Concrete Innovation Using Tree Branch Waste as Coarse Aggregate and Stone Ash as Fine Aggregate †
Abstract
1. Introduction
2. Materials and Methods
2.1. General Overview
2.2. Research Stages
2.3. Material Preparation Stage
- Tree branches: The tree branches used in this study were collected from a garden near the author’s residence.
- Stone dust: Obtained from a batching plant located in Sukabumi Regency.
- Coarse aggregate: Jebrod gravel, commonly used in normal concrete production, was selected based on compatibility with the size of tree branches.
- Fine aggregate: Jebrod sand was used as the fine aggregate in this study.
- Cement: Portland Cement Type 1 from PT. Semen Tiga Roda, packaged in 50 kg paper bags.
- Additives: A combination additive, Sika Viscocrete 3115 N (Superplasticizer Water Tight), was used at a dosage of 2.5 mL/0.003375 m3.
- Water: Sourced from well water.
2.4. Concrete Sample Preparation
2.5. Concrete Compressive Strength Testing
2.6. Data Analysis
3. Results
3.1. Research Findings
3.1.1. Material Testing Results
3.1.2. Mix Design of Concrete Mixtures
3.1.3. Compressive Strength Test Results in the Laboratory
4. Discussion
- Weight Reduction: The addition of 10% and 20% Supplementary Materials can reduce the weight of concrete, which can be beneficial in reducing structural loads.
- Compressive Strength: Although the addition of Supplementary Materials can reduce the compressive strength of concrete, it still meets the planned compressive strength target of K250 or F’c: 20 MPa at 28 days.
- Limitation of Supplementary Materials: This research recommends that the addition of Supplementary Materials should be limited to 10%, as this percentage yields the highest compressive strength while maintaining acceptable structural performance.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aini, P.N.; Roestaman, R.; Walujodjati, E. Pengaruh Penggunaan Serbuk Kayu Sebagai Bahan Substitusi Agregat Halus dalam Campuran Beton dengan Bahan Tambah Superplasticizer. J. Konstr. 2021, 19, 169–178. [Google Scholar] [CrossRef]
- Putri, A.P.; Tobing, A.K. Analisis Kuat Tekan Beton Menggunakan Subtitusi Bahan Ramah Lingkungan. J. Kaji. Tek. Sipil 2019, 3, 105–109. [Google Scholar] [CrossRef]
- Budiman; WTP, J. Penggunaan Abu Batu Sebagai Pengganti Sebagian Material Pasir. J. Appl. Civ. Eng. Infrastruct. Technol. 2022, 3, 40–43. [Google Scholar] [CrossRef]
- Ervianto, M.; Saleh, F.; Prayuda, H. Kuat tekan beton mutu tinggi menggunakan bahan tambah abut terbang (fly ash) dan zat adiktif (bestmittel). J. Sinergi 2016, 20, 199–206. [Google Scholar] [CrossRef]
- Firda, A.; Permatasari, R.; Fuad, I.S. Pemanfaatan Limbah Batubara (Fly Ash) Sebagai Material Pengganti Agregat Kasar Pada Pembuatan Beton Ringan. J. Deform. 2021, 6, 1–8. Available online: https://pdfs.semanticscholar.org/6acb/57c8afbe926fbb7712a5ee58e2838e11e7c1.pdf (accessed on 15 April 2025). [CrossRef]
- Almahi, M.; Yelfidar, Y.; Rawi, S.H. Pengaruh Penambahan Abu Batu Terhadap Mix Design Campuran Beton K-225. J. Sipil Terap. 2023, 1, 141–150. [Google Scholar] [CrossRef]
- Rusyandi, K.; Mukodas, J.; Gunawan, Y. Perancangan beton Self compacting concrete (beton memadat sendiri) dengan penambahan fly ash dan structuro. J. Konstr. 2012, 10. [Google Scholar] [CrossRef]
- Ngudiyono, N.; Sulistyowati, T. Pemanfaatan Abu Limbah Kayu Sebagai Bahan Tambah Pada Campuran Beton Normal. Spektrum Sipil 2022, 9, 123–132. [Google Scholar] [CrossRef]
- Adibroto, F.; Suhelmidawati, E.; Zade, A.A.M. Eksperimen beton mutu tinggi berbahan fly ash sebagai pengganti sebagian semen. J. Ilm. Rekayasa Sipil 2018, 15, 11–16. [Google Scholar] [CrossRef]
% Additional Material | Concrete Substitute | Normal Concrete | Total | ||||
---|---|---|---|---|---|---|---|
10% Tree Branch and Stone Ash | 20% Tree Branch and Stone Ash | ||||||
Concrete Age | |||||||
7 | 14 | 7 | 14 | 7 | 14 | ||
Normal | 1 | 1 | 2 | ||||
10% | 1 | 1 | 2 | ||||
20% | 1 | 1 | 2 | ||||
Total Overall Sample | 6 |
a | Type of Test | Aggregate | ||||
---|---|---|---|---|---|---|
Fine Aggregate (Jebrod Sand) | Coarse Aggregate (Jebrod Gravel) | Stone Ash | Tree Branche | |||
1 | Organic Content (%) | 2.20% | - | - | - | |
2 | Silt Content (%) | 3.25% | - | - | - | |
3 | Bulk Density (kg/L) | solid | 0.840 Kg/L | 1.612 Kg/L | 0.120 Kg/L | 0.188 Kg/L |
loose | 0.800 Kg/L | 1.215 Kg/L | 0.095 Kg/L | 0.237 Kg/L | ||
4 | Moisture Content (%) | 3.4% | 4% | 3% | 11% |
Age | Weight | Load | Area | Volume | Weight Volume | Compressive Strength | Compressive Strength | |
---|---|---|---|---|---|---|---|---|
(Days) | (Kg) | (KN) | (Kg) | (cm2) | (m3) | (Kg/m3) | (Kg/cm2) | (MPa) |
0% Tree branches and stone/concrete ash NORMAL | ||||||||
7 | 7.50 | 395 | 40,278.15 | 225 | 0.003375 | 2222.222 | 179.546 | 17.56 |
10% Tree branches and stone ash Innovation Concrete | ||||||||
7 | 7.28 | 350 | 35,689.50 | 225 | 0.003375 | 2157.037 | 158.620 | 15.56 |
20% Tree branches and stone ash Innovation Concrete | ||||||||
7 | 7.02 | 315 | 32,120.55 | 225 | 0.003375 | 2080.000 | 142.758 | 14.00 |
Concrete Age Estimate Number | Estimated Compressive Strength of 28 Days Old Concrete | Estimated Compressive Strength of 28 Days Old Concrete |
---|---|---|
(Kg/cm2) | MPA | |
0% Tree branches and stone/concrete ash NORMAL | ||
0.65 | 275.406 | 27.017 |
10% Tree branches and stone ash Innovation Concrete | ||
0.65 | 244.031 | 23.939 |
20% Tree branches and stone ash Innovation Concrete | ||
0.65 | 219.628 | 21.545 |
Age | Weight | Load | Area | Volume | Weight Volume | Compressive Strength | Compressive Strength | |
---|---|---|---|---|---|---|---|---|
(Hari) | (Kg) | (KN) | (Kg) | (cm2) | (m3) | (Kg/m3) | (Kg/cm2) | (MPa) |
0% Tree branches and stone/concrete ash NORMAL | ||||||||
14 | 7.66 | 580 | 59,142.6 | 225 | 0.003375 | 2269.630 | 262.856 | 25.79 |
10% Tree branches and stone ash Innovation Concrete | ||||||||
14 | 7.28 | 490 | 49,965.3 | 225 | 0.003375 | 2157.037 | 222.068 | 21.78 |
20% Tree branches and stone ash Innovation Concrete | ||||||||
14 | 7.06 | 430 | 43,847.1 | 225 | 0.003375 | 2091.852 | 194.876 | 19.12 |
Concrete Age Estimate Number | Estimated Compressive Strength of 28 Days Old Concrete | Estimated Compressive Strength of 28 Days Old Concrete |
---|---|---|
(Kg/cm2) | MPA | |
0% Tree branches and stone/concrete ash NORMAL | ||
0.88 | 298.700 | 29.302 |
10% Tree branches and stone ash Innovation Concrete | ||
0.88 | 252.350 | 24.756 |
20% Tree branches and stone ash Innovation Concrete | ||
0.88 | 221.450 | 21.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunarlan, I.F.; Fauzi, O.L.; Saepudin, U.; Saputri, U.S. Concrete Innovation Using Tree Branch Waste as Coarse Aggregate and Stone Ash as Fine Aggregate. Eng. Proc. 2025, 107, 65. https://doi.org/10.3390/engproc2025107065
Sunarlan IF, Fauzi OL, Saepudin U, Saputri US. Concrete Innovation Using Tree Branch Waste as Coarse Aggregate and Stone Ash as Fine Aggregate. Engineering Proceedings. 2025; 107(1):65. https://doi.org/10.3390/engproc2025107065
Chicago/Turabian StyleSunarlan, Irsad Fauzan, Okky Lutfi Fauzi, Usep Saepudin, and Utamy Sukmayu Saputri. 2025. "Concrete Innovation Using Tree Branch Waste as Coarse Aggregate and Stone Ash as Fine Aggregate" Engineering Proceedings 107, no. 1: 65. https://doi.org/10.3390/engproc2025107065
APA StyleSunarlan, I. F., Fauzi, O. L., Saepudin, U., & Saputri, U. S. (2025). Concrete Innovation Using Tree Branch Waste as Coarse Aggregate and Stone Ash as Fine Aggregate. Engineering Proceedings, 107(1), 65. https://doi.org/10.3390/engproc2025107065