.A.; Schwerdtle, T.; Brunner, T.; Fahrer, J. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis. 2020, 11, 787. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Buist-Homan, M.; Harmsen, M.C.; Moshage, H. Extracellular vesicle-dependent crosstalk between hepatic stellate cells and Kupffer cells promotes their mutual activation. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2025, 1871, 167914. [Google Scholar]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative stress in liver pathophysiology and disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, J.; Zhou, Z.; Zhang, Y.; Wu, Y.; Sun, J. Oxidative stress products and managements in atopic dermatitis. Front. Med. 2025, 12, 1538194. [Google Scholar] [CrossRef]
- Pleńkowska, J.; Gabig-Cimińska, M.; Mozolewski, P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020, 21, 6206. [Google Scholar] [CrossRef]
- Lee, J.; Yeo, S.G.; Lee, J.M.; Kim, S.S.; Lee, J.-W.; Chung, N.; Park, D.C. Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications. Antioxidants 2025, 14, 877. [Google Scholar] [CrossRef]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative stress and endometriosis: A systematic review of the literature. Oxid. Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef]
- Mancini, A.; Bruno, C.; Vergani, E.; d’Abate, C.; Giacchi, E.; Silvestrini, A. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: Controversies and new insights. Int. J. Mol. Sci. 2021, 22, 1667. [Google Scholar] [CrossRef]
- Liu, H.; Jin, L.; Wang, X.; Shi, J.; He, Y.; Sun, N.; Yang, F. Reactive Oxygen Species in Polycystic Ovary Syndrome: Mechanistic Insights into Pathogenesis and Therapeutic Opportunities. Redox Biol. 2025, 85, 103776. [Google Scholar] [CrossRef]
- Abraham Gnanadass, S.; Divakar Prabhu, Y.; Valsala Gopalakrishnan, A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch. Gynecol. Obstet. 2021, 303, 631–643. [Google Scholar] [CrossRef]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.-H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J. Aging and chronic inflammation: Highlights from a multidisciplinary workshop. Immun. Ageing 2023, 20, 25. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Tenchov, R.; Sasso, J.M.; Wang, X.; Zhou, Q.A. Aging hallmarks and progression and age-related diseases: A landscape view of research advancement. ACS Chem. Neurosci. 2023, 15, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Asantewaa, G.; Harris, I.S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 2021, 68, 292–299. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Mussa, A.; Afolabi, H.A.; Syed, N.H.; Talib, M.; Murtadha, A.H.; Hajissa, K.; Mokhtar, N.F.; Mohamud, R.; Hassan, R. The NF-κB transcriptional network is a high-dose vitamin C-targetable vulnerability in breast cancer. Biomedicines 2023, 11, 1060. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef]
- Collins, R. Heart Protection Study Collaborative Group: MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003, 361, 2005–2016. [Google Scholar] [PubMed]
- Group, H.P.S.C. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: A randomised placebo-controlled trial. Lancet 2002, 360, 23–33. [Google Scholar]
- Sesso, H.D.; Buring, J.E.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Glynn, R.J.; Gaziano, J.M. Vitamins E and C in the prevention of cardiovascular disease in men: The Physicians’ Health Study II randomized controlled trial. JAMA 2008, 300, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012, 2012, CD007176. [Google Scholar] [CrossRef]
- Lee, B.; Oh, S.-W.; Myung, S.-K. Efficacy of vitamin C supplements in prevention of cancer: A meta-analysis of randomized controlled trials. Korean J. Fam. Med. 2015, 36, 278. [Google Scholar] [CrossRef]
- Kilicarslan You, D.; Fuwad, A.; Lee, K.H.; Kim, H.K.; Kang, L.; Kim, S.M.; Jeon, T.-J. Evaluation of the protective role of vitamin E against ROS-driven lipid oxidation in model cell membranes. Antioxidants 2024, 13, 1135. [Google Scholar] [CrossRef]
- Zingg, J.M. Vitamin E: Regulatory role on signal transduction. IUBMB Life 2019, 71, 456–478. [Google Scholar] [CrossRef]
- Ungurianu, A.; Zanfirescu, A.; Nițulescu, G.; Margină, D. Vitamin E beyond its antioxidant label. Antioxidants 2021, 10, 634. [Google Scholar] [CrossRef]
- Steinbrecher, U. Beyond cholesterol: Modification of low density lipoprotein that increases its atherogenicity. J. Biol. Chem. 1987, 262, 3603–3610. [Google Scholar] [CrossRef]
- Suzukawa, M.; Ayaori, M.; Shige, H.; Hisada, T.; Ishikawa, T.; Nakamura, H. Effect of supplementation with vitamin E on LDL oxidizability and prevention of atherosclerosis. BioFactors 1998, 7, 51–54. [Google Scholar] [CrossRef]
- Miller III, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef]
- Yusuf, S.; Dagenais, G.; Pogue, J.; Bosch, J.; Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med. 2000, 342, 154–160. [Google Scholar] [PubMed]
- Lonn, E.; Bosch, J.; Yusuf, S.; Sheridan, P.; Pogue, J.; Arnold, J.M.; Ross, C.; Arnold, A.; Sleight, P.; et al.; HOPE and HOPE-TOO Trial Investigators Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA 2005, 293, 1338–1347. [Google Scholar] [PubMed]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—Bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Es-Sai, B.; Wahnou, H.; Benayad, S.; Rabbaa, S.; Laaziouez, Y.; El Kebbaj, R.; Limami, Y.; Duval, R.E. Gamma-tocopherol: A comprehensive review of its antioxidant, anti-inflammatory, and anticancer properties. Molecules 2025, 30, 653. [Google Scholar] [CrossRef]
- Khanna, S.; Roy, S.; Parinandi, N.L.; Maurer, M.; Sen, C.K. Characterization of the potent neuroprotective properties of the natural vitamin E α-tocotrienol. J. Neurochem. 2006, 98, 1474–1486. [Google Scholar] [CrossRef]
- Park, H.-A.; Kubicki, N.; Gnyawali, S.; Chan, Y.C.; Roy, S.; Khanna, S.; Sen, C.K. Natural vitamin E α-tocotrienol protects against ischemic stroke by induction of multidrug resistance-associated protein 1. Stroke 2011, 42, 2308–2314. [Google Scholar] [CrossRef]
- Nakatomi, T.; Itaya-Takahashi, M.; Horikoshi, Y.; Shimizu, N.; Parida, I.S.; Jutanom, M.; Eitsuka, T.; Tanaka, Y.; Zingg, J.-M.; Matsura, T. The difference in the cellular uptake of tocopherol and tocotrienol is influenced by their affinities to albumin. Sci. Rep. 2023, 13, 7392. [Google Scholar] [CrossRef]
- Song, B.-L.; DeBose-Boyd, R.A. Insig-dependent ubiquitination and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase stimulated by δ-and γ-tocotrienols. J. Biol. Chem. 2006, 281, 25054–25061. [Google Scholar] [CrossRef] [PubMed]
- Berbée, M.; Fu, Q.; Boerma, M.; Wang, J.; Kumar, K.S.; Hauer-Jensen, M. γ-Tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA reductase-dependent mechanism. Radiat. Res. 2009, 171, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Wang, G.; Han, Q.; Xiao, H.; Santos, H.O.; Rodriguez, D.A.; Khani, V.; Tang, J. The effects of tocotrienol supplementation on lipid profile: A meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 52, 102450. [Google Scholar] [CrossRef]
- Serizawa, N.; Ninomiya, Y.; Shinagawa, A.; Minematsu, A.; Miyakoshi, Y.; Yano, T.; Ota, M. Short-term intake of delta-tocotrienol on lipid profiles in healthy subjects. J. Clin. Biochem. Nutr. 2024, 76, 3. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, R.; Sauro, G.; Giannandrea, D.; Limonta, P.; Casati, L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants 2025, 14, 115. [Google Scholar] [CrossRef]
- Licata, A.; Minissale, M.G.; Stankevičiūtė, S.; Sanabria-Cabrera, J.; Lucena, M.I.; Andrade, R.J.; Almasio, P.L. N-acetylcysteine for preventing acetaminophen-induced liver injury: A comprehensive review. Front. Pharmacol. 2022, 13, 828565. [Google Scholar] [CrossRef]
- Tenório, M.C.d.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.d.; Goulart, M.O.F. N-acetylcysteine (NAC): Impacts on human health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Oka, S.-i.; Kamata, H.; Kamata, K.; Yagisawa, H.; Hirata, H. N-Acetylcysteine suppresses TNF-induced NF-κB activation through inhibition of IκB kinases. FEBS Lett. 2000, 472, 196–202. [Google Scholar] [CrossRef]
- Zheng, J.-P.; Kang, J.; Huang, S.-G.; Chen, P.; Yao, W.-Z.; Yang, L.; Bai, C.-X.; Wang, C.-Z.; Wang, C.; Chen, B.-Y. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): A randomised placebo-controlled study. Lancet 2008, 371, 2013–2018. [Google Scholar] [CrossRef]
- Zheng, J.-P.; Wen, F.-Q.; Bai, C.-X.; Wan, H.-Y.; Kang, J.; Chen, P.; Yao, W.-Z.; Ma, L.-J.; Li, X.; Raiteri, L. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): A randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2014, 2, 187–194. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Luo, C.; Zong, K.; Fu, Y.; Li, W.; Luo, C.; Xue, G.; Jiang, E.; Duan, Y. Efficacy of treatment with N-acetylcysteine inhalation for AECOPD: A propensity-score-matched cohort study. Clin. Respir. J. 2023, 17, 1038–1047. [Google Scholar] [CrossRef]
- Huang, C.; Kuo, S.; Lin, L.; Yang, Y. The efficacy of N-acetylcysteine in chronic obstructive pulmonary disease patients: A meta-analysis. Ther. Adv. Respir. Dis. 2023, 17, 17534666231158563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, F.; Shi, Z.; Cao, J.; Tian, J.; Yao, W.; Wei, L.; Li, F.; Cai, S.; Shen, Y. Effect of high-dose N-acetylcysteine on exacerbations and lung function in patients with mild-to-moderate COPD: A double-blind, parallel group, multicentre randomised clinical trial. Nat. Commun. 2024, 15, 8468. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, F.; Bergamini, C.; Lamperti, C.; Fato, R. The roles of coenzyme Q in disease: Direct and indirect involvement in cellular functions. Int. J. Mol. Sci. 2021, 23, 128. [Google Scholar] [CrossRef] [PubMed]
- Al-Megrin, W.A.; Soliman, D.; Kassab, R.B.; Metwally, D.M.; Moneim, A.E.A.; El-Khadragy, M.F. Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front. Physiol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Yang, H.-L.; Lin, M.-W.; Korivi, M.; Wu, J.-J.; Liao, C.-H.; Chang, C.-T.; Liao, J.-W.; Hseu, Y.-C. Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies. Biochim. Biophys. Acta BBA-Gene Regul. Mech. 2016, 1859, 246–261. [Google Scholar] [CrossRef]
- Awad, K.; Sayed, A.; Banach, M. Coenzyme Q10 reduces infarct size in animal models of myocardial ischemia-reperfusion injury: A meta-analysis and summary of underlying mechanisms. Front. Cardiovasc. Med. 2022, 9, 857364. [Google Scholar] [CrossRef]
- Mortensen, S.A.; Rosenfeldt, F.; Kumar, A.; Dolliner, P.; Filipiak, K.J.; Pella, D.; Alehagen, U.; Steurer, G.; Littarru, G.P.; Q-SYMBIO study investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: A randomized double-blind trial. JACC Heart Fail. 2014, 2, 641–649. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Chew, G.T.; Watts, G.F. Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care 2009, 32, 810–812. [Google Scholar] [CrossRef]
- Madmani, M.E.; Solaiman, A.Y.; Agha, K.T.; Madmani, Y.; Shahrour, Y.; Essali, A.; Kadro, W. Coenzyme Q10 for heart failure. Cochrane Database Syst. Rev. 2014, CD008684. [Google Scholar] [CrossRef]
- Ahmad, K.; Manongi, N.J.; Rajapandian, R.; Wala, S.M.; Al Edani, E.M.; Samuel, E.A.; Franchini, A.P.A.; AlEdani, E.M. Effectiveness of Coenzyme Q10 supplementation in statin-induced myopathy: A systematic review. Cureus 2024, 16, e68316. [Google Scholar] [CrossRef]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Kasturi, J.; Palla, P.R.; Bakshi, V.; Bogg, N. Non-steroidal anti-inflammatory drugs: An overview. J. Drug Deliv. Ther. 2019, 9, 442–448. [Google Scholar]
- Sohail, R.; Mathew, M.; Patel, K.K.; Reddy, S.A.; Haider, Z.; Naria, M.; Habib, A.; Abdin, Z.U.; Chaudhry, W.R.; Akbar, A. Effects of non-steroidal anti-inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus 2023, 15, e37080. [Google Scholar] [CrossRef]
- McGettigan, P.; Henry, D. Use of non-steroidal anti-inflammatory drugs that elevate cardiovascular risk: An examination of sales and essential medicines lists in low-, middle-, and high-income countries. PLoS Med. 2013, 10, e1001388. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Jang, E.J.; Nam, S.W.; Kwon, H.H.; Im, S.G.; Kim, D.; Cho, S.-K.; Kim, D.; Sung, Y.-K. Comparative effectiveness of oral pharmacologic interventions for knee osteoarthritis: A network meta-analysis. Mod. Rheumatol. 2018, 28, 1021–1028. [Google Scholar] [CrossRef]
- Mukherjee, P.; Rachita, C.; Aisen, P.; Pasinetti, G. Non-steroidal anti-inflammatory drugs protect against chondrocyte apoptotic death. Clin. Exp. Rheumatol. 2001, 19 Suppl 22, S7–S11. [Google Scholar]
- Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. JAMA 2000, 284, 1247–1255. [Google Scholar] [CrossRef]
- Reichardt, S.D.; Amouret, A.; Muzzi, C.; Vettorazzi, S.; Tuckermann, J.P.; Lühder, F.; Reichardt, H.M. The role of glucocorticoids in inflammatory diseases. Cells 2021, 10, 2921. [Google Scholar] [CrossRef]
- Ronchetti, S.; Ayroldi, E.; Ricci, E.; Gentili, M.; Migliorati, G.; Riccardi, C. A glance at the use of glucocorticoids in rare inflammatory and autoimmune diseases: Still an indispensable pharmacological tool? Front. Immunol. 2021, 11, 613435. [Google Scholar] [CrossRef]
- Salih, M.; Abu-Raghif, A.R.; Fawzi, H.A. Novel therapeutic effects of rifaximin in combination with methylprednisolone for LPS-induced oxidative stress and inflammation in mice: An in vivo study. Toxicol. Rep. 2024, 13, 101808. [Google Scholar]
- Aballea, S.; Cure, S.; Vogelmeier, C.; Wiren, A. A retrospective database study comparing treatment outcomes and cost associated with choice of fixed-dose inhaled corticosteroid/long-acting β2-agonists for asthma maintenance treatment in Germany. Int. J. Clin. Pract. 2008, 62, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- de Miguel-Díez, J.; Carrasco-Garrido, P.; Rejas-Gutierrez, J.; Martín-Centeno, A.; Gobartt-Vázquez, E.; Hernandez-Barrera, V.; Gil de Miguel, A.; Jimenez-Garcia, R. Inappropriate overuse of inhaled corticosteroids for COPD patients: Impact on health costs and health status. Lung 2011, 189, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Thursz, M.; Forrest, E.; Roderick, P.; Day, C.; Austin, A.; O’Grady, J.; Ryder, S.; Allison, M.; Gleeson, D.; McCune, A. The clinical effectiveness and cost-effectiveness of STeroids or Pentoxifylline for Alcoholic Hepatitis (STOPAH): A 2 × 2 factorial randomised controlled trial. Health Technol. Assess. 2015, 19, 1–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; LaRiviere, M.; Macduffie, E.; White, C.A.; Jordan-Luft, M.M.; Anderson, E.; Ziegler, M.; Radcliff, J.A.; Jones, J. Use of glucocorticoids in patients with cancer: Potential benefits, harms, and practical considerations for clinical practice. Pract. Radiat. Oncol. 2023, 13, 28–40. [Google Scholar] [CrossRef]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-term systemic corticosteroid exposure: A systematic literature review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.; Bijlsma, J.W.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Kiss, A.; Podesser, B.K. Low-dose of relaxin protects against arrhythmias and adverse left ventricle remodeling. Int. J. Cardiol. 2018, 250, 60–61. [Google Scholar] [CrossRef]
- Aday, A.W.; Ridker, P.M. Antiinflammatory therapy in clinical care: The CANTOS trial and beyond. Front. Cardiovasc. Med. 2018, 5, 62. [Google Scholar] [CrossRef]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef] [PubMed]
- Kiełbowski, K.; Plewa, P.; Bratborska, A.W.; Bakinowska, E.; Pawlik, A. JAK inhibitors in rheumatoid arthritis: Immunomodulatory properties and clinical efficacy. Int. J. Mol. Sci. 2024, 25, 8327. [Google Scholar] [CrossRef] [PubMed]
- Collotta, D.; Franchina, M.P.; Carlucci, V.; Collino, M. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front. Pharmacol. 2023, 14, 1245535. [Google Scholar] [CrossRef]
- Bonelli, M.; Kerschbaumer, A.; Kastrati, K.; Ghoreschi, K.; Gadina, M.; Heinz, L.X.; Smolen, J.S.; Aletaha, D.; O’Shea, J.; Laurence, A. Selectivity, efficacy and safety of JAKinibs: New evidence for a still evolving story. Ann. Rheum. Dis. 2024, 83, 139–160. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Yamanaka, H.; Valdez, H.; Mortensen, E.; Chew, R.; Krishnaswami, S.; Kawabata, T.; Riese, R. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 2675–2684. [Google Scholar] [CrossRef]
- Singh, J.A.; Wells, G.A.; Christensen, R.; Ghogomu, E.T.; Maxwell, L.J.; MacDonald, J.K.; Filippini, G.; Skoetz, N.; Francis, D.K.; Lopes, L.C. Adverse effects of biologics: A network meta-analysis and Cochrane overview. Cochrane Database Syst. Rev. 2011, CD008794. [Google Scholar] [CrossRef]
- Radovic, M.; Gartzke, L.P.; Wink, S.E.; van der Kleij, J.A.; Politiek, F.A.; Krenning, G. Targeting the Electron Transport System for Enhanced Longevity. Biomolecules 2025, 15, 614. [Google Scholar] [CrossRef]
- Hartwig, J.; Loebel, M.; Steiner, S.; Bauer, S.; Karadeniz, Z.; Roeger, C.; Skurk, C.; Scheibenbogen, C.; Sotzny, F. Metformin attenuates ROS via FOXO3 activation in immune cells. Front. Immunol. 2021, 12, 581799. [Google Scholar] [CrossRef]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Adamska, A. Examining the clinical relevance of metformin as an antioxidant intervention. Front. Pharmacol. 2024, 15, 1330797. [Google Scholar] [CrossRef]
- Liu, A.; Wu, Q.; Guo, J.; Ares, I.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Anadón, A.; Wang, X.; Martínez, M.-A. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther. 2019, 195, 54–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lin, Y.; Liang, B.; Zhao, X.; Qiu, M.; Huang, H.; Li, C.; Wang, W.; Kong, Y. Statins attenuate cholesterol-induced ROS via inhibiting NOX2/NOX4 and mitochondrial pathway in collecting ducts of the kidney. BMC Nephrol. 2022, 23, 184. [Google Scholar] [CrossRef] [PubMed]
- de Marañón, A.M.; Rovira-Llopis, S.; Rocha, M.; Víctor, V.M. Targeting mitochondria: A great boon to fight type 2 diabetes. Redox Exp. Med. 2022, 2022, R127–R138. [Google Scholar] [CrossRef]
- Wilcox, T.; De Block, C.; Schwartzbard, A.Z.; Newman, J.D. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists: JACC focus seminar. J. Am. Coll. Cardiol. 2020, 75, 1956–1974. [Google Scholar] [CrossRef]
- Morofuji, Y.; Nakagawa, S.; Ujifuku, K.; Fujimoto, T.; Otsuka, K.; Niwa, M.; Tsutsumi, K. Beyond lipid-lowering: Effects of statins on cardiovascular and cerebrovascular diseases and cancer. Pharmaceuticals 2022, 15, 151. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health: A critical review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Haskey, N.; Estaki, M.; Ye, J.; Shim, R.K.; Singh, S.; Dieleman, L.A.; Jacobson, K.; Gibson, D.L. A Mediterranean diet pattern improves intestinal inflammation concomitant with reshaping of the bacteriome in ulcerative colitis: A randomised controlled trial. J. Crohn’s Colitis 2023, 17, 1569–1578. [Google Scholar] [CrossRef]
- Scapagnini, G.; Davinelli, S.; Drago, F.; De Lorenzo, A.; Oriani, G. Antioxidants as antidepressants: Fact or fiction? CNS Drugs 2012, 26, 477–490. [Google Scholar] [CrossRef]
- Li, T.; Jin, J.; Pu, F.; Bai, Y.; Chen, Y.; Li, Y.; Wang, X. Cardioprotective effects of curcumin against myocardial I/R injury: A systematic review and meta-analysis of preclinical and clinical studies. Front. Pharmacol. 2023, 14, 1111459. [Google Scholar] [CrossRef]
- Panahi, Y.; Saadat, A.; Beiraghdar, F.; Sahebkar, A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: A randomized double-blind placebo-controlled trial. Phytother. Res. 2014, 28, 1461–1467. [Google Scholar] [CrossRef]
- Panahi, Y.; Saberi-Karimian, M.; Valizadeh, O.; Behnam, B.; Saadat, A.; Jamialahmadi, T.; Majeed, M.; Sahebkar, A. Effects of curcuminoids on systemic inflammation and quality of life in patients with colorectal cancer undergoing chemotherapy: A randomized controlled trial. In Natural Products and Human Diseases: Pharmacology, Molecular Targets, and Therapeutic Benefits; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–9. [Google Scholar]
- Hanai, H.; Iida, T.; Takeuchi, K.; Watanabe, F.; Maruyama, Y.; Andoh, A.; Tsujikawa, T.; Fujiyama, Y.; Mitsuyama, K.; Sata, M. Curcumin maintenance therapy for ulcerative colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 2006, 4, 1502–1506. [Google Scholar] [CrossRef]
- Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res. 2012, 26, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Daily, J.W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. Food 2016, 19, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors—Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol. 2015, 189, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Gao, C.; Wang, H.; Ren, Y.; Li, J.; Li, M.; Du, X.; Li, W.; Zhang, J. Effects of dietary polyphenol curcumin supplementation on metabolic, inflammatory, and oxidative stress indices in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2023, 14, 1216708. [Google Scholar] [CrossRef]
- Xu, Q.; Lian, H.; Zhou, R.; Gu, Z.; Wu, J.; Wu, Y.; Li, Z. Curcumin and multiple health outcomes: Critical umbrella review of intervention meta-analyses. Front. Pharmacol. 2025, 16, 1601204. [Google Scholar] [CrossRef]
- Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlled trials. Cytokine 2023, 164, 156144. [Google Scholar] [CrossRef]
- Shahcheraghi, S.H.; Salemi, F.; Small, S.; Syed, S.; Salari, F.; Alam, W.; Cheang, W.S.; Saso, L.; Khan, H. Resveratrol regulates inflammation and improves oxidative stress via Nrf2 signaling pathway: Therapeutic and biotechnological prospects. Phytother. Res. 2023, 37, 1590–1605. [Google Scholar]
- Zhu, P.; Jin, Y.; Sun, J.; Zhou, X. The efficacy of resveratrol supplementation on inflammation and oxidative stress in type-2 diabetes mellitus patients: Randomized double-blind placebo meta-analysis. Front. Endocrinol. 2025, 15, 1463027. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzyńska, M.; Kawka, A.; Górna, I.; Woźniak, D.; Przysławski, J.; Drzymała-Czyż, S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases–Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar] [CrossRef]
- Mason, R.P.; Libby, P.; Bhatt, D.L. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1135–1147. [Google Scholar] [CrossRef]
- Muzammil, K.; Khaleel, A.Q.; Merza, M.S.; Kyada, A.; Ariffin, I.; Verma, S.; Kaur, H.; Hasaanzadeh, S. The effects of ω− 3 fatty acids on inflammatory and oxidative stress markers in patients with Type 2 diabetes mellitus: A systematic review and meta-analysis of controlled trials. Prostaglandins Other Lipid Mediat. 2024, 175, 106887. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- AbuMweis, S.; Jew, S.; Tayyem, R.; Agraib, L. Eicosapentaenoic acid and docosahexaenoic acid containing supplements modulate risk factors for cardiovascular disease: A meta-analysis of randomised placebo-control human clinical trials. J. Hum. Nutr. Diet. 2018, 31, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.L.; Ismailova, A.; Dimeloe, S.; Hewison, M.; White, J.H. Vitamin D and immune regulation: Antibacterial, antiviral, anti-inflammatory. J. Bone Miner. Res. Plus 2021, 5, e10405. [Google Scholar] [CrossRef]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. Vitamin D effects on selected anti-inflammatory and pro-inflammatory markers of obesity-related chronic inflammation. Front. Endocrinol. 2022, 13, 920340. [Google Scholar] [CrossRef]
- Athanassiou, L.; Kostoglou-Athanassiou, I.; Koutsilieris, M.; Shoenfeld, Y. Vitamin D and autoimmune rheumatic diseases. Biomolecules 2023, 13, 709. [Google Scholar] [CrossRef]
- Ignacio-Mejía, I.; Bandala, C.; González-Zamora, J.F.; Chavez-Galan, L.; Buendia-Roldan, I.; Pérez-Torres, K.; Rodríguez-Díaz, M.Z.; Pacheco-Tobón, D.X.; Quintero-Fabián, S.; Vargas-Hernández, M.A. Association of Vitamin D Supplementation with Glutathione Peroxidase (GPx) Activity, Interleukine-6 (IL-6) Levels, and Anxiety and Depression Scores in Patients with Post-COVID-19 Condition. Int. J. Mol. Sci. 2025, 26, 4582. [Google Scholar] [CrossRef]
- Karbalaee-Hasani, A.; Khadive, T.; Eskandari, M.; Shahidi, S.; Mosavi, M.; Nejadebrahimi, Z.; Khalkhali, L.; Sangdari, A.; Mohammadi, D.; Soltani, A. Effect of metformin on circulating levels of inflammatory markers in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Ann. Pharmacother. 2021, 55, 1096–1109. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef]
- Stromsnes, K.; Lagzdina, R.; Olaso-Gonzalez, G.; Gimeno-Mallench, L.; Gambini, J. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in in vitro studies, animal models, and humans. Biomedicines 2021, 9, 1074. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Abner, E.L.; Schmitt, F.A.; Mendiondo, M.S.; Marcum, J.L.; Kryscio, R.J. Vitamin E and all-cause mortality: A meta-analysis. Curr. Aging Sci. 2011, 4, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Calder, A.; Menkiti, C.J.; Çağdaş, A.; Lisboa Santos, J.; Streich, R.; Wong, A.; Avini, A.H.; Bojang, E.; Yogamanoharan, K.; Sivanesan, N. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb. Genom. 2020, 6, e000423. [Google Scholar] [CrossRef]
- Vafaei, S.; Ciebiera, M.; Omran, M.M.; Ghasroldasht, M.M.; Yang, Q.; Leake, T.; Wolfe, R.; Ali, M.; Al-Hendy, A. Evidence-based approach for secondary prevention of uterine fibroids (The ESCAPE approach). Int. J. Mol. Sci. 2023, 24, 15972. [Google Scholar] [CrossRef]
- Schork, N.J. Personalized medicine: Time for one-person trials. Nature 2015, 520, 609–611. [Google Scholar] [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Valera, E.; Masliah, E. Combination therapies: The next logical step for the treatment of synucleinopathies? Mov. Disord. 2016, 31, 225–234. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Ho, G.; Koike, W.; Sugama, S.; Takenouchi, T.; Waragai, M.; Wei, J.; Sekiyama, K.; Hashimoto, M. Combined immunotherapy with “anti-insulin resistance” therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Park. Dis. 2017, 3, 4. [Google Scholar] [CrossRef]
- Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004, 109, III-39–III-43. [Google Scholar] [CrossRef]
- Salvemini, D.; Wang, Z.Q.; Wyatt, P.S.; Bourdon, D.M.; Marino, M.H.; Manning, P.T.; Currie, M.G. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol. 1996, 118, 829–838. [Google Scholar] [CrossRef]
- Fattori, V.; Zaninelli, T.H.; Rasquel-Oliveira, F.S.; Casagrande, R.; Verri, W.A., Jr. Specialized pro-resolving lipid mediators: A new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol. Res. 2020, 151, 104549. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Corticosteroids: The drugs to beat. Eur. J. Pharmacol. 2006, 533, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Vina, J.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; De la Rosa, A.; Gomez-Cabrera, M.C. Modulating oxidant levels to promote healthy aging. Antioxid. Redox Signal. 2020, 33, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, P.; Behl, T. Nutraceuticals in the management of obesity. Obes. Med. 2020, 17, 100168. [Google Scholar] [CrossRef]
- Martins, B.; Vieira, M.; Delerue-Matos, C.; Grosso, C.; Soares, C. Biological potential, gastrointestinal digestion, absorption, and bioavailability of algae-derived compounds with neuroprotective activity: A comprehensive review. Mar. Drugs 2022, 20, 362. [Google Scholar] [CrossRef]
- Braga, F.; Pasqualetti, S.; Aloisio, E.; Panteghini, M. The internal quality control in the traceability era. Clin. Chem. Lab. Med. CCLM 2021, 59, 291–300. [Google Scholar] [CrossRef]
- Rippe, J.M.; Angelopoulos, T.J. Lifestyle strategies for risk factor reduction, prevention and treatment of cardiovascular disease. In Lifestyle Medicine, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 19–36. [Google Scholar]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Costello, D.M.; Naik, A.D.; Davenport, C.; Hernandez-Bigos, K.; Van Liew, J.R.; Esterson, J.; Kiwak, E.; Dindo, L. Outcome goals and health care preferences of older adults with multiple chronic conditions. JAMA Netw. Open 2021, 4, e211271. [Google Scholar] [CrossRef]
- Malla, P.; Wang, Y.-M.; Su, C.-H. New horizons for the therapeutic application of nanozymes in cancer treatment. J. Nanobiotechnology 2025, 23, 130. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Grujicic, J.; Allen, A.R. MnSOD mimetics in therapy: Exploring their role in combating oxidative stress-related diseases. Antioxidants 2024, 13, 1444. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, R. Potential Therapeutic Applications of MnSODs and SOD-Mimetics. Chem.–A Eur. J. 2018, 24, 5032–5041. [Google Scholar] [CrossRef]
- Jiang, F.; Guo, Y.; Salvemini, D.; Dusting, G.J. Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein (E)-deficient mice. Br. J. Pharmacol. 2003, 139, 1127–1134. [Google Scholar] [CrossRef]
- Salvemini, D.; Wang, Z.-Q.; Zweier, J.L.; Samouilov, A.; Macarthur, H.; Misko, T.P.; Currie, M.G.; Cuzzocrea, S.; Sikorski, J.A.; Riley, D.P. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 1999, 286, 304–306. [Google Scholar] [CrossRef]
- Chatterjee, A.; Zhu, Y.; Tong, Q.; Kosmacek, E.A.; Lichter, E.Z.; Oberley-Deegan, R.E. The addition of manganese porphyrins during radiation inhibits prostate cancer growth and simultaneously protects normal prostate tissue from radiation damage. Antioxidants 2018, 7, 21. [Google Scholar] [CrossRef]
- Liang, L.-P.; Pearson-Smith, J.N.; Day, B.J.; Patel, M. Novel catalytic antioxidant formulation decreases oxidative stress, neuroinflammation and cognitive dysfunction in a model of nerve agent intoxication. J. Pharmacol. Exp. Ther. 2024, 388, 358–366. [Google Scholar] [CrossRef]
- Asensio-Lopez, M.d.C.; Ruiz-Ballester, M.; Pascual-Oliver, S.; Bastida-Nicolas, F.J.; Sassi, Y.; Fuster, J.J.; Pascual-Figal, D.; Soler, F.; Lax, A. AEOL-induced NRF2 activation and DWORF overexpression mitigate myocardial I/R injury. Mol. Med. 2025, 31, 189. [Google Scholar] [CrossRef]
- McGovern, T.; Day, B.J.; White, C.W.; Powell, W.S.; Martin, J.G. AEOL10150: A novel therapeutic for rescue treatment after toxic gas lung injury. Free Radic. Biol. Med. 2011, 50, 602–608. [Google Scholar] [CrossRef]
- O’Neill, H.C.; White, C.W.; Veress, L.A.; Hendry-Hofer, T.B.; Loader, J.E.; Min, E.; Huang, J.; Rancourt, R.C.; Day, B.J. Treatment with the catalytic metalloporphyrin AEOL 10150 reduces inflammation and oxidative stress due to inhalation of the sulfur mustard analog 2-chloroethyl ethyl sulfide. Free Radic. Biol. Med. 2010, 48, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Loader, J.E.; Hendry-Hofer, T.B.; Veress, L.; White, C.W.; Day, B.J. Catalytic Antioxidant AEOL 10150 As A Potential Medical Countermeasure Against Chlorine Gas-Induced Acute Lung Injury. In C58. Environmental Exposures: Mechanisms; American Thoracic Society: New York, NY, USA, 2012; p. A4652. [Google Scholar]
- Cui, W.; Zhang, P.; Hankey, K.G.; Xiao, M.; Farese, A.M.; MacVittie, T.J. AEOL 10150 alleviates radiation-induced innate immune responses in non-human primate lung tissue. Health Phys. 2021, 121, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-r.; Zhou, W.-x.; Zhang, Y.-x. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant. Mil. Med. Res. 2018, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Lanza, V.; Vecchio, G. New glycosalen–manganese (III) complexes and RCA120 hybrid systems as superoxide dismutase/catalase mimetics. Biomimetics 2023, 8, 447. [Google Scholar] [CrossRef]
- Himori, K.; Abe, M.; Tatebayashi, D.; Lee, J.; Westerblad, H.; Lanner, J.T.; Yamada, T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE 2017, 12, e0169146. [Google Scholar] [CrossRef]
- Jung, C.; Rong, Y.; Doctrow, S.; Baudry, M.; Malfroy, B.; Xu, Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 2001, 304, 157–160. [Google Scholar] [CrossRef]
- Rong, Y.; Doctrow, S.R.; Tocco, G.; Baudry, M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. USA 1999, 96, 9897–9902. [Google Scholar] [CrossRef]
- Jin, C.; Fan, S.; Zhuang, Z.; Zhou, Y. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002. [Google Scholar] [CrossRef]
- Luo, S.; Gao, J.; Yuan, H.; Yang, J.; Fan, Y.; Wang, L.; Ouyang, H.; Fu, Z. Mn single-atom nanozymes with superior loading capability and superb superoxide dismutase-like activity for bioassay. Anal. Chem. 2023, 95, 9366–9372. [Google Scholar] [CrossRef]
- Hua, S.; Dong, X.; Peng, Q.; Zhang, K.; Zhang, X.; Yang, J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J. Nanobiotechnology 2024, 22, 286. [Google Scholar] [CrossRef]
- Glimelius, B.; Manojlovic, N.; Pfeiffer, P.; Mosidze, B.; Kurteva, G.; Karlberg, M.; Mahalingam, D.; Buhl Jensen, P.; Kowalski, J.; Bengtson, M. Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx®): A placebo-controlled randomised phase II study (PLIANT). Acta Oncol. 2018, 57, 393–402. [Google Scholar] [CrossRef]
- Pfeiffer, P.; Lustberg, M.; Näsström, J.; Carlsson, S.; Persson, A.; Nagahama, F.; Cavaletti, G.; Glimelius, B.; Muro, K. Calmangafodipir for prevention of oxaliplatin-induced peripheral neuropathy: Two placebo-controlled, randomized phase 3 studies (POLAR-A/POLAR-M). JNCI Cancer Spectr. 2022, 6, pkac075. [Google Scholar] [CrossRef]
- Karlsson, J.O.G.; Jynge, P.; Ignarro, L.J. Exacerbated Neuropathy in POLAR A and M Trials Due to Redox Interaction of PledOx-Associated Mn2+ and Oxaliplatin-Associated Pt2+. Antioxidants 2023, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.O.G.; Jynge, P.; Ignarro, L.J. The damaging outcome of the POLAR phase III trials was due to avoidable time-dependent redox interaction between oxaliplatin and PledOx. Antioxidants 2021, 10, 1937. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Guo, Z.; Liang, M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Fields, M.; Marcuzzi, A.; Gonelli, A.; Celeghini, C.; Maximova, N.; Rimondi, E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: Perspectives and limitations. Int. J. Mol. Sci. 2023, 24, 3739. [Google Scholar] [CrossRef]
- Jiang, Q.; Yin, J.; Chen, J.; Ma, X.; Wu, M.; Liu, G.; Yao, K.; Tan, B.; Yin, Y. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell. Longev. 2020, 2020, 8837893. [Google Scholar] [CrossRef]
- Demyanenko, I.A.; Popova, E.N.; Zakharova, V.V.; Ilyinskaya, O.P.; Vasilieva, T.V.; Romashchenko, V.P.; Fedorov, A.V.; Manskikh, V.N.; Skulachev, M.V.; Zinovkin, R.A. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice. Aging 2015, 7, 475. [Google Scholar] [CrossRef]
- Tsitkanou, S.; Morena da Silva, F.; Cabrera, A.R.; Schrems, E.R.; Muhyudin, R.; Koopmans, P.J.; Khadgi, S.; Lim, S.; Delfinis, L.J.; Washington, T.A. Mitochondrial antioxidant SkQ1 attenuates C26 cancer-induced muscle wasting in males and improves muscle contractility in female tumor-bearing mice. Am. J. Physiol.-Cell Physiol. 2024, 327, C1308–C1322. [Google Scholar] [CrossRef]
- Zernii, E.Y.; Gancharova, O.S.; Baksheeva, V.E.; Golovastova, M.O.; Kabanova, E.I.; Savchenko, M.S.; Tiulina, V.V.; Sotnikova, L.F.; Zamyatnin, A.A., Jr.; Philippov, P.P. Mitochondria-Targeted Antioxidant SkQ1 Prevents Anesthesia-Induced Dry Eye Syndrome. Oxid. Med. Cell. Longev. 2017, 2017, 9281519. [Google Scholar] [CrossRef] [PubMed]
- Markovets, A.M.; Fursova, A.Z.; Kolosova, N.G. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS ONE 2011, 6, e21682. [Google Scholar] [CrossRef] [PubMed]
- Shinn, L.J.; Lagalwar, S. Treating neurodegenerative disease with antioxidants: Efficacy of the bioactive phenol resveratrol and mitochondrial-targeted MitoQ and SkQ. Antioxidants 2021, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Gioscia-Ryan, R.A.; LaRocca, T.J.; Sindler, A.L.; Zigler, M.C.; Murphy, M.P.; Seals, D.R. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 2014, 592, 2549–2561. [Google Scholar] [CrossRef]
- Ji, Y.; Leng, Y.; Lei, S.; Qiu, Z.; Ming, H.; Zhang, Y.; Zhang, A.; Wu, Y.; Xia, Z. The mitochondria-targeted antioxidant MitoQ ameliorates myocardial ischemia–reperfusion injury by enhancing PINK1/Parkin-mediated mitophagy in type 2 diabetic rats. Cell Stress Chaperones 2022, 27, 353–367. [Google Scholar] [CrossRef]
- Tung, C.; Varzideh, F.; Farroni, E.; Mone, P.; Kansakar, U.; Jankauskas, S.S.; Santulli, G. Elamipretide: A review of its structure, mechanism of action, and therapeutic potential. Int. J. Mol. Sci. 2025, 26, 944. [Google Scholar] [CrossRef]
- Butler, J.; Khan, M.S.; Anker, S.D.; Fonarow, G.C.; Kim, R.J.; Nodari, S.; O’Connor, C.M.; Pieske, B.; Pieske-Kraigher, E.; Sabbah, H.N. Effects of elamipretide on left ventricular function in patients with heart failure with reduced ejection fraction: The PROGRESS-HF phase 2 trial. J. Card. Fail. 2020, 26, 429–437. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.; Chen, J.; Li, Q.; Huo, L.; Wang, Y.; Wang, H.; Du, J. Pharmacological modulation of Nrf2/HO-1 signaling pathway as a therapeutic target of Parkinson’s disease. Front. Pharmacol. 2021, 12, 757161. [Google Scholar] [CrossRef]
- Panieri, E.; Saso, L. Inhibition of the NRF2/KEAP1 axis: A promising therapeutic strategy to alter redox balance of cancer cells. Antioxid. Redox Signal. 2021, 34, 1428–1483. [Google Scholar] [CrossRef]
- Pergola, P.E.; Raskin, P.; Toto, R.D.; Meyer, C.J.; Huff, J.W.; Grossman, E.B.; Krauth, M.; Ruiz, S.; Audhya, P.; Christ-Schmidt, H. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 2011, 365, 327–336. [Google Scholar] [CrossRef]
- Kanda, H.; Yamawaki, K. Bardoxolone methyl: Drug development for diabetic kidney disease. Clin. Exp. Nephrol. 2020, 24, 857–864. [Google Scholar] [CrossRef] [PubMed]
- De Zeeuw, D.; Akizawa, T.; Audhya, P.; Bakris, G.L.; Chin, M.; Christ-Schmidt, H.; Goldsberry, A.; Houser, M.; Krauth, M.; Lambers Heerspink, H.J. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 2013, 369, 2492–2503. [Google Scholar] [CrossRef] [PubMed]
- Nangaku, M.; Takama, H.; Ichikawa, T.; Mukai, K.; Kojima, M.; Suzuki, Y.; Watada, H.; Wada, T.; Ueki, K.; Narita, I. Randomized, double-blind, placebo-controlled phase 3 study of bardoxolone methyl in patients with diabetic kidney disease: Design and baseline characteristics of the AYAME study. Nephrol. Dial. Transplant. 2023, 38, 1204–1216. [Google Scholar] [CrossRef]
- Sánchez-Sanz, A.; Coronado-Albi, M.J.; Muñoz-Viana, R.; García-Merino, A.; Sánchez-López, A.J. Neuroprotective and Anti-Inflammatory Effects of Dimethyl Fumarate, Monomethyl Fumarate, and Cannabidiol in Neurons and Microglia. Int. J. Mol. Sci. 2024, 25, 13082. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Giovannoni, G.; Phillips, J.T.; Fox, R.J.; Zhang, A.; Meltzer, L.; Kurukulasuriya, N.C. Efficacy and safety of delayed-release dimethyl fumarate in patients newly diagnosed with relapsing–remitting multiple sclerosis (RRMS). Mult. Scler. J. 2015, 21, 57–66. [Google Scholar] [CrossRef]
- Sánchez-Sanz, A.; García-Martín, S.; Sabín-Muñoz, J.; Moreno-Torres, I.; Elvira, V.; Al-Shahrour, F.; García-Grande, A.; Ramil, E.; Rodríguez-De la Fuente, O.; Brea-Álvarez, B. Dimethyl fumarate-related immune and transcriptional signature is associated with clinical response in multiple sclerosis-treated patients. Front. Immunol. 2023, 14, 1209923. [Google Scholar] [CrossRef]
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 555–575. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, X.; Zhang, H.; Lin, X.; Chen, X.; Zhang, Y.; Lin, X.; Huang, L.; Zhuge, Q. Dimethyl itaconate inhibits LPS-induced microglia inflammation and inflammasome-mediated pyroptosis via inducing autophagy and regulating the Nrf-2/HO-1 signaling pathway. Mol. Med. Report. 2021, 24, 672. [Google Scholar] [CrossRef]
- Sana, I.; Mantione, M.E.; Meloni, M.; Riba, M.; Ranghetti, P.; Scarfò, L.; Ghia, P.; Muzio, M. Dimethyl itaconate selectively targets inflammatory and metabolic pathways in chronic lymphocytic leukemia. Eur. J. Immunol. 2023, 53, 2350418. [Google Scholar] [CrossRef]
- Ren, J.; Yu, L.; Lin, J.; Ma, L.; Gao, D.S.; Sun, N.; Liu, Y.; Fang, L.; Cheng, Z.; Sun, K. Dimethyl itaconate inhibits neuroinflammation to alleviate chronic pain in mice. Neurochem. Int. 2022, 154, 105296. [Google Scholar] [CrossRef]
- Han, Y.Y.; Gu, X.; Yang, C.Y.; Ji, H.M.; Lan, Y.J.; Bi, Y.Q.; Si, R.; Qu, J.; Cheng, M.H.; Gao, J. Protective effect of dimethyl itaconate against fibroblast–myofibroblast differentiation during pulmonary fibrosis by inhibiting TXNIP. J. Cell. Physiol. 2021, 236, 7734–7744. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.V.; Kostidis, S.; Groh, L.A.; Koeken, V.A.; Bruno, M.; Baydemir, I.; Kilic, G.; Bulut, Ö.; Andriopoulou, T.; Spanou, V. Dimethyl itaconate induces long-term innate immune responses and confers protection against infection. Cell Rep. 2023, 42, 112658. [Google Scholar] [CrossRef]
- Yibcharoenporn, C.; Muanprasat, C.; Moonwiriyakit, A.; Satitsri, S.; Pathomthongtaweechai, N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des. Devel. Ther. 2025, 19, 3029–3058. [Google Scholar] [CrossRef] [PubMed]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Zbucka-Krętowska, M.; Adamska, A. Metformin intervention—A panacea for cancer treatment? Cancers 2022, 14, 1336. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Xiong, L.; Chen, Y.; Wu, K.; Wu, J. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC Pulm. Med. 2023, 23, 360. [Google Scholar] [CrossRef]
- Harada, M.; Adam, J.; Covic, M.; Ge, J.; Brandmaier, S.; Muschet, C.; Huang, J.; Han, S.; Rommel, M.; Rotter, M. Bidirectional modulation of TCA cycle metabolites and anaplerosis by metformin and its combination with SGLT2i. Cardiovasc. Diabetol. 2024, 23, 199. [Google Scholar] [CrossRef]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 activation by natural phytochemicals: An overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Chang, N.; Li, J.; Lin, S.; Zhang, J.; Zeng, W.; Ma, G.; Wang, Y. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci. Rep. 2024, 14, 5521. [Google Scholar] [CrossRef]
- Wesolowski, L.T.; Simons, J.L.; Semanchik, P.L.; Othman, M.A.; Kim, J.-H.; Lawler, J.M.; Kamal, K.Y.; White-Springer, S.H. The impact of SRT2104 on skeletal muscle mitochondrial function, redox biology, and loss of muscle mass in hindlimb unloaded rats. Int. J. Mol. Sci. 2023, 24, 11135. [Google Scholar] [CrossRef]
- Fu, C.-Y.; Zhong, C.-R.; Yang, Y.-T.; Zhang, M.; Li, W.-A.; Zhou, Q.; Zhang, F. Sirt1 activator SRT2104 protects against oxygen-glucose deprivation/reoxygenation-induced injury via regulating microglia polarization by modulating Sirt1/NF-κB pathway. Brain Res. 2021, 1753, 147236. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv. Transl. Res. 2021, 11, 1475–1497. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, T.; Liu, X.; Fang, X.; Mo, Y.; Xie, N.; Nie, G.; Zhang, B.; Fan, X. Smart nanoplatforms responding to the tumor microenvironment for precise drug delivery in cancer therapy. Int. J. Nanomed. 2024, 19, 6253–6277. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020, 25, 4613. [Google Scholar] [CrossRef] [PubMed]
- Mamatha, M.G.; Ansari, M.A.; Begum, M.Y.; Prasad, B.D.; Al Fatease, A.; Hani, U.; Alomary, M.N.; Sultana, S.; Punekar, S.M.; Nivedika, M.B. Green synthesis of cerium oxide nanoparticles, characterization, and their neuroprotective effect on hydrogen peroxide-induced oxidative injury in human neuroblastoma (SH-SY5Y) cell line. ACS Omega 2024, 9, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bertólez, N.; Touzani, A.; Ramos-Pan, L.; Reis, A.T.; Teixeira, J.P.; Laffon, B.; Valdiglesias, V. Biocompatibility testing and antioxidant properties of cerium dioxide nanoparticles in human nervous system cells. Arch. Toxicol. 2025, 99, 3625–3640. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Wang, T.; Ma, C.; Li, H.; Lei, H.; Yang, Y.; Wang, Y.; Pei, Z.; Liu, Z. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials 2022, 291, 121904. [Google Scholar] [CrossRef]
- Malekzadeh, D.; Abdolmaleki, A.; Dehghan, G.; Asadi, A.; Ghabaei, A.; Ghanimi, H.A. Enhanced Cognitive and Behavioral Function as well as Neurobiochemical Enzyme Activities in Aluminum-Exposed Rats through Cerium Oxide Nanoparticles (CeO2 NPs). Arch. Razi Inst. 2025, 80, 537–549. [Google Scholar]
- Estevez, A.Y.; Erlichman, J.S. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Taylor Fr. 2014, 9, 1437–1440. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Sun, R.; Lv, R.; Du, T.; Li, Y.; Zhang, X.; Sheng, R.; Qi, Y. Multienzymatic antioxidant activity of manganese-based nanoparticles for protection against oxidative cell damage. ACS Biomater. Sci. Eng. 2022, 8, 638–648. [Google Scholar] [CrossRef]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 2019, 11, 3855–3863. [Google Scholar] [CrossRef]
- Shatilo, V.; Antonyuk-Shcheglova, I.; Naskalova, S.; Bondarenko, O.; Monastyrov, M.; Prikhna, T. Positive effects of Quercetin, Iron Oxide Nanoparticles and Ascorbic Acid composition in the treatment of women with metabolic syndrome. Ageing Longev. 2023, 4, 8–15. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Sun, M.; Yuan, M.; Han, Z.; Li, X.; Liu, S.; Sun, Y.; Cao, J.; Li, F. Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases. Theranostics 2025, 15, 5172. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, M.; Bai, Y.; Cui, F.; Zhang, C.; Wang, Z.; Si, S.; Yang, L.; Wang, Y.; Zhang, Y. O-carboxymethyl chitosan based pH/hypoxia-responsive micelles relieve hypoxia and induce ROS in tumor microenvironment. Carbohydr. Polym. 2022, 275, 118611. [Google Scholar] [CrossRef]
- Yu, X.; Chen, Y.; Tan, M. ROS-responsive carboxymethyl chitosan nanoparticles loaded with astaxanthin for alleviating oxidative damage in intestinal cells. Colloids Surf. B Biointerfaces 2024, 239, 113960. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Tian, F.; Meng, Q.; Guo, L.; Ma, Z.; Hu, T.; Liang, Q.; Li, Z. Reactive oxygen species-responsive supramolecular deucravacitinib self-assembly polymer micelles alleviate psoriatic skin inflammation by reducing mitochondrial oxidative stress. Front. Immunol. 2024, 15, 1407782. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.D.; Hood, E.D.; Zern, B.; Shuvaev, V.V.; Grosser, T.; Muzykantov, V.R. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm. 2021, 606, 120935. [Google Scholar] [CrossRef]
- Ahmed, O.A.; Hassan, N.A.; Azhar, A.S.; El-Mas, M.M.; El-Bassossy, H.M. A nano-pharmaceutical formula of quercetin protects from cardiovascular complications associated with metabolic syndrome. Front. Pharmacol. 2021, 12, 696981. [Google Scholar] [CrossRef]
- Cai, W.-Q.; Liang, W.; Li, D.; Dai, W.; Li, Z.; Wei, X.; Cheng, L.; Zhang, B.-B.; Yang, Q. Reactive Oxygen Species-Responsive Polymer Drug Delivery System Targeted Oxidative Stressed Colon Cells to Ameliorate Colitis. ACS Nano 2025, 19, 17287–17308. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Bustamante-Sanchez, A.; Rubio-Zarapuz, A.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F.; Beltrán-Velasco, A.I. Biomimetic Strategies for Nutraceutical Delivery: Advances in Bionanomedicine for Enhanced Nutritional Health. Biomimetics 2025, 10, 426. [Google Scholar] [CrossRef]
- Oskuye, Z.Z.; Mehri, K.; Mokhtari, B.; Bafadam, S.; Nemati, S.; Badalzadeh, R. Cardioprotective effect of antioxidant combination therapy: A highlight on MitoQ plus alpha-lipoic acid beneficial impact on myocardial ischemia-reperfusion injury in aged rats. Heliyon 2024, 10, e28158. [Google Scholar] [CrossRef]
- Mokhtari, B.; Delkhah, M.; Badalzadeh, R.; Ghaffari, S. Mitochondrial transplantation combined with mitoquinone and melatonin: A survival strategy against myocardial reperfusion injury in aged rats. Exp. Physiol. 2025, 110, 844–856. [Google Scholar] [CrossRef]
- Mokhtari, B.; Høilund-Carlsen, P.F.; Chodari, L.; Yasami, M.; Badalzadeh, R.; Ghaffari, S. Melatonin/nicotinamide mononucleotide/ubiquinol: A cocktail providing superior cardioprotection against ischemia/reperfusion injury in a common co-morbidities modelled rat. Mol. Biol. Rep. 2023, 50, 3525–3537. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Omega-3 (n-3) Fatty Acid–Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease. Nutrients 2024, 16, 962. [Google Scholar] [CrossRef] [PubMed]
- Irfan, A.; Haider, S.H.; Nasir, A.; Larik, M.O.; Naz, T. Assessing the efficacy of omega-3 fatty acids+ statins vs. statins only on cardiovascular outcomes: A systematic review and meta-analysis of 40,991 patients. Curr. Probl. Cardiol. 2024, 49, 102245. [Google Scholar] [CrossRef] [PubMed]
- Prokopidis, K.; Therdyothin, A.; Giannos, P.; Morwani-Mangnani, J.; Ferentinos, P.; Mitropoulos, A.; Isanejad, M. Does omega-3 supplementation improve the inflammatory profile of patients with heart failure? a systematic review and meta-analysis. Heart Fail. Rev. 2023, 28, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Pittenger, M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017, 35, 851–858. [Google Scholar] [CrossRef]
- Scopetti, M.; Santurro, A.; Gatto, V.; La Russa, R.; Manetti, F.; D’Errico, S.; Frati, P.; Fineschi, V. Mesenchymal stem cells in neurodegenerative diseases: Opinion review on ethical dilemmas. World J. Stem Cells 2020, 12, 168. [Google Scholar] [CrossRef]
- Alessio, N.; Brigida, A.L.; Peluso, G.; Antonucci, N.; Galderisi, U.; Siniscalco, D. Stem cell-derived exosomes in autism spectrum disorder. Int. J. Environ. Res. Public Health 2020, 17, 944. [Google Scholar] [CrossRef]
- Fu, H.; Sen, L.; Zhang, F.; Liu, S.; Wang, M.; Mi, H.; Liu, M.; Li, B.; Peng, S.; Hu, Z. Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway. J. Nanobiotechnol. 2023, 21, 466. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Hou, X.; Zhou, Z.; Zhang, F.; Ma, H.; Wu, X.; Jiang, J. Exosomes secreted by mesenchymal stem cells delay brain aging by upregulating SIRT1 expression. Sci. Rep. 2023, 13, 13213. [Google Scholar] [CrossRef]
- Che, J.; Wang, H.; Dong, J.; Wu, Y.; Zhang, H.; Fu, L.; Zhang, J. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate neuroinflammation and oxidative stress through the NRF2/NF-κB/NLRP3 pathway. CNS Neurosci. Ther. 2024, 30, e14454. [Google Scholar] [CrossRef]
- Panés, J.; García-Olmo, D.; Van Assche, G.; Colombel, J.F.; Reinisch, W.; Baumgart, D.C.; Dignass, A.; Nachury, M.; Ferrante, M.; Kazemi-Shirazi, L. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: A phase 3 randomised, double-blind controlled trial. Lancet 2016, 388, 1281–1290. [Google Scholar] [CrossRef]
- Richardson, L.A.; Izuora, K.; Basu, A. Mediterranean diet and its association with cardiovascular disease risk factors: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 12762. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tan, L.-J.; Lee, J.E.; Shin, S. Association between the mediterranean diet and cognitive health among healthy adults: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 946361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lee, E.K.; Mak, E.C.; Ho, C.Y.; Wong, S.Y. Mindfulness-based interventions: An overall review. Br. Med. Bull. 2021, 138, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Korem, T.; Dohnalová, L.; Shapiro, H.; Jaitin, D.A.; David, E.; Winter, D.R.; Gury-BenAri, M.; Tatirovsky, E. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 2016, 167, 1495–1510.e1412. [Google Scholar] [CrossRef]
- Kimmelman, J.; Tannock, I. The paradox of precision medicine. Nat. Rev. Clin. Oncol. 2018, 15, 341–342. [Google Scholar] [CrossRef]
- Vayena, E.; Haeusermann, T.; Adjekum, A.; Blasimme, A. Digital health: Meeting the ethical and policy challenges. Swiss Med. Wkly. 2018, 148, w14571. [Google Scholar] [CrossRef]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 195–206. [Google Scholar] [CrossRef]
- McKiernan, J.M.; Onyeji, I.; Lascano, D.; Ahn, J.; Desai, N.; Abate-Shen, C.; Holder, D.D.; RoyChoudhury, A.; Chang, S.; DeCastro, G.J. A Phase I/Ii Study of Albumin-Bound Rapamycin Nanoparticles in the Treatment of Bacillus Calmette-Guerin Refractory Non-Muscle Invasive Transitional Cell Bladder Cancer; American Society of Clinical Oncology: Alexandria, VA, USA, 2016. [Google Scholar]
- Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.K.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010, 4, 214–222. [Google Scholar] [CrossRef]
Disease Category | Representative Conditions | Key Roles of Oxidative Stress | Key Roles of Chronic Inflammation | Examples of Pathogenic Mechanisms | Representative References |
---|---|---|---|---|---|
Cardiovascular Diseases | Atherosclerosis, coronary artery disease, myocardial infarction, heart failure | ROS modify LDL to oxLDL; reduce nitric acid bioavailability; endothelial damage | Pro-inflammatory cytokines promote leukocyte adhesion and plaque instability | Foam cell formation; plaque rupture; thrombosis | [86] |
Neurodegenerative Diseases | Alzheimer’s, Parkinson’s, Huntington’s, ALS | Mitochondrial dysfunction; ROS-induced protein misfolding; neuronal oxidative damage | Activation of microglia/astrocytes; release of pro-inflammatory cytokines | β-amyloid toxicity; tau hyperphosphorylation; α-synuclein aggregation | [89] |
Metabolic Disorders | Type 2 diabetes, metabolic syndrome | Hyperglycemia-driven ROS; AGE formation; impaired insulin signaling | Chronic low-grade inflammation drives insulin resistance | ROS disrupt IRS pathways; inflammatory cytokines worsen metabolic dysfunction | [98,101,102] |
Cancer | Solid tumors, hematologic malignancies | DNA damage, mutagenesis; redox signaling for tumor survival | Tumor-promoting microenvironment; cytokine-mediated angiogenesis | NF-κB, STAT3, HIF-1α activation; TAM recruitment; immune evasion | [103,104] |
Autoimmune & Inflammatory Disorders | RA, IBD, SLE | ROS damage cartilage and DNA; promote neoepitope formation | Sustained immune activation; cytokine-mediated tissue injury | NF-κB and MAPK activation; autoantibody generation | [110] |
Renal Diseases | CKD, diabetic nephropathy | ROS from hyperglycemia and hypertension damage glomeruli and tubules | Cytokine-driven fibrosis and glomerulosclerosis | Proteinuria; interstitial inflammation; GFR reduction | [114,116] |
Pulmonary Diseases | COPD, asthma, idiopathic pulmonary fibrosis | Inhaled/environmental oxidants; immune-derived ROS | Chronic airway inflammation; immune cell recruitment and remodeling | NF-κB activation; mucus hypersecretion; protease-antiprotease imbalance | [118] |
Liver Diseases | NAFLD, NASH, fibrosis, cirrhosis | Lipid peroxidation; mitochondrial ROS accumulation | Kupffer cell activation; stellate cell-mediated fibrosis | 4-HNE formation; inflammatory cytokine cascade | [123] |
Skin Disorders | Psoriasis, atopic dermatitis | Keratinocyte ROS; lipid and DNA oxidative damage | Local immune activation; chronic skin inflammation | NF-κB/STAT3 signaling; barrier dysfunction | [127] |
Reproductive Disorders | Endometriosis, PCOS | ROS from iron overload; antioxidant imbalance | Chronic ovarian/peritoneal inflammation | Macrophage activation; impaired folliculogenesis | [129,131] |
Aging | Frailty, sarcopenia, functional decline | Accumulated mitochondrial ROS; oxidative DNA/protein damage | Chronic “inflammaging”; SASP cytokine secretion | Cellular senescence; tissue dysfunction | [134] |
Isomer | Structure | Biological Properties |
---|---|---|
α-Tocopherol | Highest affinity for α-tocopherol transfer protein (α-TTP) → dominant plasma/tissue form and highest “biological activity”; non-α isoforms are retained far less (β ≈ 38%, γ ≈ 9%, δ ≈ 2% of α affinity) [156,157]. | |
β-Tocopherol | Lower α-TTP affinity than α → reduced hepatic export/retention; antioxidant activity but less studied clinically vs. α-T [156,157]. | |
γ-Tocopherol | Efficient RNS (e.g., peroxynitrite) scavenger; anti-inflammatory and anticancer activities; low α-TTP affinity limits circulating levels [157,158]. | |
δ-Tocopherol | Preclinical anticancer signals (apoptosis, growth inhibition) reported; very low α-TTP affinity → minimal retention [157]. | |
α-Tocotrienol | Potent neuroprotection independent of classical antioxidant action (e.g., 12-LOX/c-Src–linked pathways); protective in cellular and animal ischemia models; generally lower α-TTP transport but higher cellular uptake than tocopherols reported [159,160,161]. | |
β-Tocotrienol | Less characterized; shares enhanced membrane dynamics of T3s; limited direct clinical data; lower α-TTP handling vs. α-T [157]. | |
γ-Tocotrienol | Stimulates Insig-dependent ubiquitination and degradation of HMG-CoA reductase (distinct from statin competitive inhibition) → mechanistic basis for lipid-lowering; additional radioprotective/anti-inflammatory and anticancer activities reported [162,163]. | |
δ-Tocotrienol | Strongest HMG-CoA reductase degradation among vitamin E forms in vitro; clinical lipid outcomes are mixed (some studies show no LDL-C reduction overall; HDL-C increases are reported in subgroups). Also investigated for anticancer activity [162,164,165,166]. |
Therapy Class | Approved Indications | Key Agent(s) | Preclinical Evidence | Clinical Evidence | Key Limitations & Inconsistencies |
---|---|---|---|---|---|
Classical Small-Molecule Antioxidants | Vitamin E (deficiency); Vitamin C (scurvy); NAC (acetaminophen overdose) | Vitamin E, Vitamin C, NAC, CoQ10 (Antioxidant only) | Vitamin E and C scavenge ROS [142], [151,152]; NAC replenishes glutathione stores [167] | Meta-analyses show inconsistent benefit in CVD, cancer, neurodegeneration [143,144,145]; NAC effective for acetaminophen toxicity [170,171] | Vitamin E: increased stroke risk; vitamin C: poor bioavailability; CoQ10: variable benefit in heart failure; NAC: no robust evidence for other chronic conditions [174] |
Conventional Anti-inflammatories (NSAIDS & Corticosteroids) | RA, IBD, autoimmune flares, pain, asthma | NSAIDs (aspirin, ibuprofen, naproxen); Corticosteroids (prednisone, dexamethasone) (Dual: indirect antioxidant) | NSAIDs inhibit COX → reduce prostaglandins → limit ROS from neutrophils ([184]; Corticosteroids suppress NF-κB and pro-oxidant gene expression [192] | Well-established RCTs for inflammation, pain, autoimmune flares [186,187]; corticosteroids are standard of care for asthma, IBD, severe flares [193,194,195] | NSAIDs: GI bleeding, CV events, renal effects; corticosteroids: immunosuppression, osteoporosis, metabolic syndrome; neither directly scavenges ROS |
Anti-inflammatory Biologics | RA, IBD, psoriasis, residual CV inflammation | Infliximab, adalimumab, canakinumab, tocilizumab (Dual: anti-inflammatory) | TNF-α & IL-1β blockade reduces ROS-generating inflammation [198,199] | CANTOS trial (canakinumab) reduced CV events [200]; broad RCT support for RA/IBD [198,201] | High cost, injection-site reactions, risk of infections, no direct ROS scavenging |
Small-Molecule Immune Pathway Inhibitors | RA, psoriatic arthritis, ulcerative colitis | Tofacitinib, baricitinib (Dual: anti-inflammatory) | JAK/STAT inhibition downregulates cytokine-driven ROS [202] | Meta-analysis supports efficacy in RA/UC [205,206] | Infection risk, malignancy signal, no direct ROS clearance |
Immunometabolic Modulators | T2DM (metformin); dyslipidemia & CV prevention (statins) | Metformin, atorvastatin (Dual: indirect antioxidant & anti-inflammatory) | Metformin activates AMPK → less mitochondrial ROS [210,211]; statins lower NADPH oxidase activity [213] | Large meta-analyses support CV risk reduction; metformin lowers CRP/IL-6 [241] | Statin intolerance; metformin limited in CKD |
Adjunct Nutraceuticals/Polyphenols | Not formally approved as drugs. Widely used as adjunct | Curcumin, resveratrol, EGCG, quercetin (Dual: direct antioxidant + anti-inflammatory) | Modulate NF-κB, Nrf2, MAPK [217,218]; scavenge ROS directly [219] | Meta-analyses: curcumin for IBD levels [224,225], [227]; resveratrol lowers CRP, TNF-α [231] | Poor oral bioavailability; dose inconsistency; variable supplement quality; lack of large-scale drug-level approval |
Therapy Class | Development Stage | Key Agent(s) | Advantages over Existing Therapies | Preclinical Evidence | Clinical Evidence | Key Limitations/Challenges |
---|---|---|---|---|---|---|
Catalytic Enzyme Mimetics | Calmangafodipir: Phase II–III (limited EU use) for chemo liver injury; Others: Preclinical–Early Phase I | Tempol, EUK-134 (Dual: direct ROS dismutation) | Offer sustained antioxidant activity without rapid consumption, unlike classical antioxidants; mimic endogenous defense systems | SOD/CAT mimetics reducing oxidative damage in stroke, neurodegeneration models [265,266] | Limited Phase I trials; no Phase III data; calmangafodipir Phase II–III results show hepatoprotection in chemo patients [286,287] | Specialized use; Short plasma half-life; delivery and dosing challenges; toxicity profile not fully characterized |
Mitochondria-Targeted Antioxidants | Early Phase I–II | MitoQ, SkQ1 (Dual: mitochondrial ROS scavenging + anti-inflammatory) | Target the primary site of ROS generation, offering superior mitochondrial protection and bioenergetic restoration compared to systemic antioxidants | Decreases mitochondrial superoxide, protects endothelial function in CVD/aging animal models [298,299] | Early Phase I/II in CVD, Parkinson’s, macular degeneration [291,301] | Limited large RCT data; variability in mitochondrial targeting; potential off-target effects |
Nrf2 Activators | Phase II–III (halted/terminated) | Bardoxolone methyl (Dual: activates endogenous antioxidant defenses + anti-inflammatory) | Activate a broad endogenous cytoprotective program, unlike single-target antioxidants; modulate redox and inflammatory gene networks | Potent Nrf2 inducer reducing oxidative stress/inflammation in CKD/diabetes models [302,308] | Phase II/III halted due to increased heart failure and fluid retention [35,304,305,306,309,310] | Cardiovascular safety concerns; off-target effects limit clinical translation |
Metabolic Intermediates/Derivatives | Preclinical | Itaconate, 4-octyl-itaconate (Dual: immunometabolic reprogramming + Nrf2 antioxidant/anti-inflammatory activation) | Reprogram immune cell redox tone for precision immunomodulation, addressing inflammation at its root rather than symptomatically | Regulates macrophage metabolism; induces Nrf2 pathway; attenuates inflammation in sepsis/autoimmunity models [313,314,323] | Preclinical only, no human trials to date | Unknown pharmacokinetics, safety, and dosing in humans |
Nanoparticle & Advanced Delivery Systems | Early Phase I–II | Curcumin nanoparticles, cerium oxide nanoparticles (Dual: enhanced ROS scavenging + inflammation modulation) | Improve solubility, targeting, and intracellular delivery of redox agents, surpassing limitations of poorly absorbed or rapidly cleared molecules | Improved bioavailability and ROS neutralization in cancer, wound healing models [328,329] | Early Phase I–II trials in oncology, wound care [364,365] | Long-term bioaccumulation concerns; scalability and regulatory hurdles |
Stem Cell-Derived Therapies and Exosomes | Early Phase I–II (safety/feasibility); Select agents approved: Alofisel (EU) for complex perianal fistulas in Crohn’s; TEMCELL (Japan) for steroid-refractory GVHD | Mesenchymal stromal cells (BM-/AD-/UC-MSCs); MSC-derived extracellular vesicles/exosomes (e.g., MSC-Exos; cardiosphere-derived exosomes) | Broad antioxidant and anti-inflammatory effects, lower immunogenicity, off-the-shelf potential | Reduce ROS and inflammation, enhance repair in MI, stroke, ARDS, IBD, liver injury models, [355,356,366] | Early Phase I/II trials show safety/feasibility (ARDS, IBD, OA) [357]; no large Phase III trials for redox indications | Product heterogeneity, manufacturing/scale-up, dosing, and regulatory challenges |
Combination/Synergistic Therapies | Small-scale adjunct clinical trials; no large factorial RCTs | Examples: mito-targeted antioxidants + NOX inhibitors; antioxidants (e.g., NAC/curcumin) + anti-cytokine biologics (anti-TNF); metabolic reprogrammers (itaconate derivatives) + anti-fibrotics; omega-3/SPM analogs + standard anti-inflammatories | Concurrent multi-node targeting across ROS generation, redox signaling, and immune effector pathways; potential dose-sparing and improved durability versus monotherapy | Synergistic suppression of ROS, NF-κB, fibrosis, and organ injury in CVD, NASH, CKD, and arthritis models [345,346,347,348] | Small adjunct trials show additive benefits (e.g., NAC add-on in COPD, curcumin + NSAID in RA, omega-3 + statin lowering CRP); limited large factorial RCTs to confirm synergy [349,350] | Drug–drug interactions and cumulative AEs; dosing/sequence optimization; heterogeneity in trial designs; regulatory/reimbursement complexity for combinations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manful, C.F.; Fordjour, E.; Ikumoinein, E.; Abbey, L.; Thomas, R. Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review. BioChem 2025, 5, 35. https://doi.org/10.3390/biochem5040035
Manful CF, Fordjour E, Ikumoinein E, Abbey L, Thomas R. Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review. BioChem. 2025; 5(4):35. https://doi.org/10.3390/biochem5040035
Chicago/Turabian StyleManful, Charles F., Eric Fordjour, Emmanuel Ikumoinein, Lord Abbey, and Raymond Thomas. 2025. "Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review" BioChem 5, no. 4: 35. https://doi.org/10.3390/biochem5040035
APA StyleManful, C. F., Fordjour, E., Ikumoinein, E., Abbey, L., & Thomas, R. (2025). Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review. BioChem, 5(4), 35. https://doi.org/10.3390/biochem5040035