Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex
Abstract
1. Introduction
2. Results
2.1. General Workflow of SPA
2.2. Comparative Analysis of 3D Reconstruction by Varying the Particle Quantity
3. Discussion
4. Materials and Methods
4.1. Protein Sample Preparation
4.2. Cryo-EM Sample Preparation
4.3. Data Collection and Image Processing of E2 Complex
4.4. Atomic Model Building
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cryo-EM | Cryo-electron microscopy |
NMR | Nuclear magnetic resonance |
SPA | Single-particle analysis |
TEM | Transmission electron microscopy |
2D | Two-dimensional |
3D | Three-dimensional |
ET | Electron tomography |
CTF | Contrast transfer function |
SNR | Signal-to-noise ratio |
E2 | Dihydrolipoyl acetyltransferase |
PDC | Pyruvate dehydrogenase complex |
E. coli | Escherichia coli |
IPTG | Isopropyl-ß-D-thiogalactoside |
RCT | Random conical tilt |
GSFSC | Gold standard Fourier shell correlation |
FSC | Fourier shell correlation |
References
- Kim, H.U.; Jung, H.S. Cryo-EM as a powerful tool for drug discovery: Recent structural based studies of SARS-CoV-2. Appl. Microsc. 2021, 51, 13. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.Y.D.; Mendez, J.H.; Rapp, M.; Ilca, S.L.; Tan, Y.Z.; Maruthi, K.; Kuang, H.; Zimanyi, C.M.; Cheng, A.; Eng, E.T.; et al. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu. Rev. Biochem. 2022, 91, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, S.C.; Ando, N. X-Rays in the Cryo-Electron Microscopy Era: Structural Biology’s Dynamic Future. Biochemistry 2018, 57, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkoczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-Rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Ognjenovic, J.; Grisshammer, R.; Subramaniam, S. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Annu. Rev. Biomed. Eng. 2019, 21, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.J.; Meyerowitz, J.G.; Skiniotis, G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem. Sci. 2022, 47, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.P.; Chari, A.; Ciferri, C.; Liu, W.T.; Remigy, H.W.; Stark, H.; Wiesmann, C. Cryo-EM in drug discovery: Achievements, limitations and prospects. Nat. Rev. Drug Discov. 2018, 17, 471–492. [Google Scholar] [CrossRef] [PubMed]
- DiIorio, M.C.; Kulczyk, A.W. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. Micromachines 2022, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.R.D.; Ignatiou, A.; Orlova, E.V. Structural Analysis of Protein Complexes by Cryo Electron Microscopy. Methods Mol. Biol. 2017, 1615, 377–413. [Google Scholar] [CrossRef] [PubMed]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.M.G.E.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-particle cryo-EM at atomic resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Doerr, A. Single-particle cryo-electron microscopy. Nat. Methods 2016, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-u.; Jeong, M.S.; An, M.Y.; Park, Y.H.; Park, S.H.; Chung, S.J.; Yi, Y.-s.; Jun, S.; Kim, Y.K.; Jung, H.S. Comparative Analysis of Symmetry Parameters in the E2 Inner Core of the Pyruvate Dehydrogenase Complex. Int. J. Mol. Sci. 2024, 25, 13731. [Google Scholar] [CrossRef] [PubMed]
- Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 2019, 294, 5181–5197. [Google Scholar] [CrossRef] [PubMed]
- Sigworth, F.J.; Doerschuk, P.C.; Carazo, J.M.; Scheres, S.H. An introduction to maximum-likelihood methods in cryo-EM. Methods Enzymol. 2010, 482, 263–294. [Google Scholar] [CrossRef] [PubMed]
- Sigworth, F.J. Principles of cryo-EM single-particle image processing. Microscopy 2016, 65, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Merino, F.; Stabrin, M.; Moriya, T.; Antoni, C.; Apelbaum, A.; Hagel, P.; Sitsel, O.; Raisch, T.; Prumbaum, D.; et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019, 2, 218. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-u.; An, M.Y.; Jung, H.S. Cryo-electron tomography: A triumphant breakthrough in structural biology. BioDesign 2023, 11, 33–38. [Google Scholar] [CrossRef]
- Lan, T.Y.; Boumal, N.; Singer, A. Random conical tilt reconstruction without particle picking in cryo-electron microscopy. Acta Crystallogr. A Found. Adv. 2022, 78, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Elmlund, D.; Elmlund, H. Cryogenic electron microscopy and single-particle analysis. Annu. Rev. Biochem. 2015, 84, 499–517. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Carazo, J.M.; Sorzano, C.O.S. Emerging Themes in CryoEM horizontal line Single Particle Analysis Image Processing. Chem. Rev. 2022, 122, 13915–13951. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lander, G.C. Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis. Biophys. J. 2020, 119, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012, 180, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; Brubaker, M.A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 2017, 14, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Grant, T.; Rohou, A.; Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 2018, 7, e35383. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Q.; Palovcak, E.; Armache, J.P.; Verba, K.A.; Cheng, Y.; Agard, D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 2017, 14, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016, 193, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Heymann, J.B. The progressive spectral signal-to-noise ratio of cryo-electron micrograph movies as a tool to assess quality and radiation damage. Comput. Methods Programs Biomed. 2022, 220, 106799. [Google Scholar] [CrossRef] [PubMed]
- Punjani, A.; Zhang, H.; Fleet, D.J. Non-uniform refinement: Adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 2020, 17, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc. Natl. Acad. Sci. USA 2013, 110, 18037–18041. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S.; Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 105–153. [Google Scholar] [CrossRef] [PubMed]
- Izard, T.; Aevarsson, A.; Allen, M.D.; Westphal, A.H.; Perham, R.N.; de Kok, A.; Hol, W.G.J. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 1999, 96, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Baiesc, F.L.; Hiromasa, Y.; Yu, X.; Hui, W.H.; Dai, X.; Roche, T.E.; Zhou, Z.H. Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. Biochemistry 2018, 57, 2325–2334. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, B.O.; Aibara, S.; Howard, R.J.; Mortezaei, N.; Lindahl, E. Arrangement and symmetry of the fungal E3BP-containing core of the pyruvate dehydrogenase complex. Nat. Commun. 2020, 11, 4667. [Google Scholar] [CrossRef] [PubMed]
- Zivanov, J.; Nakane, T.; Scheres, S.H.W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 2019, 6, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.-C.; McMullan, G.; Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 2015, 40, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Jamali, K.; Käll, L.; Zhang, R.; Brown, A.; Kimanius, D.; Scheres, S.H.W. Automated model building and protein identification in cryo-EM maps. Nature 2024, 628, 450–457. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lin, P.; Chen, J.; Cao, H.; Huang, S.-Y. Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nat. Commun. 2022, 13, 4066. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, H.; Terashi, G.; Taluja, M.; Kihara, D. DiffModeler: Large macromolecular structure modeling for cryo-EM maps using a diffusion model. Nat. Methods 2024, 21, 2307–2317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, Y.; Zhang, B.; Zheng, W.; Freddolino, L.; Zhang, G.; Zhou, X. DEMO-EM2: Assembling protein complex structures from cryo-EM maps through intertwined chain and domain fitting. Brief. Bioinform. 2024, 25, bbae113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, L.; Zhang, S.; Peng, C.; Zhang, G.; Zhou, X. DEMO-EMol: Modeling protein-nucleic acid complex structures from cryo-EM maps by coupling chain assembly with map segmentation. Nucleic Acids Res. 2025, 53, W228–W237. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.Y.; Rice, W.J.; Eng, E.T.; Kopylov, M.; Cheng, A.; Raczkowski, A.M.; Jordan, K.D.; Bobe, D.; Potter, C.S.; Carragher, B. Benchmarking cryo-EM Single Particle Analysis Workflow. Front. Mol. Biosci. 2018, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Nakane, T.; Kimanius, D.; Lindahl, E.; Scheres, S.H.W. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 2018, 7, e36861. [Google Scholar] [CrossRef] [PubMed]
- Punjani, A.; Fleet, D.J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 2021, 213, 107702. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H. Processing of Structurally Heterogeneous Cryo-EM Data in RELION. Methods Enzymol. 2016, 579, 125–157. [Google Scholar] [CrossRef] [PubMed]
- Kimanius, D.; Forsberg, B.O.; Scheres, S.H.W.; Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 2016, 5, e18722. [Google Scholar] [CrossRef] [PubMed]
- Serna, M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Front. Mol. Biosci. 2019, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Plaxco, K.W.; Gross, M. Protein complexes: The evolution of symmetry. Curr. Biol. 2009, 19, R25–R26. [Google Scholar] [CrossRef] [PubMed]
- Maddhuri Venkata Subramaniya, S.R.; Terashi, G.; Kihara, D. Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning. Nat. Methods 2019, 16, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Zivanov, J.; Nakane, T.; Forsberg, B.O.; Kimanius, D.; Hagen, W.J.; Lindahl, E.; Scheres, S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018, 7, e42166. [Google Scholar] [CrossRef] [PubMed]
- Vilas, J.L.; Heymann, J.B.; Tagare, H.D.; Ramirez-Aportela, E.; Carazo, J.M.; Sorzano, C.O.S. Local resolution estimates of cryoEM reconstructions. Curr. Opin. Struct. Biol. 2020, 64, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Cardone, G.; Heymann, J.B.; Steven, A.C. One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 2013, 184, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.B.; Henderson, R. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. J. Mol. Biol. 2003, 333, 721–745. [Google Scholar] [CrossRef] [PubMed]
- Grant, T.; Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 2015, 4, e06980. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Li, B.; Si, L.; Zhang, X. Determining structures in a native environment using single-particle cryoelectron microscopy images. Innovation 2021, 2, 100166. [Google Scholar] [CrossRef] [PubMed]
- Schur, F.K.; Hagen, W.J.; de Marco, A.; Briggs, J.A. Determination of protein structure at 8.5A resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 2013, 184, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhang, M.; Liu, J.; Wang, J.; Ren, G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front. Chem. 2022, 10, 889203. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Tao, Y.; Olson, N.H.; Grimes, S.; Jardine, P.J.; Anderson, D.L.; Baker, T.S.; Rossmann, M.G. Cryoelectron-microscopy image reconstruction of symmetry mismatches in bacteriophage phi29. J. Struct. Biol. 2001, 135, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.Y.; Frank, J. Definition and Estimation of Resolution in Single-Particle Reconstructions. Structure 2010, 18, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Eng, E.T.; Alink, L.; Rice, W.J.; Jordan, K.D.; Kim, L.Y.; Potter, C.S.; Carragher, B. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol. 2018, 204, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Schmid, M.F.; Chiu, W. Improving resolution and resolvability of single-particle cryoEM structures using Gaussian mixture models. Nat. Methods 2024, 21, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Yip, K.M.; Fischer, N.; Paknia, E.; Chari, A.; Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 2020, 587, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, R.; Guo, Y.; Borek, D.; Otwinowski, Z. CryoEM single particle reconstruction with a complex-valued particle stack. J. Struct. Biol. 2023, 215, 107945. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.M.; Kim, H.-u.; Kim, G.J.; Jeoung, D.; Jung, H.S. The actin bundling activity of actin bundling protein 34 is inhibited by calcium binding to the EF2. Biochem. Biophys. Res. Commun. 2018, 503, 1836–1840. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-u.; Park, Y.H.; An, M.Y.; Kim, Y.K.; Song, C.; Jung, H.S. Structural insights into calcium-induced conformational changes in human gelsolin. Biochem. Biophys. Res. Commun. 2024, 735, 150826. [Google Scholar] [CrossRef] [PubMed]
- de Marco, A.; Casatta, E.; Savaresi, S.; Geerlof, A. Recombinant proteins fused to thermostable partners can be purified by heat incubation. J. Biotechnol. 2004, 107, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
Particle Set 1 | |||||||
---|---|---|---|---|---|---|---|
Symmetry | C1 | C4 | D4 | D7 | D8 | O | I |
Resolution (Å) | 5.03 | 5.34 | 5.14 | 4.72 | 6.21 | 4.69 | 4.20 |
Particle Set 2 | |||||||
Symmetry | C1 | C4 | D4 | D7 | D8 | O | I |
Resolution (Å) | 6.16 | 6.73 | 6.39 | 4.77 | 5.96 | 4.81 | 4.26 |
EM Data Collection | Set 1 EMD-38337 | Set 1 EMD-38338 | Set 2 EMD-38339 | Set 2 EMD-38341 |
---|---|---|---|---|
Particles | 43,249 | 43,249 | 29,376 | 29,376 |
Pixel size (Å) | 1.1 | 1.1 | 1.1 | 1.1 |
Voltage (keV) | 200 | 200 | 200 | 200 |
Defocus range (μm) | −1.5 to −2.6 | −1.5 to −2.6 | −1.5 to −2.6 | −1.5 to −2.6 |
Total electron dose | 40 e−/Å−2 | 40 e−/Å−2 | 40 e−/Å−2 | 40 e−/Å−2 |
Map symmetry | I | C1 | I | C1 |
Resolution (Å) | 4.20 | 5.03 | 4.26 | 6.16 |
Map sharpening B-factor (Å) | −208.1 | −101.7 | −193.5 | −245.1 |
Refinement and validation | ||||
Initial model used (PDB) | 1B5S | |||
Correlation model versus data | ||||
CC (mask, volume) | 0.78, 0.79 | |||
R.m.s deviations | ||||
Bond length (Å) | 0.002 | |||
Bond angle (°) | 0.528 | |||
MolProbity score | 1.50 | |||
Clashscore | 0.79 | |||
Romater outliers (%) | 1.31 | |||
Ramachandran plot | ||||
Favored (%) | 79.04 | |||
Allowed (%) | 19.65 | |||
Disallowed (%) | 0 | |||
PDB deposition ID | 9ukz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M.S.; Kim, H.-u.; An, M.Y.; Park, Y.H.; Park, S.H.; Chung, S.J.; Yi, Y.-S.; Jun, S.; Kim, Y.K.; Jung, H.S. Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex. Biophysica 2025, 5, 30. https://doi.org/10.3390/biophysica5030030
Jeong MS, Kim H-u, An MY, Park YH, Park SH, Chung SJ, Yi Y-S, Jun S, Kim YK, Jung HS. Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex. Biophysica. 2025; 5(3):30. https://doi.org/10.3390/biophysica5030030
Chicago/Turabian StyleJeong, Myeong Seon, Han-ul Kim, Mi Young An, Yoon Ho Park, Sun Hee Park, Sang J. Chung, Yoon-Sun Yi, Sangmi Jun, Young Kwan Kim, and Hyun Suk Jung. 2025. "Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex" Biophysica 5, no. 3: 30. https://doi.org/10.3390/biophysica5030030
APA StyleJeong, M. S., Kim, H.-u., An, M. Y., Park, Y. H., Park, S. H., Chung, S. J., Yi, Y.-S., Jun, S., Kim, Y. K., & Jung, H. S. (2025). Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex. Biophysica, 5(3), 30. https://doi.org/10.3390/biophysica5030030