Ion Mobility–Mass Spectrometry Imaging: Advances in Biomedical Research
Abstract
1. Introduction
2. Mass Spectrometry Imaging
2.1. Definition of Mass Spectrometry Imaging
2.2. Major MSI Techniques
2.3. Current Limitations
3. Isomerism in Biomedicine
3.1. Isomerism in Biological Molecules
3.1.1. Isomerism in Lipids
3.1.2. Isomerism in Amino Acids
| Category | Biomolecule | Methods | Isomerism Description | Biomedical Significance |
|---|---|---|---|---|
| Lipids | Oleic Acid (18:1) Δ9 vs. Δ11 [56] | Gas chromatography | Double bond at different positions in the carbon chain | The Δ11 isomer comprises 24–26% in brain, muscle, kidney, and liver tissues, but only 13% in adipose tissue. |
| Lipids | Oleic Acid (cis vs. trans) [57] | Differential Scanning Calorimetry | Double-bond configuration difference | Trans fatty acids are associated with atherosclerosis and metabolic syndrome. Cis isomers show greater inhibitory effects on insulin secretion and glucose oxidation compared to trans isomers. |
| Lipids | sn-1,2 Positional isomer phospholipids [58] | Isotope labeling + metal ion adduction | Fatty acids are attached to sn-1 or sn-2 positions of the glycerol backbone | Affects membrane fluidity, signal transduction, and lipid metabolism. Different tissue distributions suggest specific cellular functions. |
| Amino Acids | L- vs. D-Aspartic acid [62] | LC-MS | Different chirality at the α-carbon | L-form is a natural protein constituent, and D-form is important in bacterial cell walls and neurotransmission. D/L ratios serve as biomarkers for aging and disease. |
| Amino Acids | L-Serine vs. D-Serine [63] | HPLC | Chiral difference | L-serine participates in metabolism, and D-serine acts as the NMDA receptor co-agonist essential for neurotransmission and synaptic plasticity. |
| Amino Acids | L- vs. D-Alanine acid [65] | NMR | Chirality difference | Unlike l-amino acids, mostly reabsorbed by kidney tubules, relatively large portions of d-Ala are normally excreted into urine. |
3.2. Challenges of Isomer Differentiation in Imaging
4. Ion Mobility–Mass Spectrometry
4.1. Drift Tube Ion Mobility Spectrometry (DTIMS)
4.2. Traveling-Wave Ion Mobility Spectrometry (TWIMS)
4.3. Trapped-Ion Mobility Spectrometry (TIMS)
4.4. High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS)
5. IM-MSI Applied in Biomedicine
5.1. Establishing the IM-MSI Method in Biomedicine
5.2. IM-MSI Applied in Oncology
5.3. IM-MSI Applied in Neuropsychiatric Disorders
5.4. Advantages and Limitations of IM-MSI
6. Analytical Tools for Ion Mobility Spectrometry–Mass Spectrometry
7. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s Disease |
| AMP | Adenosine Monophosphate |
| AST | Astrocytoma |
| cIM | Circular Ion Mobility |
| CCS | Collision Cross-Section |
| CL | Cardiolipin |
| CRC | Colorectal Cancer |
| CV | Compensation Voltage |
| DESI-MSI | Description Electrospray/Ionization–Mass Spectrometry Imaging |
| DTIMS | Drift Tube Ion Mobility Spectrometry |
| DHB | 2,5-dihydroxybenzoic acid |
| FAIMS | High-Field Asymmetric Ion Mobility Spectrometry |
| GBM | Glioblastoma |
| GD1 | Ganglioside D1 |
| GPC | Glycerophosphocholine |
| HPLC | High-Performance Liquid Chromatography |
| HDI | High-Definition Imaging |
| IM | Ion Mobility |
| IM-MSI | Ion Mobility–Mass Spectrometry Imaging |
| IM-MS | Ion Mobility–Mass Spectrometry |
| IMS-MSI | Ion Mobility Spectrometry–Mass Spectrometry Imaging |
| IR | Infrared Spectroscopy |
| IR-MALDESI-MSI | Infrared Matrix-Assisted Laser Desorption Electrospray Ionization–Mass Spectrometry Imaging |
| IR-MALDI | Infrared Matrix-Assisted Laser Desorption/Ionization |
| KO | Knockout |
| LC-MS | Liquid Chromatography–Mass Spectrometry |
| LA-ICP-MSI | Laser Ablation Inductively Coupled Plasma–Mass Spectrometry Imaging |
| LAESI | Laser Ablation Electrospray Ionization |
| LAESI-MSI | Laser Ablation Electrospray Ionization–Mass Spectrometry Imaging |
| LESA-FAIMS | Liquid Extraction Surface Analysis–High-Field Asymmetric Ion Mobility Spectrometry |
| LESA-MSI | Liquid Extraction Surface Analysis–Mass Spectrometry Imaging |
| LPE | Lysophosphatidylethanolamine |
| LPS | Lysophosphatidylserine |
| MSI | Mass Spectrometry Imaging |
| MS/MS | Tandem Mass Spectrometry |
| MALDI-MSI | Matrix-Assisted Laser Desorption/Ionization–MSI (mass spectrometry imaging) |
| MALDI-MSI-IMS | Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging–Ion Mobility Spectrometry |
| MCTS | Multicellular Tumor Spheroid |
| MRM | Multiple Reaction Monitoring |
| NAA | N-Acetylaspartate |
| NanoDESI-IM-MS | Nanospray Desorption Electrospray Ionization–Ion Mobility–Mass Spectrometry |
| NMDA | N-Methyl-D-Aspartate |
| NMR | Nuclear Magnetic Resonance |
| OTCD | On-tissue Chemical Derivatization |
| PA | Phosphatidic Acid |
| PC | Phosphatidylcholine |
| PE | Phosphatidylethanolamine |
| PS | phosphatidylserine |
| PANC-1 | Human Pancreatic Cancer |
| PSC | Pancreatic Stellate Cells |
| QMSI | Quantitative-MSI |
| RF | Radial Radiofrequency |
| SIMS | Secondary Ion Mass Spectrometry |
| SLOS | Smith–Lemli–Opitz Syndrome |
| SM | Sphingomyelin |
| SRIG | Stacked Ring Ion Guide |
| SRM | Selected Reaction Monitoring |
| TBI | Traumatic brain injury |
| TG | Triacylglycerol |
| TIMS | Trapped-Ion Mobility Spectrometry |
| TOF-SIMS | Time-of-Flight Secondary Ion Mass Spectrometry |
| TWIMS | Traveling-Wave Ion Mobility Spectrometry |
| UV | Ultraviolet Spectroscopy |
References
- Körber, A.; Anthony, I.G.M.; Heeren, R.M.A. Mass Spectrometry Imaging. Anal. Chem. 2025, 97, 15517–15549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, L.; Zhang, Y.; Xie, L.; Wang, Y.; Lu, H. HST-MRM-MS: A Novel High-Sample-Throughput Multiple Reaction Monitoring Mass Spectrometric Method for Multiplex Absolute Quantitation of Hepatocellular Carcinoma Serum Biomarker. J. Proteome Res. 2019, 18, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Maiti, P.; Saren, U.; Chakraborty, U.; Singha, T.; Paul, S.; Paul, P.K. Comparative and Selective Interaction of Amino Acid D-Cysteine with Colloidal Gold Nanoparticles in the Presence of a Fluorescent Probe in Aqueous Medium. ACS Omega 2022, 7, 29013–29026. [Google Scholar] [CrossRef] [PubMed]
- Vosse, C.; Thyssen, G.M.; Sperling, M.; Karst, U.; Hayen, H. Complementary Approach for Analysis of Phospholipids by Liquid Chromatography Hyphenated to Elemental and Molecular Mass Spectrometry. Anal. Sci. Adv. 2020, 1, 46–55. [Google Scholar] [CrossRef]
- Cronan, J.E. Unsaturated Fatty Acid Synthesis in Bacteria: Mechanisms and Regulation of Canonical and Remarkably Noncanonical Pathways. Biochimie 2024, 218, 137–151. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.-Y.; Han, D.-Q.; Yao, Z.-P. Recent Advances in Differentiation of Isomers by Ion Mobility Mass Spectrometry. TrAC Trends Anal. Chem. 2020, 124, 115801. [Google Scholar] [CrossRef]
- Rivera, E.S.; Djambazova, K.V.; Neumann, E.K.; Caprioli, R.M.; Spraggins, J.M. Integrating Ion Mobility and Imaging Mass Spectrometry for Comprehensive Analysis of Biological Tissues: A Brief Review and Perspective. J. Mass Spectrom. 2020, 55, e4614. [Google Scholar] [CrossRef]
- Mamun, A.; Islam, A.; Eto, F.; Sato, T.; Kahyo, T.; Setou, M. Mass Spectrometry-Based Phospholipid Imaging: Methods and Findings. Expert Rev. Proteom. 2020, 17, 843–854. [Google Scholar] [CrossRef]
- Chaurand, P.; Schwartz, S.A.; Billheimer, D.; Xu, B.J.; Crecelius, A.; Caprioli, R.M. Integrating Histology and Imaging Mass Spectrometry. Anal. Chem. 2004, 76, 1145–1155. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Pillar, N.; Li, Y.; Li, Y.; Migas, L.G.; Van de Plas, R.; Spraggins, J.M.; Ozcan, A. Virtual Staining of Label-Free Tissue in Imaging Mass Spectrometry. Sci. Adv. 2025, 11, eadv0741. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, K.H.; Ebbini, M.; Huang, P.; Lu, H.; Li, L. Mass Spectrometry Imaging for Spatially Resolved Multi-Omics Molecular Mapping. Npj Imaging 2024, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Yuan, C.; Zhang, D.; Lu, D.; Chen, S.; Wu, Y.; Wu, C. Recent Advances in Mass Spectrometry Imaging Combined with Artificial Intelligence for Spatially Clarifying Molecular Profiles: Toward Biomedical Applications. TrAC Trends Anal. Chem. 2024, 178, 117834. [Google Scholar] [CrossRef]
- Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS | Analytical Chemistry. Available online: https://pubs.acs.org/doi/10.1021/ac970888i (accessed on 24 September 2025).
- Horisawa, S.; Iwamoto, K. Identification and Typing of Strains of Wood-Rotting Basidiomycetes by Protein Profiling Using MALDI-TOF MS. BioTech 2022, 11, 30. [Google Scholar] [CrossRef]
- Jaskolla, T.W.; Karas, M. Compelling Evidence for Lucky Survivor and Gas Phase Protonation: The Unified MALDI Analyte Protonation Mechanism. J. Am. Soc. Mass Spectrom. 2011, 22, 976–988. [Google Scholar] [CrossRef]
- Root, K.; Wittwer, Y.; Barylyuk, K.; Anders, U.; Zenobi, R. Insight into Signal Response of Protein Ions in Native ESI-MS from the Analysis of Model Mixtures of Covalently Linked Protein Oligomers. J. Am. Soc. Mass Spectrom. 2017, 28, 1863–1875. [Google Scholar] [CrossRef]
- Knochenmuss, R. The Coupled Chemical and Physical Dynamics Model of MALDI. Annu. Rev. Anal. Chem. 2016, 9, 365–385. [Google Scholar] [CrossRef]
- Karas, M.; Krüger, R. Ion Formation in MALDI: The Cluster Ionization Mechanism. Chem. Rev. 2003, 103, 427–440. [Google Scholar] [CrossRef]
- Slijkhuis, N.; Towers, M.; Claude, E.; van Soest, G. MALDI versus DESI Mass Spectrometry Imaging of Lipids in Atherosclerotic Plaque. Rapid Commun. Mass Spectrom. 2025, 39, e9927. [Google Scholar] [CrossRef]
- Shariatgorji, R.; Nilsson, A.; Strittmatter, N.; Vallianatou, T.; Zhang, X.; Svenningsson, P.; Goodwin, R.J.A.; Andrén, P.E. Bromopyrylium Derivatization Facilitates Identification by Mass Spectrometry Imaging of Monoamine Neurotransmitters and Small Molecule Neuroactive Compounds. J. Am. Soc. Mass Spectrom. 2020, 31, 2553–2557. [Google Scholar] [CrossRef]
- Esteve, C.; Tolner, E.A.; Shyti, R.; van den Maagdenberg, A.M.J.M.; McDonnell, L.A. Mass Spectrometry Imaging of Amino Neurotransmitters: A Comparison of Derivatization Methods and Application in Mouse Brain Tissue. Metabolomics 2016, 12, 30. [Google Scholar] [CrossRef]
- Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization | Science. Available online: https://www.science.org/doi/10.1126/science.1104404 (accessed on 24 September 2025).
- Takáts, Z.; Wiseman, J.M.; Cooks, R.G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (DESI): Instrumentation, Mechanisms and Applications in Forensics, Chemistry, and Biology. J. Mass Spectrom. 2005, 40, 1261–1275. [Google Scholar] [CrossRef] [PubMed]
- Dannhorn, A.; Kazanc, E.; Ling, S.; Nikula, C.; Karali, E.; Serra, M.P.; Vorng, J.-L.; Inglese, P.; Maglennon, G.; Hamm, G.; et al. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging. Anal. Chem. 2020, 92, 11080–11088. [Google Scholar] [CrossRef] [PubMed]
- Dannhorn, A.; Kazanc, E.; Flint, L.; Guo, F.; Carter, A.; Hall, A.R.; Jones, S.A.; Poulogiannis, G.; Barry, S.T.; Sansom, O.J.; et al. Morphological and Molecular Preservation through Universal Preparation of Fresh-Frozen Tissue Samples for Multimodal Imaging Workflows. Nat. Protoc. 2024, 19, 2685–2711. [Google Scholar] [CrossRef] [PubMed]
- Zickuhr, G.M.; Um, I.H.; Laird, A.; Harrison, D.J.; Dickson, A.L. DESI-MSI-Guided Exploration of Metabolic-Phenotypic Relationships Reveals a Correlation between PI 38:3 and Proliferating Cells in Clear Cell Renal Cell Carcinoma via Single-Section Co-Registration of Multimodal Imaging. Anal. Bioanal. Chem. 2024, 416, 4015–4028. [Google Scholar] [CrossRef]
- Ziaco, M.; Vitale, G.A.; Barra, G.; Marfella, B.; dell’Isola, M.; Albiani, F.; Grazioso, A.; Giamundo, G.; Nuzzo, G.; Manzo, E.; et al. Innovative Application of a Multifunctional Sucrose–Gelatin Hydrogel Matrix in Desorption Electrospray Ionization-Mass Spectrometry Imaging. Anal. Chem. 2025, 97, 25087–25098. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Johnson, M.; Mandal, R.; Cruz, M.; Martínez-Huélamo, M.; Andres-Lacueva, C.; Wishart, D.S. A Comprehensive LC–MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024, 14, 622. [Google Scholar] [CrossRef]
- Morato, N.M.; Cooks, R.G. Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Acc. Chem. Res. 2023, 56, 2526–2536. [Google Scholar] [CrossRef]
- Yang, M.; Unsihuay, D.; Hu, H.; Nguele Meke, F.; Qu, Z.; Zhang, Z.-Y.; Laskin, J. Nano-DESI Mass Spectrometry Imaging of Proteoforms in Biological Tissues with High Spatial Resolution. Anal. Chem. 2023, 95, 5214–5222. [Google Scholar] [CrossRef]
- Leontyev, D.; Olivos, H.; Shrestha, B.; Datta Roy, P.M.; LaPlaca, M.C.; Fernández, F.M. Desorption Electrospray Ionization Cyclic Ion Mobility-Mass Spectrometry Imaging for Traumatic Brain Injury Spatial Metabolomics. Anal. Chem. 2024, 96, 13598–13606. [Google Scholar] [CrossRef]
- Rahman, M.M.; Afroz, M.S.; Mamun, M.A.; Islam, A.; Sakamoto, T.; Aramaki, S.; Sato, T.; Paxton, T.; Takahashi, Y.; Kahyo, T.; et al. Quantitative Mass Spectrometry Imaging by Targeted-DESI-MSI in MRM Mode Provides Higher Sensitivity and Specificity for Fast Quantification of Chloroquine Drug in Mice Kidney. J. Mass Spectrom. 2025, 60, e5148. [Google Scholar] [CrossRef]
- Chi, D.H.; Kahyo, T.; Islam, A.; Hasan, M.M.; Waliullah, A.S.M.; Mamun, M.A.; Nakajima, M.; Ikoma, T.; Akita, K.; Maekawa, Y.; et al. NAD+ Levels Are Augmented in Aortic Tissue of ApoE-/- Mice by Dietary Omega-3 Fatty Acids. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 395–406. [Google Scholar] [CrossRef]
- Jia, F.; Zhao, X.; Zhao, Y. Advancements in ToF-SIMS Imaging for Life Sciences. Front. Chem. 2023, 11, 1237408. [Google Scholar] [CrossRef]
- Seydoux, C.; Ezzedine, J.A.; Larbi, G.S.; Ravanel, S.; Maréchal, E.; Barnes, J.-P.; Jouneau, P.-H. Subcellular ToF-SIMS Imaging of the Snow Alga Sanguina Nivaloides by Combining High Mass and High Lateral Resolution Acquisitions. Anal. Chem. 2024, 96, 19917–19925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kikushima, K.; Endo, M.; Kahyo, T.; Horikawa, M.; Matsudaira, T.; Tanaka, T.; Takanashi, Y.; Sato, T.; Takahashi, Y.; et al. Imaging and Manipulation of Plasma Membrane Fatty Acid Clusters Using TOF-SIMS Combined Optogenetics. Cells 2022, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Horikawa, M.; Kahyo, T.; Matsudaira, T.; Tanaka, T.; Xu, L.; Takei, S.; Setou, M. Glutaraldehyde and Uranyl Acetate Dual Fixation Combined Sputtering/Unroofing Enables Intracellular Fatty Acids TOF-SIMS Imaging with Organelle-Corresponding Subcellular Distribution. Microscopy 2022, 71, 324–333. [Google Scholar] [CrossRef]
- Philipsen, M.H.; Sämfors, S.; Malmberg, P.; Ewing, A.G. Relative Quantification of Deuterated Omega-3 and -6 Fatty Acids and Their Lipid Turnover in PC12 Cell Membranes Using TOF-SIMS. J. Lipid Res. 2018, 59, 2098–2107. [Google Scholar] [CrossRef]
- Hieta, J.-P.; Kopra, J.; Räikkönen, H.; Kauppila, T.J.; Kostiainen, R. Sub-100 Μm Spatial Resolution Ambient Mass Spectrometry Imaging of Rodent Brain with Laser Ablation Atmospheric Pressure Photoionization (LAAPPI) and Laser Ablation Electrospray Ionization (LAESI). Anal. Chem. 2020, 92, 13734–13741. [Google Scholar] [CrossRef]
- Bokhart, M.T.; Manni, J.; Garrard, K.P.; Ekelöf, M.; Nazari, M.; Muddiman, D.C. IR-MALDESI Mass Spectrometry Imaging at 50 Micron Spatial Resolution. J. Am. Soc. Mass Spectrom. 2017, 28, 2099–2107. [Google Scholar] [CrossRef]
- Swales, J.G.; Strittmatter, N.; Tucker, J.W.; Clench, M.R.; Webborn, P.J.H.; Goodwin, R.J.A. Spatial Quantitation of Drugs in Tissues Using Liquid Extraction Surface Analysis Mass Spectrometry Imaging. Sci. Rep. 2016, 6, 37648. [Google Scholar] [CrossRef]
- Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric Pressure MALDI Mass Spectrometry Imaging of Tissues and Cells at 1.4-Μm Lateral Resolution. Nat. Methods 2017, 14, 90–96. [Google Scholar] [CrossRef]
- Alexandrov, T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. Annu. Rev. Biomed. Data Sci. 2020, 3, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Charkoftaki, G. A Guide to MALDI Imaging Mass Spectrometry for Tissues. J. Proteome Res. 2023, 22, 3401–3417. [Google Scholar] [CrossRef] [PubMed]
- Lanekoff, I.; Stevens, S.L.; Stenzel-Poore, M.P.; Laskin, J. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation. Analyst 2014, 139, 3528–3532. [Google Scholar] [CrossRef] [PubMed]
- Van de Plas, R.; Yang, J.; Spraggins, J.; Caprioli, R.M. Image Fusion of Mass Spectrometry and Microscopy: A Multimodality Paradigm for Molecular Tissue Mapping. Nat. Methods 2015, 12, 366–372. [Google Scholar] [CrossRef]
- Claes, B.S.R.; Bowman, A.P.; Poad, B.L.J.; Young, R.S.E.; Heeren, R.M.A.; Blanksby, S.J.; Ellis, S.R. Mass Spectrometry Imaging of Lipids with Isomer Resolution Using High-Pressure Ozone-Induced Dissociation. Anal. Chem. 2021, 93, 9826–9834. [Google Scholar] [CrossRef]
- Hubler, Z.; Friedrich, R.M.; Sax, J.L.; Allimuthu, D.; Gao, F.; Rivera-León, A.M.; Pleshinger, M.J.; Bederman, I.; Adams, D.J. Modulation of Lanosterol Synthase Drives 24,25-Epoxysterol Synthesis and Oligodendrocyte Formation. Cell Chem. Biol. 2021, 28, 866–875.e5. [Google Scholar] [CrossRef]
- Claes, B.S.R.; Bowman, A.P.; Poad, B.L.J.; Heeren, R.M.A.; Blanksby, S.J.; Ellis, S.R. Isomer-Resolved Mass Spectrometry Imaging of Acidic Phospholipids. J. Am. Soc. Mass Spectrom. 2023, 34, 2269–2277. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, A.; Mamun, M.A.; Afroz, M.S.; Nabi, M.M.; Sakamoto, T.; Sato, T.; Kahyo, T.; Takahashi, Y.; Okino, A.; et al. Low-Temperature Plasma Pretreatment Enhanced Cholesterol Detection in Brain by Desorption Electrospray Ionization-Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2024, 35, 1227–1236. [Google Scholar] [CrossRef]
- Crotti, S.; Menicatti, M.; Pallecchi, M.; Bartolucci, G. Tandem Mass Spectrometry Approaches for Recognition of Isomeric Compounds Mixtures. Mass Spectrom. Rev. 2023, 42, 1244–1260. [Google Scholar] [CrossRef]
- Leigh, G.J. Principles of Chemical Nomenclature: A Guide to IUPAC Recommendations; Royal Society of Chemistry: Cambridge, UK, 2011; ISBN 978-1-84973-007-5. [Google Scholar]
- Wang, Z.; Yang, T.; Brenna, J.T.; Wang, D.H. Fatty Acid Isomerism: Analysis and Selected Biological Functions. Food Funct. 2024, 15, 1071–1088. [Google Scholar] [CrossRef]
- Baum, S.J.; Kris-Etherton, P.M.; Willett, W.C.; Lichtenstein, A.H.; Rudel, L.L.; Maki, K.C.; Whelan, J.; Ramsden, C.E.; Block, R.C. Fatty Acids in Cardiovascular Health and Disease: A Comprehensive Update. J. Clin. Lipidol. 2012, 6, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Claes, B.S.R.; Takeo, E.; Fukusaki, E.; Shimma, S.; Heeren, R.M.A. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom. 2019, 8, A0078. [Google Scholar] [CrossRef] [PubMed]
- Adlof, R.O.; Emken, E.A. Distribution of Hexadecenoic, Octadecenoic and Octadecadienoic Acid Isomers in Human Tissue Lipids. Lipids 1986, 21, 543–547. [Google Scholar] [CrossRef]
- Niu, S.-L.; Mitchell, D.C.; Litman, B.J. Trans Fatty Acid Derived Phospholipids Show Increased Membrane Cholesterol and Reduced Receptor Activation as Compared to Their Cis Analogs. Biochemistry 2005, 44, 4458–4465. [Google Scholar] [CrossRef]
- Yang, T.; Tang, S.; Feng, J.; Yan, X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated Sn-Positional Isomers. ACS Meas. Sci. Au 2024, 4, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Mozaffarian, D. Trans Fatty Acids: Effects on Cardiometabolic Health and Implications for Policy. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 147–152. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef]
- Chibvongodze, H.; Hayashi, K.; Toko, K. Discrimination of D-Amino Acids from L-Amino Acids Using Electric Potential Changes of a Membrane. Sens. Mater. 2001, 13, 99–106. [Google Scholar]
- Fujii, N.; Takata, T.; Fujii, N.; Aki, K.; Sakaue, H. D-Amino Acids in Protein: The Mirror of Life as a Molecular Index of Aging. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2018, 1866, 840–847. [Google Scholar] [CrossRef]
- Kim, P.M.; Aizawa, H.; Kim, P.S.; Huang, A.S.; Wickramasinghe, S.R.; Kashani, A.H.; Barrow, R.K.; Huganir, R.L.; Ghosh, A.; Snyder, S.H. Serine racemase: Activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc. Natl. Acad. Sci. USA 2005, 102, 2105–2110. [Google Scholar] [CrossRef]
- Fujii, N.; Kaji, Y.; Fujii, N. D-Amino Acids in Aged Proteins: Analysis and Biological Relevance. J. Chromatogr. B 2011, 879, 3141–3147. [Google Scholar] [CrossRef]
- Dreisewerd, L.; Aspers, R.L.E.G.; Feiters, M.C.; Rutjes, F.P.J.T.; Tessari, M. NMR Discrimination of D- and l-α-Amino Acids at Submicromolar Concentration via Parahydrogen-Induced Hyperpolarization. J. Am. Chem. Soc. 2023, 145, 1518–1523. [Google Scholar] [CrossRef]
- L- and D- Amino Acids Overview—Creative Peptides. Available online: https://www.creative-peptides.com/resources/l-and-d-amino-acids.html (accessed on 24 September 2025).
- Wong, K.C. Review of Spectrometric Identification of Organic Compounds, 8th Edition. J. Chem. Educ. 2015, 92, 1602–1603. [Google Scholar] [CrossRef]
- Ma, X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022, 27, 6466. [Google Scholar] [CrossRef] [PubMed]
- Christofi, E.; Barran, P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem. Rev. 2023, 123, 2902–2949. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.B.; Poland, J.C.; May, J.C.; McLean, J.A. Fundamentals of Ion Mobility-Mass Spectrometry for the Analysis of Biomolecules. In Ion Mobility-Mass Spectrometry. Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2084, pp. 1–31. [Google Scholar] [CrossRef]
- Viehland, L.A.; Mason, E.A. Gaseous Lon Mobility in Electric Fields of Arbitrary Strength. Ann. Phys. 1975, 91, 499–533. [Google Scholar] [CrossRef]
- May, J.C.; Goodwin, C.R.; Lareau, N.M.; Leaptrot, K.L.; Morris, C.B.; Kurulugama, R.T.; Mordehai, A.; Klein, C.; Barry, W.; Darland, E.; et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 2014, 86, 2107–2116. [Google Scholar] [CrossRef]
- Moses, T.; Burgess, K. Right in Two: Capabilities of Ion Mobility Spectrometry for Untargeted Metabolomics. Front. Mol. Biosci. 2023, 10, 1230282. [Google Scholar] [CrossRef]
- Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation. Analyst 2015, 140, 1376–1390. [Google Scholar] [CrossRef]
- Fechner, A.; Höving, S.; Schiller, A.; Telgheder, U.; Franzke, J. Instrumental Developments in Drift Tube Ion Mobility Spectrometry: A Review on Miniaturization, New Manufacturing Techniques, and Pre-Separation. Anal. Chim. Acta 2025, 1356, 343946. [Google Scholar] [CrossRef]
- Dodds, J.N.; Baker, E.S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 2019, 30, 2185–2195. [Google Scholar] [CrossRef]
- Li, A.; Conant, C.R.; Zheng, X.; Bloodsworth, K.J.; Orton, D.J.; Garimella, S.V.B.; Attah, I.K.; Nagy, G.; Smith, R.D.; Ibrahim, Y.M. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal. Chem. 2020, 92, 14976–14982. [Google Scholar] [CrossRef] [PubMed]
- Shvartsburg, A.A.; Smith, R.D. Fundamentals of Traveling Wave Ion Mobility Spectrometry. Anal. Chem. 2008, 80, 9689–9699. [Google Scholar] [CrossRef] [PubMed]
- Naylor, C.N.; Nagy, G. Recent Advances in High-resolution Traveling Wave-based Ion Mobility Separations Coupled to Mass Spectrometry. Mass Spectrom. Rev. 2025, 44, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Gas-Phase Separation Using a Trapped Ion Mobility Spectrometer | International Journal for Ion Mobility Spectrometry. Available online: https://link.springer.com/article/10.1007/s12127-011-0067-8 (accessed on 24 September 2025).
- Chen, X.; Yin, Y.; Luo, M.; Zhou, Z.; Cai, Y.; Zhu, Z.-J. Trapped Ion Mobility Spectrometry-Mass Spectrometry Improves the Coverage and Accuracy of Four-Dimensional Untargeted Lipidomics. Anal. Chim. Acta 2022, 1210, 339886. [Google Scholar] [CrossRef]
- Delafield, D.G.; Lu, G.; Kaminsky, C.J.; Li, L. High-End Ion Mobility Mass Spectrometry: A Current Review of Analytical Capacity in Omics Applications and Structural Investigations. TrAC Trends Anal. Chem. 2022, 157, 116761. [Google Scholar] [CrossRef]
- Swearingen, K.E.; Moritz, R.L. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics. Expert Rev. Proteom. 2012, 9, 505–517. [Google Scholar] [CrossRef]
- Purves, R.W.; Guevremont, R. Electrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1999, 71, 2346–2357. [Google Scholar] [CrossRef]
- Guevremont, R. High-Field Asymmetric Waveform Ion Mobility Spectrometry: A New Tool for Mass Spectrometry. J. Chromatogr. A 2004, 1058, 3–19. [Google Scholar] [CrossRef]
- Djambazova, K.V.; Dufresne, M.; Migas, L.G.; Kruse, A.R.S.; Van de Plas, R.; Caprioli, R.M.; Spraggins, J.M. MALDI TIMS IMS of Disialoganglioside Isomers─GD1a and GD1b in Murine Brain Tissue. Anal. Chem. 2023, 95, 1176–1183. [Google Scholar] [CrossRef]
- Tenebro, C.P.; Marcial, N.B.J.M.; Salcepuedes, J.J.; Torrecampo, J.C.; Hernandez, R.D.; Francisco, J.A.P.; Infante, K.M.G.; Belardo, V.J.; Paderes, M.C.; Alvero, R.G.Y.; et al. Visualization of Renal Rotenone Accumulation after Oral Administration and in Situ Detection of Kidney Injury Biomarkers via MALDI Mass Spectrometry Imaging. Front. Mol. Biosci. 2024, 11, 1366278. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Fields, L.; Shi, X.; Huang, P.; Lu, H.; Schneider, A.J.; Tang, X.; Puglielli, L.; Welham, N.V.; et al. Single-Cell Lipidomics Enabled by Dual-Polarity Ionization and Ion Mobility-Mass Spectrometry Imaging. Nat. Commun. 2023, 14, 5185. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R.L.; Creese, A.J.; Race, A.M.; Bunch, J.; Cooper, H.J. LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue. Anal. Chem. 2016, 88, 6758–6766. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, P.; Dai, Q.; Wu, P.; He, Y.; Lin, Z.; Cai, Z. Spatial Lipidomics and Metabolomics of Multicellular Tumor Spheroids Using MALDI-2 and Trapped Ion Mobility Imaging. Talanta 2023, 265, 124795. [Google Scholar] [CrossRef] [PubMed]
- Ferey, J.; Mervant, L.; Naud, N.; Jamin, E.L.; Pierre, F.; Debrauwer, L.; Guéraud, F. Spatial Metabolomics Using Mass-Spectrometry Imaging to Decipher the Impact of High Red Meat Diet on the Colon Metabolome in Rat. Talanta 2024, 276, 126230. [Google Scholar] [CrossRef]
- Cuypers, E.; Claes, B.S.R.; Biemans, R.; Lieuwes, N.G.; Glunde, K.; Dubois, L.; Heeren, R.M.A. ‘On the Spot’ Digital Pathology of Breast Cancer Based on Single-Cell Mass Spectrometry Imaging. Anal. Chem. 2022, 94, 6180–6190. [Google Scholar] [CrossRef]
- Schwaiger-Haber, M.; Stancliffe, E.; Anbukumar, D.S.; Sells, B.; Yi, J.; Cho, K.; Adkins-Travis, K.; Chheda, M.G.; Shriver, L.P.; Patti, G.J. Using Mass Spectrometry Imaging to Map Fluxes Quantitatively in the Tumor Ecosystem. Nat. Commun. 2023, 14, 2876. [Google Scholar] [CrossRef]
- Krieger, A.C.; Macias, L.A.; Goodman, J.C.; Brodbelt, J.S.; Eberlin, L.S. Mass Spectrometry Imaging Reveals Abnormalities in Cardiolipin Composition and Distribution in Astrocytoma Tumor Tissues. Cancers 2023, 15, 2842. [Google Scholar] [CrossRef]
- Michno, W.; Wehrli, P.M.; Koutarapu, S.; Marsching, C.; Minta, K.; Ge, J.; Meyer, S.W.; Zetterberg, H.; Blennow, K.; Henkel, C.; et al. Structural Amyloid Plaque Polymorphism Is Associated with Distinct Lipid Accumulations Revealed by Trapped Ion Mobility Mass Spectrometry Imaging. J. Neurochem. 2022, 160, 482–498. [Google Scholar] [CrossRef]
- Li, A.; Xu, L. MALDI-IM-MS Imaging of Brain Sterols and Lipids in a Mouse Model of Smith-Lemli-Opitz Syndrome. bioRxiv 2023. [Google Scholar] [CrossRef]
- Niehaus, P.; Gonzalez de Vega, R.; Haindl, M.T.; Birkl, C.; Leoni, M.; Birkl-Toeglhofer, A.M.; Haybaeck, J.; Ropele, S.; Seeba, M.; Goessler, W.; et al. Multimodal Analytical Tools for the Molecular and Elemental Characterisation of Lesions in Brain Tissue of Multiple Sclerosis Patients. Talanta 2024, 270, 125518. [Google Scholar] [CrossRef]
- Webb, I.K.; Garimella, S.V.B.; Tolmachev, A.V.; Chen, T.-C.; Zhang, X.; Norheim, R.V.; Prost, S.A.; LaMarche, B.; Anderson, G.A.; Ibrahim, Y.M.; et al. Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry. Anal. Chem. 2014, 86, 9169–9176. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.M.; Hamid, A.M.; Deng, L.; Garimella, S.V.B.; Webb, I.K.; Baker, E.S.; Smith, R.D. New Frontiers for Mass Spectrometry Based upon Structures for Lossless Ion Manipulations. Analyst 2017, 142, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Stow, S.M.; Causon, T.J.; Zheng, X.; Kurulugama, R.T.; Mairinger, T.; May, J.C.; Rennie, E.E.; Baker, E.S.; Smith, R.D.; McLean, J.A.; et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 2017, 89, 9048–9055. [Google Scholar] [CrossRef] [PubMed]
- Paglia, G.; Astarita, G. Metabolomics and Lipidomics Using Traveling-Wave Ion Mobility Mass Spectrometry. Nat. Protoc. 2017, 12, 797–813. [Google Scholar] [CrossRef]
- Niehaus, M.; Soltwisch, J.; Belov, M.E.; Dreisewerd, K. Transmission-Mode MALDI-2 Mass Spectrometry Imaging of Cells and Tissues at Subcellular Resolution. Nat. Methods 2019, 16, 925–931. [Google Scholar] [CrossRef]
- Passarelli, M.K.; Ewing, A.G. Single-Cell Imaging Mass Spectrometry. Curr. Opin. Chem. Biol. 2013, 17, 854–859. [Google Scholar] [CrossRef]
- Stopka, S.A.; McMinn, M.H.; Looi, W.D.; Agar, N.Y.R. TIMS Enabled Quantification of Small Molecules in MALDI Imaging; Bruker Daltonik GmbH: Bremen, Germany, 2020. [Google Scholar]
- Midey, A.J.; Olivos, H.J.; Shrestha, B. Collision Cross Section Enabled DESI Ion Mobility Mass Spectrometry Imaging G; Waters Corp.: Beverly, MA, USA, 2018. [Google Scholar]
- Bemis, K.A.; Föll, M.C.; Guo, D.; Lakkimsetty, S.S.; Vitek, O. Cardinal v3—A Versatile Open Source Software for Mass Spectrometry Imaging Analysis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Luu, G.T.; Freitas, M.A.; Lizama-Chamu, I.; McCaughey, C.S.; Sanchez, L.M.; Wang, M. TIMSCONVERT: A Workflow to Convert Trapped Ion Mobility Data to Open Data Formats. Bioinformatics 2022, 38, 4046–4047. [Google Scholar] [CrossRef]
- Yu, M.; Stodola, T.; White, B.; Sheehan, S.; Li, S.; Philip, V.; Korstanje, R.; Hoffmann, B.; Mahoney, M. Open Source Spatial Reactomics (OSSpRe) Workflow for Trapped Ion Mobility Spectrometry (TIMS) Coupled with High Resolution Mass Spectrometry Imaging. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Lipid Geometrical Isomerism: From Chemistry to Biology and Diagnostics | Chemical Reviews. Available online: https://pubs.acs.org/doi/10.1021/cr4002287 (accessed on 26 September 2025).
- Tredicine, M.; Mucci, M.; Recchiuti, A.; Mattoscio, D. Immunoregulatory Mechanisms of the Arachidonic Acid Pathway in Cancer. FEBS Lett. 2025, 599, 927–951. [Google Scholar] [CrossRef]
- Ebright, B.; Assante, I.; Poblete, R.A.; Wang, S.; Duro, M.V.; Bennett, D.A.; Arvanitakis, Z.; Louie, S.G.; Yassine, H.N. Eicosanoid Lipidome Activation in Post-Mortem Brain Tissues of Individuals with APOE4 and Alzheimer’s Dementia. Alzheimer’s Res. Ther. 2022, 14, 152. [Google Scholar] [CrossRef]
- Candelise, N.; Scaricamazza, S.; Salvatori, I.; Ferri, A.; Valle, C.; Manganelli, V.; Garofalo, T.; Sorice, M.; Misasi, R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int. J. Mol. Sci. 2021, 22, 6016. [Google Scholar] [CrossRef]
- Jeacock, K.A. Investigating the Structure of Alpha-Synuclein Using Mass Spectrometry. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2023. [Google Scholar]
- Yin, Z.; Huang, W.; Li, K.; Fernie, A.R.; Yan, S. Advances in Mass Spectrometry Imaging for Plant Metabolomics—Expanding the Analytical Toolbox. Plant J. 2024, 119, 2168–2180. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, C.; Guo, D. Insight into Chemical Basis of Traditional Chinese Medicine Based on the State-of-the-Art Techniques of Liquid Chromatography−mass Spectrometry. Acta Pharm. Sin. B 2021, 11, 1469–1492. [Google Scholar] [CrossRef]
| Panel | Technique | Axis type | Key Feature |
| (e) | DTIMS | Drift time (ms) | Small ions migrate faster |
| (f) | TWIMS | Drift time (ms) | Small ions migrate faster |
| (g) | TIMS | Elution time (ms) | Smaller ions exhibit longer elution times |
| (h) | FAIMS | Compensation Voltage (V) | Different ions have different CVs |
| Panel | Technique | Axis type | Key Feature |
| (e) | DTIMS | Drift time (ms) | Small ions migrate faster |
| (f) | TWIMS | Drift time (ms) | Small ions migrate faster |
| (g) | TIMS | Elution time (ms) | Smaller ions exhibit longer elution times |
| (h) | FAIMS | Compensation Voltage (V) | Different ions have different CVs |


| Disease/Model/ Application | Ionization (Imaging Unit) | Ion Mobility Spectrometry | Observed Molecules/Isomers | Main Findings |
|---|---|---|---|---|
| IM-MSI method establishment | ||||
| Gangliosides (Rat hippocampus & spinal cord) [86] | MALDI | TIMS | GD1a/b(d36:1):m/z 1835.96 GD1a/b(d38:1):m/z 1863.99 | Distinct a- vs. b-isomer distributions across hippocampal regions |
| Drug metabolism/toxicity (rotenone in the kidney) [87] | MALDI | TWIMS | Choline: m/z 104.1071 [M+H]+ GPC: m/z 296.0665 [M+K]+) Inosine: m/z 307.0445 [M+K]+ | Distinguished choline, GPC, and inosine in the kidney |
| Protein imaging (mouse liver) [89] | LESA | FAIMS | 40 proteins | Specific protein FABP1 observed through FAIMS |
| IM-MSI applied in Oncology | ||||
| H295R(MCTS) [90] | MALDI-2 | TIMS | [PC(38:4)+H]+ vs. [PC (36:1)+Na]+: m/z 810.5967 | Enhanced lipid metabolite signaling and distinguishing isomers |
| PNAC-1/PSC [88] | MALDI | TIMS | PE(34:0) ([M+H]+, m/z 720.5497); PC (O-32:0) ([M+H]+, m/z 720.5866) | Revealing metabolic heterogeneity among cells. |
| Colorectal cancer (CRC) [91] | MALDI | TIMS | Cholesterol sulfate increased and glutathione decreased | Cholesterol sulfate plays a crucial role in tumor progression |
| Breast cancer [92] | MALDI/MALDI2 | TIMS | Lipids | Identified 79 different lipids present in different ratios in all 14 cultured breast cancer cell subtypes |
| Glioblastoma (GL261 mouse) [93] | DESI/MALDI | TIMS | NAA, AMP, fatty acids | Tumor: NAA decreased, AMP increased, de novo FA synthesis/elongation increased |
| Glioma (AST, GBM) [94] | DESI | FAIMS | Cardiolipin (CL) | CL diversity reduced; long-chain CL(78:12) absent in GBM; AST showed higher Δ9 isomer ratios, CL as a potential biomarker and therapeutic target |
| IM-MSI applied in neuropsychiatric disorders | ||||
| Alzheimer’s disease (AD, tgAPPswe) [95] | MALDI | TIMS | PA(16:0/16:0): m/z 647.464 PS(18:0/22:6): m/z 834.525 PE(22:6/22:6): m/z 834.51 | Plaque lipids altered; TIMS localized PA, PS, PE |
| Traumatic brain injury (TBI, rat) [31] | DESI | cIM | PE(34:0)+Na vs. SM (d34:1) +K: m/z 742.531 | Revealed lipid remodeling and injury-specific localization |
| Smith–Lemli–Opitz syndrome (SLOS, Dhcr7-KO) [96] | MALDI | TWIMS | LPE(22:6) [M−H]− vs. LPS (18:0) [M−H]−: m/z 524.279 vs. m/z 524.302, PC(34:1) [M+Cl]− vs. PE (40:4) [M−H]−: m/z 794.547 vs. m/z 794.564 | Sterol precursor accumulation in Dhcr7-KO mouse brain; CCS resolved isotopologues |
| Multiple sclerosis (MS) [97] | MALDI | TIMS | PC, SM | PC and SM reduced in lesions; m/z 714.602 isomers resolved by CCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, C.; Xu, L.; Rahman, M.M.; Hirayama, S.; Aramaki, S.; Baba, A.; Omagari, R.; Takahashi, Y.; Kahyo, T.; et al. Ion Mobility–Mass Spectrometry Imaging: Advances in Biomedical Research. BioTech 2025, 14, 98. https://doi.org/10.3390/biotech14040098
Liu M, Zhang C, Xu L, Rahman MM, Hirayama S, Aramaki S, Baba A, Omagari R, Takahashi Y, Kahyo T, et al. Ion Mobility–Mass Spectrometry Imaging: Advances in Biomedical Research. BioTech. 2025; 14(4):98. https://doi.org/10.3390/biotech14040098
Chicago/Turabian StyleLiu, Mengya, Chi Zhang, Lili Xu, Md. Muedur Rahman, Shoshiro Hirayama, Shuhei Aramaki, Atsushi Baba, Ryo Omagari, Yutaka Takahashi, Tomoaki Kahyo, and et al. 2025. "Ion Mobility–Mass Spectrometry Imaging: Advances in Biomedical Research" BioTech 14, no. 4: 98. https://doi.org/10.3390/biotech14040098
APA StyleLiu, M., Zhang, C., Xu, L., Rahman, M. M., Hirayama, S., Aramaki, S., Baba, A., Omagari, R., Takahashi, Y., Kahyo, T., & Setou, M. (2025). Ion Mobility–Mass Spectrometry Imaging: Advances in Biomedical Research. BioTech, 14(4), 98. https://doi.org/10.3390/biotech14040098

