Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency
Abstract
1. Introduction
- To optimize solar panel orientation and tilt angles by identifying configurations that maximize energy capture under the unique meteorological conditions of Truro.
- To compare PVsyst simulation outcomes with empirical data, validating simulation accuracy and assessing deviations under real-world conditions.
- To evaluate the economic feasibility of solar tracking systems, comparing lifecycle costs and energy gains against traditional fixed-panel systems.
- To analyze the influence of environmental variables such as albedo, shading, and ambient temperature on system performance through sensitivity analyses.
- To offer managerial recommendations for PV system designers and stakeholders to facilitate data-driven decisions in system planning and implementation.
2. Methodology
2.1. Case Study and Simulation Approach
2.2. Sensitive Analysis
2.3. Simulation Definition
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Kim, S. Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas. Energies 2023, 16, 4672. [Google Scholar] [CrossRef]
- McKenna, J.; Harris, S.; Heinrich, K.; Stewart, T.; Gharehbaghi, K. The Evaluation of Green Building’s Feasibility: Comparative Analysis across Different Geological Conditions. Eng 2023, 4, 2034–2054. [Google Scholar] [CrossRef]
- Sheng, J.; Qi, D.; Yan, H.; Wang, W.; Wang, T. Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection. Sustainability 2022, 14, 16629. [Google Scholar] [CrossRef]
- Iturralde Carrera, L.A.; Garcia-Barajas, M.G.; Constantino-Robles, C.D.; Álvarez-Alvarado, J.M.; Castillo-Alvarez, Y.; Rodríguez-Reséndiz, J. Efficiency and Sustainability in Solar Photovoltaic Systems: A Review of Key Factors and Innovative Technologies. Eng 2025, 6, 50. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. Modeling the Effect of Green Roof Systems and Photovoltaic Panels for Building Energy Savings to Mitigate Climate Change. Remote Sens. 2020, 12, 2402. [Google Scholar] [CrossRef]
- Cosgun, A.E.; Demir, H. Investigating the Effect of Albedo in Simulation-Based Floating Photovoltaic System: 1 MW Bifacial Floating Photovoltaic System Design. Energies 2024, 17, 959. [Google Scholar] [CrossRef]
- Sharma, S.; Saikia, A. Design and Simulation of a Building-Based off-Grid Photovoltaic Microgrid Using PVsyst: A Case Study. Int. J. Electr. Comput. Eng. Syst. 2024, 15, 113–120. [Google Scholar] [CrossRef]
- Mishra, P.R.; Rathore, S.; Jain, V. PVSyst Enabled Real Time Evaluation of Grid Connected Solar Photovoltaic System. Int. J. Inf. Technol. 2024, 16, 745–752. [Google Scholar] [CrossRef]
- Alkahtani, M.M.; Kamari, N.A.M.; Zainuri, M.A.A.M.; Syam, F.A. Design of Grid-Connected Solar PV Power Plant in Riyadh Using PVsyst. Energies 2024, 17, 6229. [Google Scholar] [CrossRef]
- Khan, A.; Aditya, A. Green Telecommunication—A Way Forward for Green World. IJSGGC Int. J. Smart Grid Green Commun. 2018, 1, 319. [Google Scholar] [CrossRef]
- Khan, A.; Mondal, M.; Mukherjee, C.; Chakrabarty, R.; De, D. A Review Report on Solar Cell: Past Scenario, Recent Quantum Dot Solar Cell and Future Trends. In Advances in Optical Science and Engineering; Lakshminarayanan, V., Bhattacharya, I., Eds.; Springer: New Delhi, India, 2015; Volume 166, pp. 135–140. ISBN 9788132223665. [Google Scholar]
- Khan, A.; Bhuiya, D.; Pal, T.; Ghosh, T. Performance Analysis of Solar Cell Materials for Different Generations. CAE 2018, 2, 27–36. [Google Scholar] [CrossRef]
- Solar PV Build Outlook in the United States by Segment 2022. Statista. Available online: https://www.statista.com/statistics/511913/current-policy-outlook-solar-pv-build-in-the-us-by-customer-segment/ (accessed on 28 May 2025).
- Islam, M.S.; Islam, F.; Habib, M.A. Feasibility Analysis and Simulation of the Solar Photovoltaic Rooftop System Using PVsyst Software. Int. J. Educ. Manag. Eng. 2022, 12, 21–32. [Google Scholar] [CrossRef]
- Bade, S.O.; Meenakshisundaram, A.; Tomomewo, O.S. Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review. Eng 2024, 5, 677–719. [Google Scholar] [CrossRef]
- Issa, M.F.; Al-Hamdani, A.H.; Kasim, N.K.; Mahdi, R.A.; Dawood, A.F. The Performance of Photovoltaic System with Different Orientation—A Review. AIP Conf. Proc. 2024, 2885, 020004. [Google Scholar] [CrossRef]
- Mohamed, N.; Sulaiman, S.; Rahim, S. Design of Ground-Mounted Grid-Connected Photovoltaic System with Bifacial Modules Using PVsyst Software. J. Phys. Conf. Ser. 2022, 2312, 12058. [Google Scholar] [CrossRef]
- Ali, A.; Volatier, M.; Darnon, M. Optimal Sizing and Assessment of Standalone Photovoltaic Systems for Community Health Centers in Mali. Solar 2023, 3, 522–543. [Google Scholar] [CrossRef]
- Zaro, F. Technical and Economic Study of On-Gird Solar Rooftop PV System Using PV Syst Software: A Case Study. Int. J. Environ. Eng. Dev. 2023, 1, 127–133. [Google Scholar] [CrossRef]
- Shrivastava, A.; Sharma, R.; Kumar Saxena, M.; Shanmugasundaram, V.; Lal Rinawa, M. Ankit Solar Energy Capacity Assessment and Performance Evaluation of a Standalone PV System Using PVSYST. Mater. Today Proc. 2023, 80, 3385–3392. [Google Scholar] [CrossRef]
- Serat, Z.; Fatemi, S.A.Z.; Shirzad, S. Design and Economic Analysis of On-Grid Solar Rooftop PV System Using PVsyst Software. Arch. Adv. Eng. Sci. 2023, 1, 63–76. [Google Scholar] [CrossRef]
- Vidur, P.R.; Jagwani, S. Design and Simulation of a Rooftop Solar PV System Using PV Syst Software. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 724–728. [Google Scholar]
- Ali, M.F.; Sarker, N.K.; Hossain, M.A.; Alam, M.S.; Sanvi, A.H.; Syam Sifat, S.I. Techno-Economic Feasibility Study of a 1.5 MW Grid-Connected Solar Power Plant in Bangladesh. Designs 2023, 7, 140. [Google Scholar] [CrossRef]
- Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Zhao, G.; Xia, D.; Wang, W. Simulation Test of 50 MW Grid-Connected “Photovoltaic+Energy Storage” System Based on Pvsyst Software. Results Eng. 2024, 22, 102331. [Google Scholar] [CrossRef]
- Kayri, İ. Investigation of Near Shading Losses in Photovoltaic Systems with PVsyst Software. Balk. J. Electr. Comput. Eng. 2024, 12, 10–19. [Google Scholar] [CrossRef]
- Hasan, H.S.; Hwang, H. Economic Feasibility Assessment of Motorized PV Louver System Considering the Near Shading Parameter, Array Incidence Losses and Other Environmental Factors. World J. Eng. Technol. 2024, 12, 540–551. [Google Scholar] [CrossRef]
- Ishibe, T.; Komatsubara, Y.; Ishikawa, K.; Takigawa, S.; Naruse, N.; Mera, Y.; Yamashita, Y.; Ohishi, Y.; Nakamura, Y. Boosting Thermoelectric Performance in Epitaxial GeTe Film/Si by Domain Engineering and Point Defect Control. ACS Appl. Mater. Interfaces 2023, 15, 26104–26110. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhou, S.; Chen, Z.; Xu, J.; Cui, N.; Yuan, M.; Li, B.; Gu, L. A High-Performance, Biocompatible, and Fully Biodegradable Piezo-Triboelectric Hybrid Nanogenerator Based on PVA/Glycine/PVA Heterostructured Piezoelectric Film. Nano Energy 2024, 122, 109310. [Google Scholar] [CrossRef]
- Baqir, M.; Channi, H.K. Analysis and design of solar PV system using Pvsyst software. Mater. Today Proc. 2022, 48, 1332–1338. [Google Scholar] [CrossRef]
- Aldaghi, A.; Gheibi, M.; Akrami, M.; Hajiaghaei-Keshteli, M. A smart simulation-optimization framework for solar-powered desalination systems. Groundw. Sustain. Dev. 2022, 19, 100861. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Meng, F.; Zoras, S.; McKechnie, J.; Chu, J. Energy assessment and economic sensitivity analysis of a grid-connected photovoltaic system. Renew. Energy 2020, 150, 101–115. [Google Scholar] [CrossRef]
- Salmi, M.; Baci, A.B.; Inc, M.; Menni, Y.; Lorenzini, G.; Al-Douri, Y. Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik 2022, 262, 169294. [Google Scholar] [CrossRef]
- Ghenai, C.; Ahmad, F.F.; Rejeb, O.; Hamid, A.K. Sensitivity analysis of design parameters and power gain correlations of bi-facial solar PV system using response surface methodology. Sol. Energy 2021, 223, 44–53. [Google Scholar] [CrossRef]
- Faiz, F.U.H.; Shakoor, R.; Raheem, A.; Umer, F.; Rasheed, N.; Farhan, M. Modeling and Analysis of 3 MW Solar Photovoltaic Plant Using PVSyst at Islamia University of Bahawalpur, Pakistan. Int. J. Photoenergy 2021, 2021, 6673448. [Google Scholar] [CrossRef]
- Smith, S.E.; Viggiano, B.; Ali, N.; Silverman, T.J.; Obligado, M.; Calaf, M.; Cal, R.B. Increased panel height enhances cooling for photovoltaic solar farms. Appl. Energy 2022, 325, 119819. [Google Scholar] [CrossRef]
- Baghel, N.; Manjunath, K.; Kumar, A. Performance evaluation and optimization of albedo and tilt angle for solar photovoltaic system. Comput. Electr. Eng. 2023, 110, 108849. [Google Scholar] [CrossRef]
- Tamoor, M.; Bhatti, A.R.; Farhan, M.; Rasool, A.; Sherefa, A. Optimizing tilt angle of PV modules for different locations using isotropic and anisotropic models to maximize power output. Sci. Rep. 2024, 14, 30197. [Google Scholar] [CrossRef]
Parameter | Description | Range |
---|---|---|
Orientations parameters | ||
Plane tilt | Angle of panel inclination | 30–45° |
Plane azimuth | Panel orientation direction | 0–30° |
Shading control | ||
Pitch | Inclination angle or slope | 2.5–7.5 m |
Baseline slope | Slope along a baseline | 0–30° |
Misalign | Alignment or positioning deviation | 0–20 m |
Parameter | Description | Range |
---|---|---|
System designing | ||
Type of panel | It depends on different companies | ------- |
Vmpp panel | Maximum power point voltage of panel | 25.3 V |
Voc panel | Open-circuit voltage of panel | 39.3 V |
Capacity of panel | Panel’s electrical output capacity | 230 Wp |
Inverter capacity | Inverter’s power conversion capacity | 75 kW |
Operating voltage | Voltage level during normal operation | 350–700 V |
Albedo setting | ||
Site-dependent design parameters | Lower temperature for absolute voltage limit | −10 °C |
Site-dependent design parameters | Winter operating temperature for VmppMax design | 20 °C |
Site-dependent design parameters | Usual operating temperature under 1000 W/m | 50 °C |
Site-dependent design parameters | Summer operating temperature for VmppMax design | 60 °C |
Site-dependent design parameters | Limit overload loss for design | 3% |
Limits with shading representations | Discriminating orientations difference between shading planes | 1 °C |
Limits with shading representations | Maximum orientation difference for defining average orientations | 10 °C |
Limits with shading representations | Maximum field/shading area ratio | 2.5 |
Albedo value | Albedo value is a measure of the reflectivity of a surface, indicating the fraction of incoming solar radiation that is reflected into the atmosphere or space, with higher values representing greater reflectivity | 0.08–0.85 (average value: 0.2) |
Climate parameters | ||
Global irradiance | Total solar radiation received at a location | 23.8–157.3 kwh/m2 |
Diffusion | Scattered solar radiation in the atmosphere | 12.7–87.8 kwh/m2 |
Temperature | Ambient air temperature affecting solar panels | 3.4–18.4 |
Wind velocity | Speed of wind impacting solar system performance | 2.89–4.60 |
Method | Description | Key Features | References |
---|---|---|---|
PVSyst Grid Simulation | 700 KWp solar plant modeled for Daikundi, Afghanistan | Evaluates 1266 MWh/yr yield, 0.797 performance ratio; supports 2032 energy goals in rural areas | [30] |
PVSyst and Response Surface Methodology | Solar-powered reverse osmosis desalination optimized for Zahedan, Iran | Uses Response Surface Methodology, and some machine learning models; optimizes energy, cost, carbon emission | [31] |
Techno-Economic Cost Model | Grid-connected solar PV for residential building use | Evaluates electricity output, net present value, payback period; compares feed-in tariff vs. smart export guarantee schemes | [32] |
Off-Grid PV System Model | Battery-backed solar PV simulation for home use in M’sila, Algeria | Uses PVsyst6; 12.6 kWh/day demand; 4615 kWh/year exported; 62.9% performance ratio; key losses due to high PV field temperature | [33] |
Bifacial PV Sensitivity Model | Optimization of bifacial PV with albedo, tilt, height using simulation | Uses Response Surface Methodology; 35.68% daily bifacial gain; 35° tilt optimal; max gain 21.93%; albedo most impactful factor | [34] |
Grid PV System Bahawalpur | Grid-connected solar PV system for Bahawalpur University, Pakistan | Uses PVsyst; 4908 MWh/year; 83.8% performance ratio; cost 0.11 USD/kWh; saves 15,369.3 kg coal/day; supports eco-friendly energy goals | [35] |
Contril System Design and PV Optimization | PV system simulation for Truro using real-time weather and PVSyst | 100 kWp case; 646.83 kWh/m2/month; optimal tilt 35–39°; 10% shading loss; compares spreadsheet vs. PVSyst; enhances accuracy and design | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, S.A.; Mansoori Al-yasin, S.A.; Gheibi, M.; Moezzi, R. Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency. Eng 2025, 6, 137. https://doi.org/10.3390/eng6070137
Hosseini SA, Mansoori Al-yasin SA, Gheibi M, Moezzi R. Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency. Eng. 2025; 6(7):137. https://doi.org/10.3390/eng6070137
Chicago/Turabian StyleHosseini, Seyed Azim, Seyed Alireza Mansoori Al-yasin, Mohammad Gheibi, and Reza Moezzi. 2025. "Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency" Eng 6, no. 7: 137. https://doi.org/10.3390/eng6070137
APA StyleHosseini, S. A., Mansoori Al-yasin, S. A., Gheibi, M., & Moezzi, R. (2025). Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency. Eng, 6(7), 137. https://doi.org/10.3390/eng6070137