Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Biological Material
2.3. Clarified V8 Culture Medium
2.4. Dahlia Inulin Solution
2.5. Agave Fructan Solutions
2.6. Degree of Deacetylation by Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Assessment of Protection Against P. capsici Infection in Tomato
2.8. Histochemical Evaluation of Defense Induction in Tomato Plants
2.8.1. Determination of Cell Wall Lignification
2.8.2. Determination of Hydrogen Peroxide Accumulation
2.9. Biochemical Assessment of Defense Induction in Plants
2.9.1. Determination of the Activity of β-1,3-Glucanases
2.9.2. Determination of Peroxidase Activity (POX)
2.10. Statistical Analysis
3. Results
3.1. Degree of Deacetylation by Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Application of Dahlia and Agave Fructans to Tomato Plants as Protection Against P. capsici
3.3. Mechanism of Defense Induction in Tomato Plants by the Application of Dahlia and Agave Fructans
3.4. Enzyme Activity in Tomato Plants by Application of Dahlia and Agave Fructans
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Savary, S.; Bregaglio, S.; Willocquet, L. Crop health and its global impacts on the components of food security. Food Sec. 2017, 9, 311–327. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 10, 640–656. [Google Scholar] [CrossRef]
- Érsek, T.; Ribeiro, O. Mini review article: An annotated list of new Phytophthora species described post 1996. Acta Phytopathol. Et Entomol. Hung. 2010, 45, 251–266. [Google Scholar] [CrossRef]
- Lamour, K.H.; Hu, J. Diversity and Phytophthora: A threat to forests, crops and traditional laboratory research-mini review. CAB Rev. 2013, 8, 038. [Google Scholar] [CrossRef]
- Kamoun, S.; Furzer, O.J.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Govers, F. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2014, 4, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Quesada-Ocampo, L.M.; Parada-Rojas, C.H.; Hansen, Z.; Vogel, G.; Smart, C.; Hausbeck, M.K.; Carmo, R.M.; Huitema, E.; Naegele, R.P.; Kousik, C.S.; et al. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description. Annu. Rev. Phytopathol. 2023, 61, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Kreutzer, W.A.; Bodine, E.W.; Durrell, L.W. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology 1940, 30, 972–976. [Google Scholar]
- Satour, M.M.; Butler, E.E. A root and crown rot of tomato caused by Phytophthora capsici and Phytophthora parasitica. Phytopathology 1967, 57, 510–515. [Google Scholar]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Available online: https://www.gob.mx/agricultura/dgsiap/acciones-y-programas/produccion-agricola-404122 (accessed on 5 March 2025).
- Moreira-Morrillo, A.; Monteros, A.A.; Reis, A.; Garcés, F.F.R. Phytophthora capsici on Capsicum Plants: A Destructive Pathogen in Chili and Pepper Crops. In Capsicum Current Trends and Perspectives; Baylen Yllano, O., Ed.; IntechOpen: London, UK, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Gowthami, L. Role of elicitors in plant defense mechanism. J. Pharmacog. Phytochem. 2018, 7, 2806–2812. [Google Scholar]
- Qui-Zapata, J.A.; Montero-Cortés, M.I.; García-Morales, S.; Espinosa-Andrews, H.; Uc-Varguez, A.; Cano-Sosa, J.; Enríquez-Vara, J.N.; Ramos-Díaz, A.L.; López-Velázquez, J.C.; Leal-García, I.; et al. Biorational strategies for the control of coffee rust (Hemileia vastatrix). In Semillas de Cambio en la Región Pacífico Sur: Ciencia, Tecnología y Sociedad para el Desarrollo Local en las Cadenas Productivas Principales en Guerrero, Oaxaca y Chiapas; Center for Research and Assistance in Technology and Design of the State of Jalisco: Guadalajara, Mexico, 2024; pp. 307–343. [Google Scholar] [CrossRef]
- Bellini, A.; Pugliese, M.; Guarnaccia, V.; Meloni, G.R.; Gullino, L.M. Calcium oxide, potassium phosphite and a Trichoderma enriched compost water suspension protect Capsicum annuum against Phytophthora capsici by priming the immune system. Pest Manag. Sci. 2021, 77, 3484–3490. [Google Scholar] [CrossRef]
- Navarro-López, D.; López-Velázquez, J.C.; Saavedra-Loera, D.; García-Gamboa, R.; González-Ávila, M.; Ortiz-Basurto, R.; Qui-Zapata, J.; García-Morales, S. Effect of the polymerization degree of agave fructans for the control of Phytophthora capsici. In Sustainable and Integrated Use of Agave; Gutiérrez, M.A., Ed.; Center for Research and Assistance in Technology and Design of the State of Jalisco: Zapopan, Mexico, 2018; pp. 107–112. Available online: https://ciatej.mx/el-ciatej/comunicacion/proyectos-de-divulgacion (accessed on 1 March 2025).
- López-Velázquez, J.C.; Navarro-López, D.E.; Qui-Zapata, J.A.; León-Morales, J.M.; Saavedra-Loera, D.I.; García-Morales, S. Effect of selenite and inulin on Capsicum annuum L.-Phytophthora capsici interaction in greenhouse. Plant Biotechnol. 2019, 19, 25–34. [Google Scholar]
- López-Velázquez, J.C.; García-Morales, S.; Qui-Zapata, J.A.; García-Carvajal, Z.Y.; Navarro-López, D.E.; García-Varela, R. Induction of defense response mediated by inulin from dahlia tubers (Dahlia sp.) in Capsicum annuum. Mex. J. Phytopathol. 2024, 42, 9. [Google Scholar] [CrossRef]
- Camacho-Ruíz, R.M.; Estarrón, E.M.; Arrizón, G.J.P.; Gschaedler, M.A.C. Southern agaves and their fructans. Horiz. Transdiciplinarios 2023, 1, 13–21. [Google Scholar]
- Moreno-Vilet, L.; García, H.M.H.; Delgado, P.R.E.; Corral, F.N.E.; Cortez, E.N.; Ruíz, C.M.A.; Portales, P.D.P. In vitro assessment of Agave fructans (Agave salmiana) as prebiotics and immune system activators. Int. J. Biol. Macromol. 2014, 63, 181–187. [Google Scholar] [CrossRef]
- Plascencia, A.; Gutiérrez, M.A.; Rodríguez, D.J.M.; Castañeda-Nava, J.J.; Gallardo-Valdez, J.; Shimada, H.; Camacho-Ruíz, R.M. Molecular weight distribution of fructans extracted from Agave salmiana leaves. Bot. Sci. 2022, 100, 657–666. [Google Scholar] [CrossRef]
- Alvarado, C.; Camacho, R.M.; Cejas, R.; Rodríguez, J.A. Profiling of commmercial agave fructooligosaccharides using ultrafiltration and high performance thin layer chromatography. Rev. Mex. Ing. Quim. 2014, 13, 417–427. Available online: https://www.redalyc.org/pdf/620/62031508006.pdf (accessed on 25 February 2025).
- Reyes-Tena, A.; Castro-Rocha, A.; Rodríguez-Alvarado, G.; Vázquez-Marrufo, G.; Pedraza-Santos, M.E.; Lamour, K.; Larsen, J.; Fernández-Pavía, S.P. Virulence phenotypes on chili pepper for Phytophthora capsici isolates from Michoacán, Mexico. HortScience 2019, 54, 1526–1531. [Google Scholar] [CrossRef]
- Trinidad-Cruz, J.R.; Rincón-Enríquez, G.; Evangelista-Martínez, Z.; Quiñones-Aguilar, E.E. Biorational control of Phytophthora capsici in pepper plants using Streptomyces spp. Rev. Chapingo Ser. Hortic. 2021, 27, 85–99. [Google Scholar] [CrossRef]
- Vázquez-Vuelvas, O.F.; Chávez-Camacho, F.A.; Meza-Velázquez, J.A.; Mendez-Merino, E.; Ríos-Licea, M.M.; Contreras-Esquivel, J.C. A comparative FTIR study for supplemented agavin as functional food. Food Hydrocoll. 2020, 103, 105642. [Google Scholar] [CrossRef]
- Wang, J.E.; Li, D.W.; Zhang, Y.L.; Zhao, Q.; He, Y.M.; Gong, Z.H. Defence responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthora capsici. Eur. J. Plant Pathol. 2013, 136, 625–638. [Google Scholar] [CrossRef]
- Pye, M.F.; Hakuno, F.; MacDonald, J.D.; Bostock, R.M. Induced resistance in tomato by sar activators during predisposing salinity stress. Front. Plant Sci. 2013, 4, 116. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Offler, C.E.; Ruan, Y.-L. A simple, rapid and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing. Front. Plant Sci. 2014, 5, 745. [Google Scholar] [CrossRef]
- Oliveira, J.T.A.; Barreto, A.L.H.; Vasconcelos, I.M.; Eloy, Y.R.G.; Gondim, D.M.F.; Fernades, C.D.F.; Freire-Filho, F.R. Role of antioxidant enzymes, hydrogen peroxide and PR proteins in the compatible and incompatible interactions of cowpea (Vigna unguiculata) genotypes with the fungus Colletotrichum gloeosporioides. J. Plant Physiol. Pathol. 2014, 2, 1000131. [Google Scholar] [CrossRef]
- Melanie, H.; Susilowati, A.; Iskandar, Y.M.; Lotulung, P.D.; Andayani, D.G.S. Characterization of Inulin from Local Red Dahlia (Dahlia sp. L) Tubers by Infrared Spectroscopy. Procedia Chem. 2015, 16, 78–84. [Google Scholar] [CrossRef]
- Díaz-Ramos, D.I.; Jiménez-Fernández, M.; García-Barradas, O.; Chacón-López, M.A.; Montalvo-González, E.; López-García, U.M.; Beristain-Guevara, C.I.; Ortiz-Basurto, R.I. Structural, thermal, and functional properties of Agave tequilana fructan fractions modified by acylation. Rev. Mex. De Ing. Química 2023, 22, 1–15. [Google Scholar] [CrossRef]
- Tarkowski, Ł.P.; Poel, B.V.D.; Höfte, M.; Ende, W.V.D. Sweet immunity: Inulin boosts resistance of lettuce (Lactuca sativa) against grey mold (Botrytis cinerea) in an ethylene-dependent manner. Int. J. Mol. Sci. 2019, 20, 1052. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Tang, Y.; Luo, Y.; Zhang, Z. Hydrogen peroxide regulated salicylic acid- and jasmonic acid-dependent systemic defenses in tomato seedlings. Food Sci. Technol. 2022, 42, e54920. [Google Scholar] [CrossRef]
- Thangaraj, R.; Anandamurugan, S.; Pandiyan, P.; Kaliappan, V.K. Artificial intelligence in tomato leaf disease detection: A comprehensive review and discussion. J. Plant Dis. Prot. 2022, 129, 469–488. [Google Scholar] [CrossRef]
- Márquez-Aguirre, A.L.; Camacho, R.R.M.; Arriaga, A.M.; Padilla, C.E.; Kirchmayr, M.R.; Blasco, J.L.; González, A.M. Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food Funct. 2013, 4, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Rensburg, H.C.C.J.V.; Takács, Z.; Freynschlag, F.; Öner, E.T.; Jonak, C.; Ende, W.V.D. Fructans prime ROS dynamics and Botrytis cinerea resistance in Arabidopsis. Antioxidants 2020, 9, 805. [Google Scholar] [CrossRef]
- Nguyen, T.N.H.; Leclerc, L.; Manzanares, D.M.; Gravot, A.; Vicré, M.; Morvan, B.A.; Prud’Homme, M. Fructan exohydrolases (FEHs) are upregulated by salicylic acid together with defense-related genes in non-fructan accumulating plants. Physiol. Plant. 2023, 175, e13975. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, P.; Guo, M.; Yu, W.; Chen, K. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chem. 2013, 138, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Q.; Li, L.; Li, P.; Yin, M.; Xu, S.; Bi, W. Chemical composition and antifungal activity of Zanthoxylum armatum fruit essential oil against Phytophthora capsici. Molecules 2022, 27, 8636. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Yang, Y.; Li, T.; Lu, W.; Du, Y.; Qiang, X.; Shan, W. A Phytophthora capsici rxlr effector targets and inhibits a plant piase to suppress endoplasmic reticulum-mediated immunity. Mol. Plant 2018, 11, 1067–1083. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Bao, Y.; Zhang, M.; Du, D.; Rao, S.; Li, Y.; Dou, D. A Phytophthora capsici rxlr effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytol. 2021, 232, 264–278. [Google Scholar] [CrossRef]
- Versluys, M.; Tarkowski, Ł.P.; Ende, W.V.d. Fructans as damps or mamps: Evolutionary prospects, cross-tolerance, and multistress resistance potential. Front. Plant Sci. 2017, 7, 2061. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, Z.; Chen, F.; Zhang, Z.; Gao, W. Optimization of ultrasonic-assisted extraction of polysaccharides from hemerocallis citrina and the antioxidant activity study. J. Food Sci. 2021, 86, 3082–3096. [Google Scholar] [CrossRef]
- Liu, X.; Wan, Z.; Shi, L.; Lü, X. Preparation and antiherpetic activities of chemically modified polysaccharides from polygonatum cyrtonema hua. Carbohydr. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Lian, D.; Shui, C.; Yang, L.; Cheng, Y.; Zheng, S.; Shen, H.; Liang, M. Levan differentially primes barley defense against infections by Fusarium graminearum, Rhizoctonia solani and Pyricularia oryzae. Plant Pathol. 2024, 73, 859–872. [Google Scholar] [CrossRef]
Fructan | Mv (g/mol) | PDn | % Fructans’ Size | % Free Sugars | |||
---|---|---|---|---|---|---|---|
F > 10 | F < 10 | Fru | Sac | Glc | |||
Dahlia inulin | ~5000 | ~30 | 40 | 60 | - | - | - |
Agave cupreata fructans | 2834.08 | 17.34 | 76.59 | 23.78 | 5.66 | 5.59 | 0.38 |
Agave tequilana fructans | 2701.58 | 16.31 | 70 | 30 | 5–9 | 0.3–5 | 1.5–6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Jiménez, E.; Herrejón-López, K.A.; Montero-Cortés, M.I.; López-Velázquez, J.C.; García-Morales, S.; Qui-Zapata, J.A. Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici. Polysaccharides 2025, 6, 72. https://doi.org/10.3390/polysaccharides6030072
Sánchez-Jiménez E, Herrejón-López KA, Montero-Cortés MI, López-Velázquez JC, García-Morales S, Qui-Zapata JA. Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici. Polysaccharides. 2025; 6(3):72. https://doi.org/10.3390/polysaccharides6030072
Chicago/Turabian StyleSánchez-Jiménez, Elizabeth, Kristel Alejandra Herrejón-López, Mayra Itzcalotzin Montero-Cortés, Julio César López-Velázquez, Soledad García-Morales, and Joaquín Alejandro Qui-Zapata. 2025. "Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici" Polysaccharides 6, no. 3: 72. https://doi.org/10.3390/polysaccharides6030072
APA StyleSánchez-Jiménez, E., Herrejón-López, K. A., Montero-Cortés, M. I., López-Velázquez, J. C., García-Morales, S., & Qui-Zapata, J. A. (2025). Evaluation of Dahlia and Agave Fructans as Defense Inducers in Tomato Plants Against Phytophthora capsici. Polysaccharides, 6(3), 72. https://doi.org/10.3390/polysaccharides6030072