A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa
Abstract
:1. Introduction
2. Factors That Influence the Adoption of CSA Practices in Sub-Saharan Africa
2.1. Socio-Economic Factors
2.1.1. Farmers’ Education Level
2.1.2. Gender
2.1.3. Farmer’s Age and Experience
2.1.4. Membership/Affiliation with Social Groups
2.1.5. Farmer’s Perception and Attitudes
2.1.6. Family Size and Cost of Labor
2.1.7. Access to Credit/Finance and Affordability
2.1.8. On-Farm and Off-Farm Income
2.2. Bio-Physical Factors
2.2.1. Farm Size and Location
2.2.2. Access to Natural Resources
2.2.3. Climate Condition and Access to Climate Information
2.2.4. The Cost of Practice and Its Benefit
2.3. Institutional Factors
2.3.1. Government Interventions
2.3.2. Access to Information and Extension Services
2.3.3. Land Tenure
2.3.4. Agricultural Policies
3. Interrelationship Between the Influencing Factors
4. Conclusions and Future Perspectives
- (i)
- Increase research and extension services to develop and promote locally appropriate CSA practices.
- (ii)
- To facilitate the sharing of information and experiences, smallholder farmers should be encouraged to form or join groups.
- (iii)
- Sub-Saharan African governments should formulate policies focused on addressing the constraints of adoption. These policies should be coherent across local, national and regional boundaries and sectors.
- (iv)
- Meteorological agencies should be adequately resourced and trained to disseminate accurate and timely weather information.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
CSA | Climate Smart Agriculture |
GHG | Greenhouse gas |
SSA | Sub-Saharan Africa |
References
- Kamara, A.; Conteh, A.; Rhodes, E.R.; Cooke, R.A. The relevance of smallholder farming to African agricultural growth and development. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14043–14065. [Google Scholar] [CrossRef]
- Choruma, D.J.; Dirwai, T.L.; Mutenje, M.; Mustafa, M.; Chimonyo, V.G.; Jacobs-Mata, I.; Mabhaudhi, T. Digitalisation in agriculture: A scoping review of technologies in practice, challenges, and opportunities for smallholder farmers in sub-saharan africa. J. Agric. Food Res. 2024, 18, 101286. [Google Scholar] [CrossRef]
- Fadeyi, O.A.; Ariyawardana, A.; Aziz, A.A. Factors influencing technology adoption among smallholder farmers: A systematic review in Africa. J. Agric. Rural. Dev. Trop. Subtrop. 2022, 123, 13–30. [Google Scholar] [CrossRef]
- Agarwal, B. Women and technological change in agriculture: The Asian and African experience. In Technology and Rural Women; Routledge: London, UK, 2022; pp. 67–114. [Google Scholar]
- Giller, K.E.; Delaune, T.; Silva, J.V.; van Wijk, M.; Hammond, J.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; Taulya, G.; Chikowo, R.; et al. Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options? Food Secur. 2021, 13, 1431–1454. [Google Scholar] [CrossRef]
- Mwinkom, F.X.; Damnyag, L.; Abugre, S.; Alhassan, S.I. Factors influencing climate change adaptation strategies in North-Western Ghana: Evidence of farmers in the Black Volta Basin in Upper West region. SN Appl. Sci. 2021, 3, 548. [Google Scholar] [CrossRef]
- Nyang’au, J.O.; Mohamed, J.H.; Mango, N.; Makate, C.; Wangeci, A.N. Smallholder farmers’ perception of climate change and adoption of climate smart agriculture practices in Masaba South Sub-county, Kisii, Kenya. Heliyon 2021, 7, e06789. [Google Scholar] [CrossRef]
- Ojo, T.O.; Adetoro, A.A.; Ogundeji, A.A.; Belle, J.A. Quantifying the determinants of climate change adaptation strategies and farmers’ access to credit in South Africa. Sci. Total Environ. 2021, 792, 148499. [Google Scholar] [CrossRef]
- Kitavi, E.K.; Ndung’u, C.K.; Mwangi, M. Temporal variation in soil quality and carbon sequestration potential of different cropping systems in Arid and Semi-Arid parts of South Eastern Kenya. East. Afr. J. Agric. Biotechnol. 2024, 7, 221–234. [Google Scholar] [CrossRef]
- Amede, T.; Konde, A.A.; Muhinda, J.J.; Bigirwa, G. Sustainable farming in practice: Building resilient and profitable smallholder agricultural systems in Sub-Saharan Africa. Sustainability 2023, 15, 5731. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Adesete, A.A.; Olanubi, O.E.; Dauda, R.O. Climate change and food security in selected Sub-Saharan African Countries. Environ. Dev. Sustain. 2023, 25, 14623–14641. [Google Scholar] [CrossRef] [PubMed]
- Diop, M.; Chirinda, N.; Beniaich, A.; El Gharous, M.; El Mejahed, K. Soil and water conservation in Africa: State of play and potential role in tackling soil degradation and building soil health in agricultural lands. Sustainability 2022, 14, 13425. [Google Scholar] [CrossRef]
- Tefera, M.L.; Carletti, A.; Altea, L.; Rizzu, M.; Migheli, Q.; Seddaiu, G. Land degradation and the upper hand of sustainable agricultural intensification in sub-Saharan Africa-A systematic review. J. Agric. Rural. Dev. Trop. Subtrop. 2024, 125, 63–83. [Google Scholar] [CrossRef]
- Kifle, T.; Ayal, D.Y.; Mulugeta, M. Factors influencing farmers adoption of climate smart agriculture to respond climate variability in Siyadebrina Wayu District, Central highland of Ethiopia. Clim. Serv. 2022, 26, 100290. [Google Scholar] [CrossRef]
- Bjornlund, V.; Bjornlund, H.; van Rooyen, A. Why food insecurity persists in sub-Saharan Africa: A review of existing evidence. Food Secur. 2022, 14, 845–864. [Google Scholar] [CrossRef]
- World Bank Data Catalogue. 2025. Available online: https://datacatalog.worldbank.org/indicator/e4a26c2f-c0ce-eb11-bacc-000d3a3b9510/Agriculture--forestry--and-fishing--value-added----of-GDP (accessed on 5 May 2025).
- Nangombe, S.; Zhou, T.; Zhang, W.; Wu, B.; Hu, S.; Zou, L.; Li, D. Record-breaking climate extremes in Africa under stabilized 1.5 C and 2 C global warming scenarios. Nat. Clim. Chang. 2018, 8, 375–380. [Google Scholar] [CrossRef]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef]
- Parker, L.; Bourgoin, C.; Martinez-Valle, A.; Läderach, P. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLoS ONE 2019, 14, e0213641. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of soil properties and earthworms in organic and conventional farming systems after seven years of dairy farm conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Omotoso, A.B.; Letsoalo, S.; Olagunju, K.O.; Tshwene, C.S.; Omotayo, A.O. Climate change and variability in sub-Saharan Africa: A systematic review of trends and impacts on agriculture. J. Clean. Prod. 2023, 414, 137487. [Google Scholar] [CrossRef]
- Bakht, S.; Safdar, K.; Khair, K.U.; Fatima, A.; Fayyaz, A.; Ali, S.M.; Munir, H.; Farid, M. The response of major food crops to drought stress: Physiological and biochemical responses. In Agronomic Crops: Volume 3: Stress Responses Tolerance; Springer: Singapore, 2020; pp. 93–115. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Drought and its impacts on small-scale farmers in sub-Saharan Africa: A review. S. Afr. Geogr. J. 2021, 103, 319–341. [Google Scholar] [CrossRef]
- Erdaw, M.M. Contribution, prospects and trends of livestock production in sub-Saharan Africa: A review. Int. J. Agric. Sustain. 2023, 21, 2247776. [Google Scholar] [CrossRef]
- Alimagham, S.; van Loon, M.P.; Ramirez-Villegas, J.; Adjei-Nsiah, S.; Baijukya, F.; Bala, A.; Chikowo, R.; Silva, J.V.; Soulé, A.M.; Taulya, G.; et al. Climate change impact and adaptation of rainfed cereal crops in sub-Saharan Africa. Eur. J. Agron. 2024, 155, 127137. [Google Scholar] [CrossRef]
- Kakpo, A.; Mills, B.F.; Brunelin, S. Weather shocks and food price seasonality in Sub-Saharan Africa: Evidence from Niger. Food Policy 2022, 112, 102347. [Google Scholar] [CrossRef]
- Bouteska, A.; Sharif, T.; Bhuiyan, F.; Abedin, M.Z. Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. J. Clean. Prod. 2024, 449, 141793. [Google Scholar] [CrossRef]
- Alvar-Beltrán, J.; Dibari, C.; Ferrise, R.; Bartoloni, N.; Dalla Marta, A. Modelling climate change impacts on crop production in food insecure regions: The case of Niger. Eur. J. Agron. 2023, 142, 126667. [Google Scholar] [CrossRef]
- Tetteh, B.; Baidoo, S.T.; Takyi, P.O. The effects of climate change on food production in Ghana: Evidence from Maki (2012) cointegration and frequency domain causality models. Cogent Food Agric. 2022, 8, 2111061. [Google Scholar] [CrossRef]
- Yéo, W.E.; Goula, B.T.A.; Diekkrüger, B.; Afouda, A. Vulnerability and adaptation to climate change in the Comoe River Basin (West Africa). SpringerPlus 2016, 5, 847. [Google Scholar] [CrossRef]
- Masipa, T. The impact of climate change on food security in South Africa: Current realities and challenges ahead. Jàmbá J. Disaster Risk Stud. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Fadina, A.M.R.; Barjolle, D. Farmers’ adaptation strategies to climate change and their implications in the Zou Department of South Benin. Environments 2018, 5, 15. [Google Scholar] [CrossRef]
- Nyathi, D.; Ndlovu, J.; Phiri, K.; Muzvaba, N.E. Climate change and food insecurity: Risks and responses in Bulilima District of Zimbabwe. In Handbook of Climate Change Across the Food Supply Chain; Springer International Publishing: Cham, Switzerland, 2022; pp. 421–436. [Google Scholar] [CrossRef]
- Kalovoto, D.M.; Kimiti, J.M.; Manono, B.O. Influence of women empowerment on adoption of agroforestry technologies to counter climate change and variability in semi-arid Makueni County, Kenya. Int. J. Environ. Sci. Nat. Resour. 2020, 24, 47–55. [Google Scholar]
- Devi, S. Climate change driving east Africa towards famine. Lancet 2022, 400, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.J.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Zhu, H. A systematic literature review of factors influencing the adoption of climate-smart agricultural practices. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 2. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects. 2019. Available online: https://population.un.org/wpp (accessed on 15 March 2024).
- Kim, D.G.; Grieco, E.; Bombelli, A.; Hickman, J.E.; Sanz-Cobena, A. Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review. Food Secur. 2021, 13, 457–476. [Google Scholar] [CrossRef]
- United Nations. We Can End Poverty—Millenium Development Goals and Beyond. 2015. Available online: http://www.un.org/millenniumgoals/ (accessed on 15 March 2025).
- FAO. Climate smart agriculture: Policies, practices and financing for food security, adaptation and mitigation. In Proceedings of the Hague Conference on Agriculture, Food Security and Climate Change, Hague, The Netherlands, 31 October–5 November 2010. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Torquebiau, E.F.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A review of climate-smart agriculture research and applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Obi, A. The role and perspective of climate smart agriculture in Africa: A scientific review. Sustainability 2022, 14, 2317. [Google Scholar] [CrossRef]
- Ariom, T.O.; Dimon, E.; Nambeye, E.; Diouf, N.S.; Adelusi, O.O.; Boudalia, S. Climate-smart agriculture in African countries: A Review of strategies and impacts on smallholder farmers. Sustainability 2022, 14, 11370. [Google Scholar] [CrossRef]
- Okoronkwo, D.J.; Ozioko, R.I.; Ugwoke, R.U.; Nwagbo, U.V.; Nwobodo, C.; Ugwu, C.H.; Okoro, G.G.; Mbah, E.C. Climate smart agriculture? Adaptation strategies of traditional agriculture to climate change in sub-Saharan Africa. Front. Clim. 2024, 6, 1272320. [Google Scholar] [CrossRef]
- Khasabulli, B.D.; Mutisya, M.D.; Anyango, S.P.; Manono, B.O.; Odhiambo, D.G. Soil Microbial Biomass, Microbial Population and Diversity in Maize-Banana Based Agroforestry System in Kisii County, Kenya. Asian J. Res. Crop Sci. 2023, 8, 230–239. [Google Scholar] [CrossRef]
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Bashiru, M.; Ouedraogo, M.; Ouedraogo, A.; Läderach, P. Smart farming technologies for sustainable agriculture: A review of the promotion and adoption strategies by smallholders in Sub-Saharan Africa. Sustainability 2024, 16, 4817. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Kiboi, M.; Macharia, J.; Ng’etich, O.K.; Kosgei, D.K.; Mulianga, B.; Okoti, M.; Ngetich, F.K. Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: Do socioeconomic, institutional, and biophysical factors matter? Heliyon 2022, 8, e08677. [Google Scholar] [CrossRef] [PubMed]
- Ceci, P.; Monforte, L.; Perelli, C.; Cicatiello, C.; Branca, G.; Franco, S.; Diallo, F.B.; Blasi, E.; Scarascia Mugnozza, G. Smallholder farmers’ perception of climate change and drivers of adaptation in agriculture: A case study in Guinea. Rev. Dev. Econ. 2021, 25, 1991–2012. [Google Scholar] [CrossRef]
- Ali, E. Farm households’ adoption of climate-smart practices in subsistence agriculture: Evidence from Northern Togo. Environ. Manag. 2021, 67, 949–962. [Google Scholar] [CrossRef]
- Akano, O.; Modirwa, S.; Oluwasemire, K.; Oladele, O. Awareness and perception of climate change by smallholder farmers in two agroecological zones of Oyo state Southwest Nigeria. GeoJournal 2023, 88, 39–68. [Google Scholar] [CrossRef]
- Batumike, R.; Bulonvu, F.; Imani, G.; Akonkwa, D.; Gahigi, A.; Klein, J.A.; Marchant, R.; Cuni-Sanchez, A. Climate change and hunter-gatherers in montane eastern DR Congo. Clim. Dev. 2022, 14, 431–442. [Google Scholar] [CrossRef]
- Elum, Z.A.; Modise, D.M.; Marr, A. Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa. Clim. Risk Manag. 2017, 16, 246–257. [Google Scholar] [CrossRef]
- Dietz, T. Political events and public views on climate change. Clim. Chang. 2020, 161, 1–8. [Google Scholar] [CrossRef]
- Bedeke, S.B. Climate change vulnerability and adaptation of crop producers in sub-Saharan Africa: A review on concepts, approaches and methods. Environ. Dev. Sustain. 2023, 25, 1017–1051. [Google Scholar] [CrossRef]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Zakaria, A.; Azumah, S.B.; Appiah-Twumasi, M.; Dagunga, G. Adoption of climate-smart agricultural practices among farm households in Ghana: The role of farmer participation in training programmes. Technol. Soc. 2020, 63, 101338. [Google Scholar] [CrossRef]
- Karume, K.; Mondo, J.M.; Chuma, G.B.; Ibanda, A.; Bagula, E.M.; Aleke, A.L.; Ndjadi, S.; Ndusha, B.; Ciza, P.A.; Cizungu, N.C.; et al. Current practices and prospects of climate-smart agriculture in Democratic Republic of Congo: A review. Land 2022, 11, 1850. [Google Scholar] [CrossRef]
- Behailu, G.; Ayal, D.Y.; Zeleke, T.T.; Ture, K.; Bantider, A. Comparative analysis of meteorological records of climate variability and farmers’ perceptions in sekota woreda, Ethiopia. Clim. Serv. 2021, 23, 100239. [Google Scholar] [CrossRef]
- Olutumise, A.I. Impact of credit on the climate adaptation utilization among food crop farmers in Southwest, Nigeria: Application of endogenous treatment Poisson regression model. Agric. Food Econ. 2023, 11, 7. [Google Scholar] [CrossRef]
- Alhassan, U.; Haruna, E.U. Rural farmers’ perceptions of and adaptations to climate change in Sub-Saharan Africa: Does climate-smart agriculture (CSA) matter in Nigeria and Ethiopia? Environ. Econ. Policy Stud. 2024, 26, 613–652. [Google Scholar] [CrossRef]
- Ewulo, T.A.; Akinseye, F.M.; Teme, N.; Agele, S.O.; Yessoufou, N.; Kumar, S. Factors driving Climate-Smart Agriculture adoption: A study of smallholder farmers in Koumpentum, Senegal. Front. Agron. 2025, 7, 1552720. [Google Scholar] [CrossRef]
- Castaing, P. Joint liability and adaptation to climate change: Evidence from Burkinabe cooperatives. Eur. Rev. Agric. Econ. 2021, 48, 502–537. [Google Scholar] [CrossRef]
- Mnukwa, M.L.; Mdoda, L.; Mudhara, M. Assessing the adoption and impact of climate-smart agricultural practices on smallholder maize farmers’ livelihoods in Sub-Saharan Africa: A systematic review. Front. Sustain. Food Syst. 2025, 9, 1543805. [Google Scholar] [CrossRef]
- Khasabulli, B.D.; David, M.M.; Phoebe, S.A.; Manono, B.O. Soil carbon and nutrient dynamics in a maize-banana based agroforestry system in Kisii County, Kenya. IAR J. Agri. Res. Life Sci. 2023, 4, 14–31. [Google Scholar]
- Ouédraogo, M.; Houessionon, P.; Zougmoré, R.B.; Partey, S.T. Uptake of climate-smart agricultural technologies and practices: Actual and potential adoption rates in the climate-smart village site of Mali. Sustainability 2019, 11, 4710. [Google Scholar] [CrossRef]
- Mihiretu, A.; Okoyo, E.N.; Lemma, T. Small holder farmers’ perception and response mechanisms to climate change: Lesson from Tekeze lowland goat and sorghum livelihood zone, Ethiopia. Cogent Food Agric. 2020, 6, 1763647. [Google Scholar] [CrossRef]
- Mutenje, M.J.; Farnworth, C.R.; Stirling, C.; Thierfelder, C.; Mupangwa, W.; Nyagumbo, I. A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology. Ecol. Econ. 2019, 163, 126–137. [Google Scholar] [CrossRef]
- Gwambene, B.; Saria, J.A.; Jiwaji, N.T.; Pauline, N.M.; Msofe, N.K.; Mussa, K.R.; Tegeje, J.A.; Messo, I.; Mwanga, S.S.; Shija, S.M. Smallholder farmers’ practices and understanding of climate change and climate-smart agriculture in the Southern Highlands of Tanzania. J. Resour. Dev. Manag. 2015, 13, 37–47. [Google Scholar]
- Gashure, S.; Wana, D. Smallholders’ adoption of climate-smart practices in Konso, Ethiopia. Int. J. Environ. Stud. 2023, 80, 1349–1360. [Google Scholar] [CrossRef]
- Onyango, C.M.; Nyaga, J.M.; Wetterlind, J.; Söderström, M.; Piikki, K. Precision agriculture for resource use efficiency in smallholder farming systems in sub-saharan africa: A systematic review. Sustainability 2021, 13, 1158. [Google Scholar] [CrossRef]
- Hundera, H.; Mpandeli, S.; Bantider, A. Smallholder farmers’ awareness and perceptions of climate change in Adama district, central rift valley of Ethiopia. Weather. Clim. Extrem. 2019, 26, 100230. [Google Scholar] [CrossRef]
- Mujeyi, A.; Mudhara, M.; Mutenje, M.J. Adoption patterns of Climate-Smart Agriculture in integrated crop-livestock smallholder farming systems of Zimbabwe. Clim. Dev. 2022, 14, 399–408. [Google Scholar] [CrossRef]
- Diro, S.; Tesfaye, A.; Erko, B. Determinants of adoption of climate-smart agricultural technologies and practices in the coffee-based farming system of Ethiopia. Agric. Food Secur. 2022, 11, 42. [Google Scholar] [CrossRef]
- Musyoki, M.E.; Busienei, J.R.; Gathiaka, J.K.; Karuku, G.N. Linking farmers’ risk attitudes, livelihood diversification and adoption of climate smart agriculture technologies in the Nyando basin, South-Western Kenya. Heliyon 2022, 8, e09305. [Google Scholar] [CrossRef] [PubMed]
- Autio, A.; Johansson, T.; Motaroki, L.; Minoia, P.; Pellikka, P. Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. Agric. Syst. 2021, 194, 103284. [Google Scholar] [CrossRef]
- Jellason, N.P.; Conway, J.S.; Baines, R.N. Understanding impacts and barriers to adoption of climate-smart agriculture (CSA) practices in North-Western Nigerian drylands. J. Agric. Educ. Ext. 2021, 27, 55–72. [Google Scholar] [CrossRef]
- Manono, B.O. Effects of Irrigation, Effluent Dispersal and Organic Farming on Earthworms and Soil Microbes in New Zealand Dairy Farms. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2014. Available online: https://hdl.handle.net/10523/5097 (accessed on 5 May 2025).
- Mashi, S.A.; Inkani, A.I.; Oghenejabor, O.D. Determinants of awareness levels of climate smart agricultural technologies and practices of urban farmers in Kuje, Abuja, Nigeria. Technol. Soc. 2022, 70, 102030. [Google Scholar] [CrossRef]
- Hasan, M.K.; Kumar, L. Comparison between meteorological data and farmer perceptions of climate change and vulnerability in relation to adaptation. J. Environ. Manag. 2019, 237, 54–62. [Google Scholar] [CrossRef]
- Djido, A.; Zougmoré, R.B.; Houessionon, P.; Ouédraogo, M.; Ouédraogo, I.; Diouf, N.S. To what extent do weather and climate information services drive the adoption of climate-smart agriculture practices in Ghana? Clim. Risk Manag. 2021, 32, 100309. [Google Scholar] [CrossRef]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of climate-smart agriculture technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Igberi, C.O.; Aligbe, J.O.; Iruo, F.A.; Amadi, M.U.; Iheanacho, S.C.; Osuji, E.E.; Munonye, J.; Uwadoka, C. Climate change adaptation actions by fish farmers: Evidence from the Niger Delta Region of Nigeria. Aust. J. Agric. Resour. Econ. 2020, 64, 347–375. [Google Scholar] [CrossRef]
- Badi, S.; Murtagh, N. Green supply chain management in construction: A systematic literature review and future research agenda. J. Clean. Prod. 2019, 223, 312–322. [Google Scholar] [CrossRef]
- Zeleke, T.; Beyene, F.; Deressa, T.; Yousuf, J.; Kebede, T. Smallholder farmers’ perception of climate change and choice of adaptation strategies in East Hararghe Zone, Eastern Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2022, 15, 515–536. [Google Scholar] [CrossRef]
- Mutombo, P.; Musarandega, H. Unpacking the determinants of climate-smart agriculture adoption by smallholder farmers in Ward 10, Zvimba District, Zimbabwe. Eur. J. Dev. Stud. 2023, 3, 74–84. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Morgan, R. Effects of irrigation, dairy effluent dispersal and stocking on soil properties of the Waimate District, New Zealand. Geoderma Reg. 2016, 7, 59–66. [Google Scholar] [CrossRef]
- Budhathoki, N.K.; Zander, K.K. Nepalese farmers’ climate change perceptions, reality and farming strategies. Clim. Dev. 2020, 12, 204–215. [Google Scholar] [CrossRef]
- Zondo, W.N.; Ndoro, J.T.; Mlambo, V. The Adoption and Impact of Climate-Smart Water Management Technologies in Smallholder Farming Systems of Sub-Saharan Africa: A Systematic Literature Review. Water 2024, 16, 2787. [Google Scholar] [CrossRef]
- Zougmoré, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M.; Jalloh, A. Toward climate-smart agriculture in West Africa: A review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agric. Food Secur. 2016, 5, 26. [Google Scholar] [CrossRef]
- Egeru, A.; Bbosa, M.M.; Siya, A.; Asiimwe, R.; Mugume, I. Micro-level analysis of climate-smart agriculture adoption and effect on household food security in semi-arid Nakasongola District in Uganda. Environ. Res. Clim. 2022, 1, 025003. [Google Scholar] [CrossRef]
- Kebenei, M.C.; Mucheru-Muna, M.; Muriu-Ng’ang’a, F.; Ndung’u, C.K. Zai technology and integrated nutrient management for improved soil fertility and increased sorghum yields in Kitui county, Kenya. Front. Sustain. Food Syst. 2021, 5, 714212. [Google Scholar] [CrossRef]
- Manono, B.O. New Zealand dairy farm effluent, irrigation and soil biota management for sustainability: Farmer priorities and monitoring. Cogent Food Agric. 2016, 2, 1221636. [Google Scholar] [CrossRef]
- Belay, A.; Mirzabaev, A.; Recha, J.W.; Oludhe, C.; Osano, P.M.; Berhane, Z.; Olaka, L.A.; Tegegne, Y.T.; Demissie, T.; Mutsami, C.; et al. Does climate-smart agriculture improve household income and food security? Evidence from Southern Ethiopia. Environ. Dev. Sustain. 2024, 26, 16711–16738. [Google Scholar] [CrossRef]
- Waaswa, A.; Oywaya Nkurumwa, A.; Mwangi Kibe, A.; Ngeno Kipkemoi, J. Climate-Smart agriculture and potato production in Kenya: Review of the determinants of practice. Clim. Dev. 2022, 14, 75–90. [Google Scholar] [CrossRef]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate smart agriculture? Assessing the adaptation implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdul-Rahaman, A.; Amikuzuno, J. Climate change adaptation strategies, farm performance and poverty reduction among smallholder farming households in Ghana. Clim. Dev. 2021, 13, 736–747. [Google Scholar] [CrossRef]
- Zizinga, A.; Mwanjalolo, J.G.M.; Tietjen, B.; Bedadi, B.; Pathak, H.; Gabiri, G.; Beesigamukama, D. Climate change and maize productivity in Uganda: Simulating the impacts and alleviation with climate smart agriculture practices. Agric. Syst. 2022, 199, 103407. [Google Scholar] [CrossRef]
- Karanja Ng’ang’a, S.; Miller, V.; Girvetz, E. Is investment in Climate-Smart-agricultural practices the option for the future? Cost and benefit analysis evidence from Ghana. Heliyon 2021, 7, e06653. [Google Scholar] [CrossRef]
- Komba, C.; Muchapondwa, E. Adaptation to climate change by smallholder farmers in Tanzania. In Agricultural Adaptation to Climate Change in Africa; Routledge: London, UK, 2018; pp. 129–168. [Google Scholar]
- Sileshi, M.; Kadigi, R.; Mutabazi, K.; Sieber, S. Determinants for adoption of physical soil and water conservation measures by smallholder farmers in Ethiopia. Int. Soil Water Conserv. Res. 2019, 7, 354–361. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Gardezi, M.; Vij, S. Smallholder farmers’ engagement with climate smart agriculture in Africa: Role of local knowledge and upscaling. Clim. Policy 2022, 22, 411–426. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Shikuku, K.M.; Winowiecki, L.; Twyman, J.; Eitzinger, A.; Perez, J.G.; Mwongera, C.; Läderach, P. Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa. Clim. Risk Manag. 2017, 16, 234–245. [Google Scholar] [CrossRef]
- Tessema, Y.A.; Joerin, J.; Patt, A. Factors affecting smallholder farmers’ adaptation to climate change through non-technological adjustments. Environ. Dev. 2018, 25, 33–42. [Google Scholar] [CrossRef]
- Maddison, D. The Perception of and Adaptation to Climate Change in Africa; World Bank Publications: Washington, DC, USA, 2007; Volume 4308. [Google Scholar]
- Sanogo, K.; Touré, I.; Arinloye, D.D.; Dossou-Yovo, E.R.; Bayala, J. Factors affecting the adoption of climate-smart agriculture technologies in rice farming systems in Mali, West Africa. Smart Agric. Technol. 2023, 5, 100283. [Google Scholar] [CrossRef]
- Makate, M.; Nelson, N.; Makate, C. Farm household typology and adoption of climate-smart agriculture practices in smallholder farming systems of southern Africa. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 421–439. [Google Scholar] [CrossRef]
- Mogaka, B.O.; Bett, H.K.; Karanja Ng’ang’a, S. Socioeconomic factors influencing the choice of climate-smart soil practices among farmers in western Kenya. J. Agric. Food Res. 2021, 5, 100168. [Google Scholar] [CrossRef]
- Blackden, C.M.; Wodon, Q. (Eds.) Gender, Time Use, and Poverty in Sub-Saharan Africa; World Bank Publications: Washington, DC, USA, 2006; Volume 73. [Google Scholar]
- Murray, U.; Gebremedhin, Z.; Brychkova, G.; Spillane, C. Smallholder farmers and climate smart agriculture: Technology and labor-productivity constraints amongst women smallholders in Malawi. Gend. Technol. Dev. 2016, 20, 117–148. [Google Scholar] [CrossRef] [PubMed]
- Foster, L.; Szilagyi, K.; Wairegi, A.; Oguamanam, C.; de Beer, J. Smart farming and artificial intelligence in East Africa: Addressing indigeneity, plants, and gender. Smart Agric. Technol. 2023, 3, 100132. [Google Scholar] [CrossRef]
- Nyahunda, L.; Makhubele, J.C.; Mabvurira, V.; Matlakala, F.K. Vulnerabilities and inequalities experienced by women in the climate change discourse in South Africa’s rural communities: Implications for social work. Br. J. Soc. Work. 2021, 51, 2536–2553. [Google Scholar] [CrossRef]
- Phiri, A.T.; Toure, H.M.; Kipkogei, O.; Traore, R.; Afokpe, P.M.; Lamore, A.A. A review of gender inclusivity in agriculture and natural resources management under the changing climate in sub-Saharan Africa. Cogent Soc. Sci. 2022, 8, 2024674. [Google Scholar] [CrossRef]
- Ogisi, O.D.; Begho, T. Adoption of climate-smart agricultural practices in sub-Saharan Africa: A review of the progress, barriers, gender differences and recommendations. Farming Syst. 2023, 1, 100019. [Google Scholar] [CrossRef]
- Feola, G.; Lerner, A.M.; Jain, M.; Montefrio, M.J.F.; Nicholas, K.A. Researching farmer behaviour in climate change adaptation and sustainable agriculture: Lessons learned from five case studies. J. Rural. Stud. 2015, 39, 74–84. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Amanor, K. Typologies and drivers of the adoption of climate smart agricultural practices by smallholder farmers in rural Ghana. Curr. Res. Environ. Sustain. 2023, 5, 100223. [Google Scholar] [CrossRef]
- Tariq, H.; Pathirage, C.; Fernando, T. Measuring community disaster resilience at local levels: An adaptable resilience framework. Int. J. Disaster Risk Reduct. 2021, 62, 102358. [Google Scholar] [CrossRef]
- Waaswa, A.; Oywaya Nkurumwa, A.; Mwangi Kibe, A.; Ng’eno Kipkemoi, J. Adapting agriculture to climate change: Institutional determinants of adoption of climate-smart agriculture among smallholder farmers in Kenya. Cogent Food Agric. 2024, 10, 2294547. [Google Scholar] [CrossRef]
- Regasa, D.T.; Akirso, N.A. Determinants of climate change mitigation and adaptation strategies: An application of protection motivation theory. Rural. Sustain. Res. 2019, 42, 9–25. [Google Scholar] [CrossRef]
- Brüssow, K.; Gornott, C.; Faße, A.; Grote, U. The link between smallholders’ perception of climatic changes and adaptation in Tanzania. Clim. Chang. 2019, 157, 545–563. [Google Scholar] [CrossRef]
- Adaawen, S. Understanding climate change and drought perceptions, impact and responses in the rural Savannah, West Africa. Atmosphere 2021, 2, 594. [Google Scholar] [CrossRef]
- Leviston, Z.; Walker, I. Beliefs and denials about climate change: An Australian perspective. Ecopsychology 2012, 4, 277–285. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E. Farmers’ pro-environmental behavior under drought: Application of protection motivation theory. J. Arid. Environ. 2016, 127, 128–136. [Google Scholar] [CrossRef]
- Soubry, B.; Sherren, K.; Thornton, T.F. Are we taking farmers seriously? A review of the literature on farmer perceptions and climate change, 2007–2018. J. Rural. Stud. 2020, 74, 210–222. [Google Scholar] [CrossRef]
- Dunne, M.; Humphreys, S.; Szyp, C. Education and work: Children’s lives in rural sub-Saharan Africa. Child. Work Afr. Agric. 2023, 81. [Google Scholar]
- Tadesse, B.; Ahmed, M. Impact of adoption of climate smart agricultural practices to minimize production risk in Ethiopia: A systematic review. J. Agric. Food Res. 2023, 13, 100655. [Google Scholar] [CrossRef]
- Kpadonou, R.A.B.; Owiyo, T.; Barbier, B.; Denton, F.; Rutabingwa, F.; Kiema, A. Advancing climate-smart-agriculture in developing drylands: Joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land. Use Policy 2017, 61, 196–207. [Google Scholar] [CrossRef]
- Ehiakpor, D.S.; Danso-Abbeam, G.; Mubashiru, Y. Adoption of interrelated sustainable agricultural practices among smallholder farmers in Ghana. Land. Use Policy 2021, 101, 105142. [Google Scholar] [CrossRef]
- Araya, T.; Ochsner, T.E.; Mnkeni, P.N.; Hounkpatin, K.O.; Amelung, W. Challenges and constraints of conservation agriculture adoption in smallholder farms in sub-Saharan Africa: A review. Int. Soil Water Conserv. Res. 2024. [Google Scholar] [CrossRef]
- Langyintuo, A. Smallholder farmers’ access to inputs and finance in Africa. In The Role of Smallholder Farms in Food and Nutrition Security; Springer: Cham, Switzerland, 2020; pp. 133–152. [Google Scholar] [CrossRef]
- Morepje, M.T.; Sithole, M.Z.; Msweli, N.S.; Agholor, A.I. The influence of E-commerce platforms on sustainable agriculture practices among smallholder farmers in Sub-Saharan Africa. Sustainability 2024, 16, 6496. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Adeagbo, O.A.; Ojo, T.O.; Adetoro, A.A. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-west, Nigeria. Heliyon 2021, 7, e06231. [Google Scholar] [CrossRef] [PubMed]
- Finizola e Silva, M.; Van Schoubroeck, S.; Cools, J.; Van Passel, S. A systematic review identifying the drivers and barriers to the adoption of climate-smart agriculture by smallholder farmers in Africa. Front. Environ. Econ. 2024, 3, 1356335. [Google Scholar] [CrossRef]
- Juana, J.S.; Kahaka, Z.; Okurut, F.N. Farmers’ perceptions and adaptations to climate change in sub-Sahara Africa: A synthesis of empirical studies and implications for public policy in African agriculture. J. Agric. Sci. 2013, 5, 121. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Randall, B.; Deribe, R. Household level determinants of agroforestry practices adoption in rural Ethiopia. For. Trees Livelihoods 2019, 28, 194–213. [Google Scholar] [CrossRef]
- Abdallah, A.H. Effects of infrastructure on the adoption of sustainable agricultural practices in sub-Saharan Africa. Circ. Agric. Syst. 2025, 5, e005. [Google Scholar] [CrossRef]
- Steinhübel, L.; Wegmann, J.; Mußhoff, O. Digging deep and running dry—The adoption of borewell technology in the face of climate change and urbanization. Agric. Econ. 2020, 51, 685–706. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. The dynamics of climate change adaptation in Sub-Saharan Africa: A review of climate-smart agriculture among small-scale farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, H.E. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Ayele, S.; Wield, D. Science and Technology capacity building and partnership in African agriculture: Perspectives on Mali and Egypt. J. Int. Dev. 2005, 17, 631–646. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.E. Factors determining the adoption of strategies used by smallholder farmers to cope with climate variability in the Eastern Free State, South Africa. Agriculture 2020, 10, 410. [Google Scholar] [CrossRef]
- Onyeneke, R.U.; Igberi, C.O.; Uwadoka, C.O.; Aligbe, J.O. Status of climate-smart agriculture in southeast Nigeria. GeoJournal 2018, 83, 333–346. [Google Scholar] [CrossRef]
- Kibue, G.W.; Pan, G.; Joseph, S.; Xiaoyu, L.; Jufeng, Z.; Zhang, X.; Li, L. More than two decades of climate change alarm: Farmers knowledge, attitudes and perceptions. Afr. J. Agric. Res. 2015, 10, 2617–2625. [Google Scholar] [CrossRef]
- Mogaka, B.O.; Karanja Ng’ang’a, S.; Bett, H.K. Comparative profitability and relative risk of adopting climate-smart soil practices among farmers. A cost-benefit analysis of six agricultural practices. Clim. Serv. 2022, 26, 100287. [Google Scholar] [CrossRef]
- Lan, L.; Sain, G.; Czaplicki, S.; Guerten, N.; Shikuku, K.M.; Grosjean, G.; Läderach, P. Farm-level and community aggregate economic impacts of adopting climate smart agricultural practices in three mega environments. PLoS ONE 2018, 13, e0207700. [Google Scholar] [CrossRef]
- Agyekum, T.P.; Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C. Benefits and barriers to the adoption of climate-smart agriculture practices in West Africa: A systematic review. Clim. Resil. Sustain. 2024, 3, e279. [Google Scholar] [CrossRef]
- Eshete, G.; Assefa, B.; Lemma, E.; Kibret, G.; Ambaw, G.; Samuel, S.; Seid, J.; Tesfaye, K.; Tamene, L.; Haile, A.; et al. Ethiopia Climate-Smart Agriculture Roadmap; CGIAR Research Program on Climate Change, Agriculture and Food Security: Ben Guerir, Morocco, 2020. [Google Scholar]
- Adaptation Programme (AAP) (2013) AAP Terminal Report. Available online: https://www.agora-parl.org/sites/default/files/agora-documents/aap_terminal_report.pdf (accessed on 15 March 2025).
- Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef]
- Kassa, B.A.; Abdi, A.T. Factors influencing the adoption of climate-smart agricultural practice by small-scale farming households in Wondo Genet, Southern Ethiopia. Sage Open 2022, 12, 21582440221121604. [Google Scholar] [CrossRef]
- Obisesan, O.O.; Egbetokun, O.A. Climate change impacts, food security, intra-africa trade and sustainable land governance on food systems in Africa. World J. Environ. Biosci. 2024, 13, 39–50. [Google Scholar] [CrossRef]
- Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
- Adebayo, W.G. Resilience in the face of ecological challenges: Strategies for integrating environmental considerations into social policy planning in Africa. Sustain. Dev. 2025, 33, 203–220. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Thierfelder, C.; Lambert, D.M. Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renew. Agric. Food Syst. 2013, 28, 350–363. [Google Scholar] [CrossRef]
- United Nations Climate Change—National Adaptation Plans. 2024. Available online: https://unfccc.int/national-adaptation-plans (accessed on 5 May 2025).
- Holden, S.T.; Fisher, M. Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi. Food Secur. 2015, 7, 1225–1238. [Google Scholar] [CrossRef]
- Asci, S.; Borisova, T.; VanSickle, J.J. Role of economics in developing fertilizer best management practices. Agric. Water Manag. 2015, 152, 251–261. [Google Scholar] [CrossRef]
- Lawin, K.G.; Tamini, L.D. Land tenure differences and adoption of agri-environmental practices: Evidence from Benin. J. Dev. Stud. 2019, 55, 177–190. [Google Scholar] [CrossRef]
- Mutuku, M.M.; Nguluu, S.; Akuja, T.; Lutta, M.; Pelletier, B. Factors that influence adoption of integrated soil fertility and water management practices by smallholder farmers in the semi-arid areas of eastern Kenya. Trop. Subtrop. Agroecosystems 2017, 20, 1. [Google Scholar] [CrossRef]
- Owusu, V.; Asante, A.V.; Pavelic, P. Assessing the factors influencing groundwater irrigation technology adoption in Ghana. Irrig. Manag. Technol. Environ. Impact 2013, 7, 181–192. [Google Scholar]
- Amadu, F.O. Farmer extension facilitators as a pathway for climate smart agriculture: Evidence from southern Malawi. Clim. Policy 2022, 22, 1097–1112. [Google Scholar] [CrossRef]
- Akrofi-Atitianti, F.; Ifejika Speranza, C.; Bockel, L.; Asare, R. Assessing climate smart agriculture and its determinants of practice in Ghana: A case of the cocoa production system. Land 2018, 7, 30. [Google Scholar] [CrossRef]
- Santos, F.; Fletschner, D.; Daconto, G. Enhancing inclusiveness of Rwanda’s land tenure regularization program: Insights from early stages of its implementation. World Dev. 2014, 62, 30–41. [Google Scholar] [CrossRef]
- Khoza, S.; Van Niekerk, D.; Nemakonde, L.D. Understanding gender dimensions of climate-smart agriculture adoption in disaster-prone smallholder farming communities in Malawi and Zambia. Disaster Prev. Manag. Int. J. 2019, 28, 530–547. [Google Scholar] [CrossRef]
- Deininger, K. Land Policies for Growth and Poverty Reduction; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Alhola, S.; Gwaindepi, A. Land tenure formalisation and perceived tenure security: Two decades of the land administration project in Ghana. Land Use Policy 2024, 143, 107195. [Google Scholar] [CrossRef]
- Goli, I.; Bijani, M.; Koohi, P.K.; Skominas, R.; Värnik, R.; Van Passel, S.; Dogot, T.; Azadi, H. Toward tenure security: The relationship between women’s land ownership, formal land title documents and their empowerment. Land Use Policy 2025, 148, 107389. [Google Scholar] [CrossRef]
- Balasha, A.M.; Fyama, J.N.; Lenge, E.K.; Tambwe, A.N. Women farmers’ access to marshlands for agricultural food production in the Democratic Republic of Congo. Soc. Sci. Humanit. Open 2024, 9, 100772. [Google Scholar] [CrossRef]
- Piemontese, L.; Terzi, S.; Di Baldassarre, G.; Menestrey Schwieger, D.A.; Castelli, G.; Bresci, E. Over-reliance on water infrastructure can hinder climate resilience in pastoral drylands. Nat. Clim. Chang. 2024, 14, 267–274. [Google Scholar] [CrossRef]
- Chavula, P.; Turyasingura, B. Land Tenurial system influence among smallholder farmers’ climate smart agriculture technologies adoption, Sub-Sahara Africa: A review paper. Int. J. Food Sci. Agric. 2022, 6, 12. [Google Scholar] [CrossRef]
- Kassaye, A.Y.; Shao, G.; Wang, X.; Belete, M. Evaluating the practices of climate-smart agriculture sustainability in Ethiopia using geocybernetic assessment matrix. Environ. Dev. Sustain. 2022, 24, 724–764. [Google Scholar] [CrossRef]
- Damba, O.T.; Ageyo, C.O.; Kizito, F.; Mponela, P.; Yeboah, S.; Clottey, V.A.; Oppong-Mensah, B.A.; Bayala, J.; Adomaa, F.O.; Dalaa, M.A.; et al. Constructing A Climate-Smart readiness index for smallholder farmers: The case of prioritized bundles of climate information services and climate smart agriculture in Ghana. Clim. Serv. 2024, 34, 100453. [Google Scholar] [CrossRef]
Management Type | Practice | Description | Effect | References |
---|---|---|---|---|
Crop management | Agroforestry | Integrating trees/shrubs into crop and/or pasture land |
| [35,47,48,49,50,51,52] |
Afforestation | Planting trees in an area without trees |
| [35,47,48,49,50,53,54,55] | |
Changing cropping calendar | Shifting planting or harvesting dates (early or later) to optimize yields. |
| [56,57,58] | |
Cover cropping | Planting crops after the main crop. |
| [13,47,49,58,59,60,61,62] | |
Crop diversification | Growing a wider variety of crops that include indigenous varieties. |
| [54,63] | |
Crop rotation | Cultivating crops in the same piece of land between seasons. |
| [47,49,59,61,64,65,66] | |
Intercropping (mixed cropping) | Planting more than one crop species on the same land at the same time. |
| [49,55,58,67,68,69,70] | |
Improved crop varieties | This involves the use of:
|
| [47,50,64,71] | |
Farm management | Contour farming | Aligning farm operations like tillage and planting with natural curves of the field. |
| [69,72] |
Terracing | Creating flat level platforms on sloping land. |
| [7,73] | |
Precision farming | Using technology and data to make informed farming decisions about planting, fertilizing, watering, etc. |
| [74] | |
Mulching | Covering the soil surface with a layer of organic material. |
| [58,75] | |
Nutrient Management | Application of nutrients based on plant requirements. |
| [69] | |
No tillage/minimum tillage | Planting crops without tilling the soil or little disturbance. |
| [76,77] | |
Organic fertilization | Use of materials derived from plant, animal, or mineral sources, such as compost, manure, etc., to enrich the soil. |
| [21,78,79,80,81] | |
Insurance | Farmers purchase insurance policies to cover their potential crop yield. |
| [52,54,82,83] | |
Biological pests, weeds and Disease management | Reducing the reliance on chemicals to control pests and diseases. |
| [75] | |
Integrated pest management | Combining multiple strategies to minimize pest damage. |
| [58,84] | |
Livestock management | Livestock diversity | Rearing a variety of animal species and breeds. |
| [52,54,85,86] |
Crop-livestock integration | Crops and livestock are managed together. |
| [70,76] | |
Rotational grazing | Moving animals periodically between pastures within a grazing area. |
| [54] | |
Better breeding practices | Improving the overall health and genetic diversity of animals by selecting breeding stock and managing inbreeding. |
| [52,57,87] | |
Diversifying pasture | Increasing the variety of pasture plant, species such as grasses, legumes, and forbs. |
| [85] | |
Stocking rates | Balancing the amount of livestock grazing on a specific area with forage supply. |
| [87,88,89,90] | |
Manure management | How manure is captured, stored, treated, and used |
| [51,77,78] | |
Post harvest management | Building resilience along the supply chain | Strengthening the entire supply chain |
| [91] |
Storing, handling and transporting produce | Improved storage, handling and transportation. Use of bags that minimize oxygen entry. |
| [91] | |
Water management | Water harvesting | Collecting and storing rainwater or sinking boreholes for farm use |
| [26,37,57,92,93] |
Irrigation scheduling | Determining the optimal timing and amount of water to apply. |
| [88,90,94] | |
Improving drainage | Rate and extent of water movement into and out of the soil. |
| [57,58] | |
Planting pits e.g., Zai pits | Small depressions in the field for planting seeds and concentrating fertilizer, manure, and water. |
| [95] | |
Weather forecasting | Provide accurate predictions of future weather conditions. |
| [22,58] |
Factor | Variables | Explanation |
---|---|---|
Bio-physical | Farm size and location, climate conditions. | These factors determine how quickly, and severely negative impacts become visible. For example, the severity, frequency and forecast information for droughts/floods can determine which practice is appropriate and necessary. |
Type of practice | The CSA practice must be available, accessible, and appropriate to the existing farm practices. Economic barriers to adoption can arise if the practice is expensive and requires access to natural capital and finance to implement. The financial returns (profitability) from cost incurred or reduced following adoption can also influence whether the practice is adopted. | |
Institutional | Policies, government interventions, Land tenure and property rights, extension and training. | Policies and government interventions may be used as ‘carrot and stick’ tools to encourage change in behavior. Farmers must have access to relevant information, and extension services are crucial in information dissemination. Land tenure and security influence the farmers’ ability and willingness to adopt a practice that can be dependent on its location, size and how long they have access to that land. |
Socio-economic | Credit availability, on and off-farm income | Access to credit to cover implementation costs and potential profits to be accrued following practice adoption influences this adoption. However, this can depend on personal and institutional factors. Further, agricultural policies, availability of extension services and government interventions may play significant roles in farm income and access to credit and, by extension, adoption of a practice. |
Farmer education level, age and experience, attitudes and perception and membership to an affiliation group. | Individual farmers’ attitudes and values can be greatly influenced by peers, age and farming experience. This will most likely affect their individual decision making process on whether to adopt a practice or not. Trust in institutional policies and activities can be critical in adopting a practice. Land tenure security and family involvement can guarantee farming continuity and may have a positive influence on adoption. | |
Farmer education, age experience and attitude towards method, risk perception, interests, and trust. | Information about risk and practice must reach the farmer for them to recognize a problem and make them aware of potential solutions (practice). Relevant knowledge includes climate change information, its negative impacts, and potential adaptation practices. Farmer attitude, perception and assessment of risk and practice differ from one farmer to another. This can change over time depending on social background and experience, such as age, association with a social group and education level. Further, if a farmer perceives a practice to be justified, useful and effective, they will likely adopt it. | |
Family size and labor | Labor availability is required for adoption of any practice. This can be provided by family labor and, therefore, a practice that allows adoption without major costs is more likely to be adopted. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manono, B.O.; Khan, S.; Kithaka, K.M. A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth 2025, 6, 48. https://doi.org/10.3390/earth6020048
Manono BO, Khan S, Kithaka KM. A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth. 2025; 6(2):48. https://doi.org/10.3390/earth6020048
Chicago/Turabian StyleManono, Bonface O., Shahbaz Khan, and Kelvin Mutugi Kithaka. 2025. "A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa" Earth 6, no. 2: 48. https://doi.org/10.3390/earth6020048
APA StyleManono, B. O., Khan, S., & Kithaka, K. M. (2025). A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth, 6(2), 48. https://doi.org/10.3390/earth6020048