Shifting Electricity Demand Under Temperature Extremes in Bangladesh
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Identification of Extreme Temperature Days
2.2.2. Trend Analysis of Extreme Events
2.2.3. Temperature–Demand Relationship
2.2.4. Temporal Shifts in Demand Sensitivity
3. Results
3.1. Climate Extreme and Their Trends
3.2. Electricity Usage and Its Relationship with Temperature
4. Discussion
5. Conclusions
- Distinct spatial contrasts were observed; inland areas such as Chuadanga experienced stronger climatic extremes, while coastal regions like Patuakhali were moderated by maritime influences.
- Hot-day frequencies increased notably across most sub-regions (by up to 2 days per year), whereas cold-day frequencies declined, reflecting the broader warming signal.
- Electricity demand on hot days consistently exceeded that of normal or cold days, highlighting Bangladesh’s tropical climate, the widespread use of cooling appliances, and irrigation requirements.
- The relationship between temperature and demand was non-linear, with very high maximum temperatures driving the steepest increases in electricity use.
- Maximum temperature showed a strong and consistent influence, with correlation coefficients between 0.27 and 0.54, and demand increments of 1.31–6.28 MWh for every 1 °C rise in maximum temperature.
- In contrast, cold extremes had only weak and inconsistent effects on electricity use, underscoring the limited role of electric heating in this context.
- Between 2020 and 2024, a marked upward shift in the temperature–demand relationship was detected, linked to growing baseline demand from socio-economic development, rising population, and greater appliance usage.
- Sub-regions such as Khulna and Kushtia exhibited a flattening of demand sensitivity, likely showing how load-shedding and supply-side constraints can mask underlying climate-driven demand patterns, pointing to the importance of infrastructure capacity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, H.M.T.; Islam, A.R.M.T.; Abdullah-Al-Mahbub, M.; Shahid, S.; Tasnuva, A.; Kamruzzaman, M.; Hu, Z.; Elbeltagi, A.; Kabir, M.M.; Salam, M.A.; et al. Spatiotemporal Changes and Modulations of Extreme Climatic Indices in Monsoon-Dominated Climate Region Linkage with Large-Scale Atmospheric Oscillation. Atmos. Res. 2021, 264, 105840. [Google Scholar] [CrossRef]
- Adil, L.; Eckstein, D.; Künzel, V.; Schäfer, L. Climate Risk Index 2025; Germanwatch e.V.: Bonn, Germany, 2025. [Google Scholar]
- World Bank Group. Bangladesh–Country Climate and Development Report (English). 2022. Available online: http://documents.worldbank.org/curated/en/099510110202254063 (accessed on 3 October 2025).
- Abdullah, A.Y.M.; Bhuian, M.H.; Kiselev, G.; Dewan, A.; Hassan, Q.K.; Rafiuddin, M. Extreme Temperature and Rainfall Events in Bangladesh: A Comparison between Coastal and Inland Areas. Int. J. Climatol. 2022, 42, 3253–3273. [Google Scholar] [CrossRef]
- Dastagir, M.R. Modeling Recent Climate Change Induced Extreme Events in Bangladesh: A Review. Weather Clim. Extrem. 2015, 7, 49–60. [Google Scholar] [CrossRef]
- Kaiser, Z.R.M.A. Analysis of the Livelihood and Health of Internally Displaced Persons Due to Riverbank Erosion in Bangladesh. J. Migr. Health 2023, 7, 100157. [Google Scholar] [CrossRef]
- Shehab, M.K.; Haque, C.E.; Faisal, I.M.; Walker, D. Experience and Perception of Climatic Hazards as Drivers for Adaptation Strategies in Coastal Communities of Bangladesh. Int. J. Disaster Risk Reduct. 2025, 120, 105364. [Google Scholar] [CrossRef]
- Suborna, N.J.; Evan, R.I.; Rabby, M.J.; Rahman, M.; Khan, A.; Rakib, M.M.H.; Khan, R.; Hasan, I.; Roy, D.K. Urbanization Induced Heat Wave Risk Assessment of Khulna City, Bangladesh: A 30-Years Analysis of Land Surface Temperature, Climate Trends and Forecasting. Geosyst. Geoenviron. 2026, 5, 100448. [Google Scholar] [CrossRef]
- Alam, G.M.M.; Alam, K.; Mushtaq, S.; Sarker, M.N.I.; Hossain, M. Hazards, Food Insecurity and Human Displacement in Rural Riverine Bangladesh: Implications for Policy. Int. J. Disaster Risk Reduct. 2020, 43, 101364. [Google Scholar] [CrossRef]
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Developing a Cold-Related Mortality Database in Bangladesh. Int. J. Environ. Res. Public Health 2022, 19, 12175. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Wolf, F.; Abubakar, I.R.; Al-Amin, A.Q.; Roy, S.; Malakar, K.; Alam, G.M.M.; Sarker, M.N.I. Understanding the Socio-Economic Impacts of Climate Change on Riparian Communities in Bangladesh. River Res. Appl. 2022, 38, 1884–1892. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme Weather Impacts of Climate Change: An Attribution Perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Mann, M.E.; Oreskes, N.; Lenton, T.M.; Rahmstorf, S.; Newsome, T.M.; Xu, C.; et al. The 2024 State of the Climate Report: Perilous Times on Planet Earth. BioScience 2024, 74, 812–824. [Google Scholar] [CrossRef]
- Esper, J.; Torbenson, M.; Büntgen, U. 2023 Summer Warmth Unparalleled over the Past 2000 Years. Nature 2024, 631, 94–97. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO). State of the Global Climate 2024; WMO-No. 1368; World Meteorological Organization: Geneva, Switzerland, 2025; ISBN 978-92-63-11368-9. [Google Scholar]
- Rajulapati, C.R.; Gaddam, R.K.; Nerantzaki, S.D.; Papalexiou, S.M.; Cannon, A.J.; Clark, M.P. Exacerbated Heat in Large Canadian Cities. Urban Clim. 2022, 42, 101097. [Google Scholar] [CrossRef]
- Robinson, A.; Lehmann, J.; Barriopedro, D.; Rahmstorf, S.; Coumou, D. Increasing Heat and Rainfall Extremes Now Far Outside the Historical Climate. NPJ Clim. Atmos. Sci. 2021, 4, 45. [Google Scholar] [CrossRef]
- Aryal, A.; Pandey, V.P.; Talchabhadel, R.; Thapa, B.R. Hydro-Climatic Extremes in a Medium Range River Basin in Western Nepal: Learning from Analysis of Observed Data. Stoch. Environ. Res. Risk. Assess. 2024, 38, 85–105. [Google Scholar] [CrossRef]
- Dastour, H.; Alam, M.M.; Dewan, A.; Hassan, Q.K. Evaluating Climatic Warming and the Modulating Effects of Surface Water and Regional Variables in Western Bangladesh. Results Eng. 2025, 25, 103864. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Chung, E.-S.; Kim, S.; Ali, R. Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh. Sustainability 2019, 11, 6754. [Google Scholar] [CrossRef]
- Rahman, M.B.; Salam, R.; Islam, A.R.M.T.; Tasnuva, A.; Haque, U.; Shahid, S.; Hu, Z.; Mallick, J. Appraising the Historical and Projected Spatiotemporal Changes in the Heat Index in Bangladesh. Theor. Appl. Climatol. 2021, 146, 125–138. [Google Scholar] [CrossRef]
- Shahid, S.; Wang, X.-J.; Harun, S.B.; Shamsudin, S.B.; Ismail, T.; Minhans, A. Climate Variability and Changes in the Major Cities of Bangladesh: Observations, Possible Impacts and Adaptation. Reg. Environ. Change 2016, 16, 459–471. [Google Scholar] [CrossRef]
- Sharma, D.; Babel, M.S. Trends in Extreme Rainfall and Temperature Indices in the Western Thailand. Int. J. Climatol. 2014, 34, 2393–2407. [Google Scholar] [CrossRef]
- Dastour, H.; Ahmed, M.R.; Hassan, Q.K. Analysis of Forest Fire Patterns and Their Relationship with Climate Variables in Alberta’s Natural Subregions. Ecol. Inform. 2024, 80, 102531. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Change 2021, 11, 492–500. [Google Scholar] [CrossRef] [PubMed]
- British Columbia Coroners Service. Extreme Heat and Human Mortality: A Review of Heat-Related Deaths in B.C. in Summer 2021. 2022. Available online: https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/death-review-panel/extreme_heat_death_review_panel_report.pdf (accessed on 12 September 2025).
- Clark, D.G.; Jackson, E.H.; Hohl, C.M.; Liang, K.E. Extreme Heat Impacts on Acute Care: Examining Emergency Department Visits and Hospital Admissions during the 2021 British Columbia Heatwave. J. Clim. Change Health 2024, 17, 100310. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Sullivan, K.P.; Kefelegn, Y.; Cameron, L.; O’Neill, M.S. Climate Change and Temperature Extremes: A Review of Heat- and Cold-Related Morbidity and Mortality Concerns of Municipalities. Maturitas 2018, 114, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Paschalidou, A.K.; Kassomenos, P.A.; McGregor, G.R. Analysis of the Synoptic Winter Mortality Climatology in Five Regions of England: Searching for Evidence of Weather Signals. Sci. Total Environ. 2017, 598, 432–444. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-Related Mortality in Europe during the Summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef]
- Malik, P.; Bhardwaj, P.; Singh, O. Distribution of Cold Wave Mortalities over India: 1978–2014. Int. J. Disaster Risk Reduct. 2020, 51, 101841. [Google Scholar] [CrossRef]
- Graham, D.J.; Bierkens, M.F.P.; Van Vliet, M.T.H. Impacts of Droughts and Heatwaves on River Water Quality Worldwide. J. Hydrol. 2024, 629, 130590. [Google Scholar] [CrossRef]
- Aryal, S.; Babel, M.S.; Gupta, A.; Farjad, B.; Khadka, D.; Hassan, Q.K. Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada. Hydrology 2025, 12, 7. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Becker, R.; Schüth, C.; Merz, R.; Khaliq, T.; Usman, M.; Beek, T.A.D.; Kumar, R.; Schulz, S. Increased Heat Stress Reduces Future Yields of Three Major Crops in Pakistan’s Punjab Region despite Intensification of Irrigation. Agric. Water Manag. 2023, 281, 108243. [Google Scholar] [CrossRef]
- Gupta, E. Global Warming and Electricity Demand in the Rapidly Growing City of Delhi: A Semi-Parametric Variable Coefficient Approach. Energy Econ. 2012, 34, 1407–1421. [Google Scholar] [CrossRef]
- Millin, O.T.; Furtado, J.C.; Malloy, C. The Impact of North American Winter Weather Regimes on Electricity Load in the Central United States. NPJ Clim. Atmos. Sci. 2024, 7, 254. [Google Scholar] [CrossRef]
- Wang, C.; Song, J.; Shi, D.; Reyna, J.L.; Horsey, H.; Feron, S.; Zhou, Y.; Ouyang, Z.; Li, Y.; Jackson, R.B. Impacts of Climate Change, Population Growth, and Power Sector Decarbonization on Urban Building Energy Use. Nat. Commun. 2023, 14, 6434. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Hu, W.; Deng, N.; He, W. Exploring the Impact of Temperature Change on Residential Electricity Consumption in China: The ‘Crowding-out’ Effect of Income Growth. Energy Build. 2021, 245, 111040. [Google Scholar] [CrossRef]
- Yang, S.; Jahanger, A.; Awan, A. Temperature Variation and Urban Electricity Consumption in China: Implications for Demand Management and Planning. Util. Policy 2024, 90, 101782. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Ren, C.; Shi, Y.; Lau, K.K.-L.; Tong, H.-W.; Choy, C.-W.; Ng, E. Estimates of the Impact of Extreme Heat Events on Cooling Energy Demand in Hong Kong. Renew. Energy 2019, 142, 73–84. [Google Scholar] [CrossRef]
- Ralston Fonseca, F.; Jaramillo, P.; Bergés, M.; Severnini, E. Seasonal Effects of Climate Change on Intra-Day Electricity Demand Patterns. Clim. Change 2019, 154, 435–451. [Google Scholar] [CrossRef]
- Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M.S. Dynamic Temperature Dependence Patterns in Future Energy Demand Models in the Context of Climate Change. Energy 2009, 34, 1797–1806. [Google Scholar] [CrossRef]
- Romitti, Y.; Sue Wing, I. Heterogeneous Climate Change Impacts on Electricity Demand in World Cities circa Mid-Century. Sci. Rep. 2022, 12, 4280. [Google Scholar] [CrossRef]
- Añel, J.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; De La Torre, L. Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; Silva, F.B.E.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating Impacts of Climate Extremes on Critical Infrastructures in Europe. Glob. Environ. Change 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Linnerud, K.; Mideksa, T.K.; Eskeland, G.S. The Impact of Climate Change on Nuclear Power Supply. Energy J. 2011, 32, 149–168. [Google Scholar] [CrossRef]
- Marshall, A.; Upadhyay, S. Hydroclimate Risks to the Western US Electric Grid under a Warming Climate. Curr. Sustain./Renew. Energy Rep. 2024, 11, 68–76. [Google Scholar] [CrossRef]
- You, J.; Yin, F.; Gao, L. Escalating Wind Power Shortages during Heatwaves. Commun. Earth Environ. 2025, 6, 245. [Google Scholar] [CrossRef]
- Cawthorne, D.; De Queiroz, A.R.; Eshraghi, H.; Sankarasubramanian, A.; DeCarolis, J.F. The Role of Temperature Variability on Seasonal Electricity Demand in the Southern US. Front. Sustain. Cities 2021, 3, 644789. [Google Scholar] [CrossRef]
- Lam, C.K.C.; He, Q.; Cheng, K.; Fan, P.Y.; Chun, K.P.; Choi, B.; Mah, D.N.; Cheung, D.M.; Lo, K.; Yetemen, O. Impact of Climate Change and Socioeconomic Factors on Domestic Energy Consumption: The Case of Hong Kong and Singapore. Energy Rep. 2022, 8, 12886–12904. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects 2018: Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Choi, Y.-W.; Campbell, D.J.; Aldridge, J.C.; Eltahir, E.A.B. Near-Term Regional Climate Change over Bangladesh. Clim. Dyn. 2021, 57, 3055–3073. [Google Scholar] [CrossRef]
- Jihan, M.A.T.; Popy, S.; Kayes, S.; Rasul, G.; Maowa, A.S.; Rahman, M.M. Climate Change Scenario in Bangladesh: Historical Data Analysis and Future Projection Based on CMIP6 Model. Sci. Rep. 2025, 15, 7856. [Google Scholar] [CrossRef]
- Paul, A.R.; Maity, R. Future Projection of Climate Extremes across Contiguous Northeast India and Bangladesh. Sci. Rep. 2023, 13, 15616. [Google Scholar] [CrossRef]
- Kirby, M.; Mainuddin, M. The Impact of Climate Change, Population Growth and Development on Sustainable Water Security in Bangladesh to 2100. Sci. Rep. 2022, 12, 22344. [Google Scholar] [CrossRef]
- Shaman, J.; Cane, M.; Kaplan, A. The Relationship between Tibetan Snow Depth, ENSO, River Discharge and the Monsoons of Bangladesh. Int. J. Remote Sens. 2005, 26, 3735–3748. [Google Scholar] [CrossRef]
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh. Sensors 2023, 23, 2832. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Uddin, S.; Saiful Islam, A.K.M.; Acharya, N. Spatiotemporal Analysis of Temperature and Precipitation Extremes over Bangladesh Using a Novel Gridded Observational Dataset. Weather Clim. Extrem. 2023, 39, 100544. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Zhang, Z.; Das, L.C.; Crabbe, M.J.C. High-Resolution Temperature Evolution Maps of Bangladesh via Data-Driven Learning. Atmosphere 2024, 15, 385. [Google Scholar] [CrossRef]
- Shahid, S. Rainfall Variability and the Trends of Wet and Dry Periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef]
- Alam, S. Fixing Bangladesh’s Power Sector; Institute of Energy Economics and Financial Analysis: Cleveland, OH, USA, 2024. [Google Scholar]
- Das, N.K.; Chakrabartty, J.; Dey, M.; Gupta, A.K.S.; Matin, M.A. Present Energy Scenario and Future Energy Mix of Bangladesh. Energy Strategy Rev. 2020, 32, 100576. [Google Scholar] [CrossRef]
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. A Percentile Method to Determine Cold Days and Spells in Bangladesh. Appl. Sci. 2023, 13, 7030. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on the Definition and Characterization of Extreme Weather and Climate Events; World Meteorological Organization: Geneva, Switzerland, 2023; ISBN 978-92-63-11310-8. [Google Scholar]
- Aryal, S.; Babel, M.S.; Gupta, A.; Farjad, B.; Khadka, D.; Hassan, Q.K. Assessment of Hydrological Baseline Condition and Its Alteration in Athabasca River Basin, Canada. J. Hydrol. Reg. Stud. 2024, 53, 101805. [Google Scholar] [CrossRef]
- Dastour, H.; Mahbub Alam, M.; Dewan, A.; Hassan, Q.K. Spatiotemporal Analysis of Land Surface Temperature and Wind Dynamics during Winter in Bangladesh. Results Eng. 2025, 27, 106498. [Google Scholar] [CrossRef]
- Subramanian, A.; Nagarajan, A.M.; Vinod, S.; Chakraborty, S.; Sivagami, K.; Theodore, T.; Sathyanarayanan, S.S.; Tamizhdurai, P.; Mangesh, V.L. Long-Term Impacts of Climate Change on Coastal and Transitional Eco-Systems in India: An Overview of Its Current Status, Future Projections, Solutions, and Policies. RSC Adv. 2023, 13, 12204–12228. [Google Scholar] [CrossRef]
- Ahmed, A.Y.; Ali, A.M.; Ahmed, N. Temporal Dynamics of Leaf Area Index and Land Surface Temperature Correlation Using Sentinel-2 and Landsat OLI Data. Environ. Syst. Res. 2024, 13, 43. [Google Scholar] [CrossRef]
- Imran, H.M.; Hossain, A.; Shammas, M.I.; Das, M.K.; Islam, M.R.; Rahman, K.; Almazroui, M. Land Surface Temperature and Human Thermal Comfort Responses to Land Use Dynamics in Chittagong City of Bangladesh. Geomat. Nat. Hazards Risk 2022, 13, 2283–2312. [Google Scholar] [CrossRef]
- Tabassum, A.; Park, K.; Seo, J.M.; Han, J.-Y.; Baik, J.-J. Characteristics of the Urban Heat Island in Dhaka, Bangladesh, and Its Interaction with Heat Waves. Asia-Pac. J. Atmos. Sci. 2024, 60, 479–493. [Google Scholar] [CrossRef]
- Mainuddin, M.; Maniruzzaman, M.; Alam, M.M.; Mojid, M.A.; Schmidt, E.J.; Islam, M.T.; Scobie, M. Water Usage and Productivity of Boro Rice at the Field Level and Their Impacts on the Sustainable Groundwater Irrigation in the North-West Bangladesh. Agric. Water Manag. 2020, 240, 106294. [Google Scholar] [CrossRef]
- Arshad, S.; Beyer, R.C.M. Tracking Economic Fluctuations with Electricity Consumption in Bangladesh. Energy Econ. 2023, 123, 106740. [Google Scholar] [CrossRef]
- Istiaque, A.; Khan, S.I. Impact of Ambient Temperature on Electricity Demand of Dhaka City of Bangladesh. Energy Power Eng. 2018, 10, 319–331. [Google Scholar] [CrossRef]
- Rahman, S.M.T.; Kabir, A. Factors Influencing Location Choice and Cluster Pattern of Manufacturing Small and Medium Enterprises in Cities: Evidence from Khulna City of Bangladesh. J. Glob. Entrepr. Res. 2019, 9, 61. [Google Scholar] [CrossRef]
- Ahmed, T.; Muttaqi, K.M.; Agalgaonkar, A.P. Climate Change Impacts on Electricity Demand in the State of New South Wales, Australia. Appl. Energy 2012, 98, 376–383. [Google Scholar] [CrossRef]
- Asian Development Bank. GDP Growth in Asia and the Pacific, Asian Development Outlook (ADO). 2025. Available online: https://data.adb.org/dataset/gdp-growth-asia-and-pacific-asian-development-outlook (accessed on 3 October 2025).
Long. E | Lat. N | Elev. (m) | Population | Area (km2) | Density/km2 | |
---|---|---|---|---|---|---|
Barishal | 90.33 | 22.75 | 2.1 | 4,429,804 | 4770 | 929 |
Faridpur | 89.85 | 23.60 | 8.1 | 7,235,338 | 6913 | 1047 |
Jashore | 89.17 | 23.18 | 6.1 | 7,095,218 | 8431 | 842 |
Khulna | 89.53 | 22.78 | 2.1 | 4,226,464 | 8353 | 506 |
Patuakhali | 90.33 | 22.35 | 4.0 | 4,670,298 | 8455 | 552 |
Kushtia (Chuadanga) | 89.12 | 23.81 | 20.0 | 5,860,418 | 5490 | 1067 |
Station | Baseline Period | Hot Day Threshold (°C) | Cold Day Threshold (°C) | ||||
---|---|---|---|---|---|---|---|
TX90 | TX95 | TX99 | TN10 | TN5 | TN1 | ||
Barishal | 1961–1990 | 33.9 | 34.7 | 36.1 | 12.4 | 11.0 | 9.0 |
Chuadanga | 1991–2020 | 36.5 | 37.7 | 40.0 | 11.4 | 9.5 | 7.2 |
Faridpur | 1961–1990 | 34.5 | 36.0 | 37.4 | 12.2 | 11.0 | 8.9 |
Jashore | 1961–1990 | 36.0 | 37.2 | 39.6 | 11.5 | 10.0 | 7.5 |
Patuakhali | 1981–2010 | 34.3 | 35.0 | 36.4 | 14.3 | 12.8 | 10.7 |
Khulna | 1961–1990 | 35.5 | 36.4 | 37.7 | 13.7 | 11.9 | 9.6 |
Periods | Threshold | (a) Trends in Annual Frequency of Hot Days (Days/Year) | |||||
---|---|---|---|---|---|---|---|
Khulna | Jashore | Faridpur | Barishal | Patuakhali 1 | Chuadanga | ||
1961–2024 | TX90 | 0.57 ** | 0.47 ** | 0.96 ** | 1.13 ** | 1.78 ** | NA |
TX95 | 0.26 ** | 0.21 * | 0.22 * | 0.67 ** | 1.26 ** | NA | |
TX99 | 0.03 ** | 0.00 | 0.05 ** | 0.09 * | 0.26 ** | NA | |
1991–2024 | TX90 | 0.84 ** | 0.59 * | 1.82 ** | 1.62 ** | 2.00** | −0.04 |
TX95 | 0.71 ** | 0.30 | 0.45 | 1.24 ** | 1.54 ** | −0.19 | |
TX99 | 0.18 ** | 0.00 | 0.00 | 0.30 ** | 0.35 ** | 0.00 | |
(b) Trends in Annual Frequency of Cold Days (Days/Year) | |||||||
1961–2024 | TN10 | 0.19 | −0.06 | −0.31 ** | 0.00 | 0.21 | NA |
TN5 | 0.04 | −0.04 | −0.10 | 0.06 | 0.23 * | NA | |
TN1 | 0.00 | −0.02 | 0.00 | 0.02 | 0.03 | NA | |
1991–2024 | TN10 | −0.72 ** | −0.14 | −0.05 | −0.33 | −0.16 | 0.16 |
TN5 | −0.63 ** | −0.13 | −0.14 | −0.22 | −0.09 | 0.07 | |
TN1 | −0.21 ** | 0.00 | 0.00 | 0.00 | −0.05 | 0.00 |
Threshold | Day | Barishal | Kushtia | Faridpur | Jashore | Khulna | Patuakhali |
---|---|---|---|---|---|---|---|
TX90/TN10 | Hot | 80.7 ± 12.9 | 104.0 ± 18.1 | 92.1 ± 15.0 | 73.8 ± 11.2 | 149.1 ± 19.9 | 30.1 ± 4.7 |
Normal | 67.8 ± 13.3 | 85.0 ± 17.1 | 73.5 ± 14.5 | 58.0 ± 12.0 | 123.7 ± 20.6 | 25.4 ± 5.3 | |
Cold | 52.0 ± 5.5 | 66.7 ± 5.7 | 59.8 ± 4.4 | 42.8 ± 3.2 | 99.5 ± 7.8 | 19.1 ± 1.2 | |
TX95/TN5 | Hot | 82.0 ± 13.9 | 108.1 ± 16.5 | 94.9 ± 17.2 | 75.0 ± 11.1 | 153.6 ± 19.9 | 30.7 ± 4.6 |
Normal | 68.5 ± 13.7 | 85.3 ± 17.9 | 76.1 ± 15.8 | 57.7 ± 12.3 | 123.6 ± 21.5 | 25.3 ± 5.4 | |
Cold | 51.8 ± 5.8 | 65.6 ± 6.3 | 60.1 ± 4.8 | 42.7 ± 2.7 | 100.2 ± 6.0 | 19.1 ± 1.3 | |
TX99/TN1 | Hot | 87.9 ± 14.9 | 114.8 ± 10.7 | 100.9 ± 15.2 | 79.9 ± 8.1 | 161.1 ± 15.7 | 32.2 ± 4.6 |
Normal | 69.1 ± 14.2 | 85.1 ± 18.3 | 76.7 ± 16.3 | 58.1 ± 12.9 | 124.5 ± 22.3 | 25.6 ± 5.6 | |
Cold | 52.9 ± 6.7 | 67.7 ± 6.1 | 60.0 ± 5.4 | 43.1 ± 0.4 | 101.3 ± 3.9 | 19.5 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Aryal, S.; Hassan, Q.K. Shifting Electricity Demand Under Temperature Extremes in Bangladesh. Earth 2025, 6, 127. https://doi.org/10.3390/earth6040127
Alam MM, Aryal S, Hassan QK. Shifting Electricity Demand Under Temperature Extremes in Bangladesh. Earth. 2025; 6(4):127. https://doi.org/10.3390/earth6040127
Chicago/Turabian StyleAlam, Md. Mahbub, Sharad Aryal, and Quazi K. Hassan. 2025. "Shifting Electricity Demand Under Temperature Extremes in Bangladesh" Earth 6, no. 4: 127. https://doi.org/10.3390/earth6040127
APA StyleAlam, M. M., Aryal, S., & Hassan, Q. K. (2025). Shifting Electricity Demand Under Temperature Extremes in Bangladesh. Earth, 6(4), 127. https://doi.org/10.3390/earth6040127