A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors
Abstract
:1. Introduction
2. Torque Ripple Reduction Design Methods
2.1. General Classification
2.2. Slot/Pole Number Combination
2.2.1. Fractional Slot/Pole Number Design
2.2.2. Similar Number of Slots and Poles Design
2.3. Stator Winding Type
2.3.1. Use of Distributed Winding
2.3.2. Use of Non-Overlapping Windings
2.3.3. Coil Distribution and Turn Ratio Variation
2.4. Geometry Optimization
2.4.1. Asymmetric Rotor Design
2.4.2. Special Permanent Magnets Magnetization Direction
2.4.3. Magnet Skewing
2.4.4. Unequal Teeth Widths Design
2.4.5. Stator Teeth and Magnets Surfaces Notching
2.4.6. Magnets Shaping
2.4.7. Staggered Rotor Design
2.4.8. Eccentric Structure of Stator Teeth Design
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoudi, A.; Rahim, N.A.; Ping, H.W. Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis. Prog. Electromagn. Res. 2012, 122, 467–496. [Google Scholar] [CrossRef] [Green Version]
- Hanselman, D.C. Brushless Permanent Magnet Motor Design; The Writers’ Collective: Cranston, RI, USA, 2003. [Google Scholar]
- Zhu, X.; Fan, D.; Xiang, Z.; Quan, L.; Hua, W.; Cheng, M. Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles. Appl. Energy 2019, 253, 113549. [Google Scholar] [CrossRef]
- Feng, S.; Magee, C.L. Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Appl. Energy 2020, 260, 114264. [Google Scholar] [CrossRef]
- Long, G.; Ding, F.; Zhang, N.; Zhang, J.; Qin, A. Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle. Appl. Energy 2020, 260, 114180. [Google Scholar] [CrossRef]
- Uddin, K.; Moore, A.D.; Barai, A.; Marco, J. The effects of high frequency current ripple on electric vehicle battery performance. Appl. Energy 2016, 178, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.A.; Jensen, W.R.; Hayslett, S.; Foster, S.N.; Strangas, E.G. A Review of Control Methods for PMSM Torque Ripple Reduction. In Proceedings of the 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; pp. 521–526. [Google Scholar]
- Bondre, V.S.; Thosar, A.G. Study of control techniques for torque ripple reduction in BLDC motor. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6. [Google Scholar]
- Karthika, M.; Nisha, K.C.R. Review on Torque Ripple Reduction Techniques of BLDC Motor. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore Tamilnadu, India, 26–28 February 2020; pp. 1092–1096. [Google Scholar]
- Panda, S.K.; Jian-Xin, X.; Weizhe, Q. Review of torque ripple minimization in PM synchronous motor drives. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Salah, W.A.; Ishak, D.; Hammadi, K.J. Minimization of torque ripples in BLDC motors due to phase commutation—A review. Prz. Elektrotechniczny 2011, 87, 182–188. [Google Scholar]
- Du, Z.S.; Lipo, T.A. High Torque Density and Low Torque Ripple Shaped-Magnet Machines Using Sinusoidal Plus Third Harmonic Shaped Magnets. IEEE Trans. Ind. Appl. 2019, 55, 2601–2610. [Google Scholar] [CrossRef]
- Yu, H.; Yu, B.; Yu, J.; Lin, C. A Dual Notched Design of Radial-Flux Permanent Magnet Motors with Low Cogging Torque and Rare Earth Material. IEEE Trans. Magn. 2014, 50, 2329139. [Google Scholar] [CrossRef]
- Kano, Y. Torque Ripple Reduction of Saliency-Based Sensorless Drive Concentrated-Winding IPMSM Using Novel Flux Barrier. IEEE Trans. Ind. Appl. 2015, 51, 2905–2916. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.; Li, F. Reduction of Torque Ripple in Consequent-Pole Permanent Magnet Machines Using Staggered Rotor. IEEE Trans. Energy Convers. 2019, 34, 643–651. [Google Scholar] [CrossRef]
- Cho, S.; Lee, D.-C.; Hwang, J.; Kim, K.; Jang, G.U.; Bae, D.-S.; Mok, H.S.; Kim, C.-W. Optimal design to reduce torque ripple of IPM motor with radial based function meta-model considering design sensitivity analysis. J. Mech. Sci. Technol. 2019, 33, 3955–3961. [Google Scholar] [CrossRef]
- Chou, P.-H.; Yang, S.-C.; Jhong, C.-J.; Huang, J.-I.; Chen, J.-Y. Permanent Magnet Motor Design for Satellite Attitude Control with High Torque Density and Low Torque Ripple. IEEE Access 2020, 8, 48587–48598. [Google Scholar] [CrossRef]
- Jinshun, H.; Shuangfu, S.; Yiyong, Y.; Yang, W.; Wenjie, W.; Chen, X. Optimization of Torque Ripples in an Interior Permanent Magnet Synchronous Motor Based on the Orthogonal Experimental Method and MIGA and RBF Neural Networks. IEEE Access 2020, 8, 27202–27209. [Google Scholar] [CrossRef]
- Jung, Y.-H.; Park, M.-R.; Lim, M.-S. Asymmetric Rotor Design of IPMSM for Vibration Reduction under Certain Load Condition. IEEE Trans. Energy Convers. 2020, 35, 928–937. [Google Scholar] [CrossRef]
- Liu, H.-C.; Kim, H.; Jang, H.; Jang, I.-S.; Lee, J. Ferrite PM Optimization of SPM BLDC Motor for Oil-Pump Applications According to Magnetization Direction. IEEE Trans. Appl. Supercond. 2020, 30, 2977615. [Google Scholar] [CrossRef]
- Liu, K.; Yin, M.; Hua, W.; Ma, Z.; Lin, M.; Kong, Y. Design and Analysis of Halbach Ironless Flywheel BLDC Motor/Generators. IEEE Trans. Magn. 2018, 54, 2833958. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, X.; Cai, Y.; Xiang, T.; Chen, L. Design optimisation of an outer-rotor permanent magnet synchronous hub motor for a low-speed campus patrol EV. IET Electr. Power Appl. 2020, 14, 2111–2118. [Google Scholar] [CrossRef]
- Wang, S.; Hong, J.; Sun, Y.; Cao, H. Effect Comparison of Zigzag Skew PM Pole and Straight Skew Slot for Vibration Mitigation of PM Brush DC Motors. IEEE Trans. Ind. Electron. 2020, 67, 4752–4761. [Google Scholar] [CrossRef]
- Xue, Z.-Q.; Li, H.-S.; Zhou, Y.; Ren, N.-N.; Wen, W. Analytical Prediction and Optimization of Cogging Torque in Surface-Mounted Permanent Magnet Machines with Modified Particle Swarm Optimization. IEEE Trans. Ind. Electron. 2017, 64, 9795–9805. [Google Scholar] [CrossRef]
- Zhao, W.; Lipo, T.A.; Kwon, B.-i. Material-Efficient Permanent-Magnet Shape for Torque Pulsation Minimization in SPM Motors for Automotive Applications. IEEE Trans. Ind. Electron. 2014, 61, 5779–5787. [Google Scholar] [CrossRef]
- Shah, S.Q.A.; Lipo, T.A.; Kwon, B.-i. Modeling of Novel Permanent Magnet Pole Shape SPM Motor for Reducing Torque Pulsation. IEEE Trans. Magn. 2012, 48, 4626–4629. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Liu, G.; Zhai, F.; Eduku, S. Reduction of Torque Ripple Caused by Slot Harmonics in FSCW Spoke-Type FPM Motors by Assisted Poles. IEEE Trans. Ind. Electron. 2020, 67, 9613–9622. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, G.; Liu, G.; Zhao, W.; Liu, L.; Zhipeng, L. Torque Ripple Reduction in Five-Phase IPM Motors by Lowering Interactional MMF. IEEE Trans. Ind. Electron. 2018, 65, 8520–8531. [Google Scholar] [CrossRef]
- Chen, W.; Ma, J.; Wu, G.-c.; Fang, Y. Torque Ripple Reduction of a Salient-Pole Permanent Magnet Synchronous Machine with an Advanced Step-Skewed Rotor Design. IEEE Access 2020, 8, 118989–118999. [Google Scholar] [CrossRef]
- Du, Z.S.; Lipo, T.A. Efficient Utilization of Rare Earth Permanent-Magnet Materials and Torque Ripple Reduction in Interior Permanent-Magnet Machines. IEEE Trans. Ind. Appl. 2017, 53, 3485–3495. [Google Scholar] [CrossRef]
- Gan, C.; Wu, J.; Shen, M.; Kong, W.; Hu, Y.; Cao, W. Investigation of Short Permanent Magnet and Stator Flux Bridge Effects on Cogging Torque Mitigation in FSPM Machines. IEEE Trans. Energy Convers. 2018, 33, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Du, X.; Zhao, W.; Chen, Q. Reduction of Torque Ripple in Inset Permanent Magnet Synchronous Motor by Magnets Shifting. IEEE Trans. Magn. 2017, 53, 2620422. [Google Scholar] [CrossRef]
- Gandzha, S.; Sogrin, A.I.; Kiessh, I.E. The Comparative Analysis of Permanent Magnet Electric Machines with Integer and Fractional Number of Slots per Pole and Phase. Procedia Eng. 2015, 129, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Goss, J.; Staton, D.; Wrobel, R.; Mellor, P. Brushless AC interior-permanent magnet motor design: Comparison of slot/pole combinations and distributed vs. concentrated windings. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1213–1219. [Google Scholar]
- Li, G.-J.; Ren, B.; Zhu, Z.-Q.; Li, Y.; Ma, J. Cogging Torque Mitigation of Modular Permanent Magnet Machines. IEEE Trans. Magn. 2016, 52, 2477489. [Google Scholar] [CrossRef]
- Su, P.; Hua, W.; Hu, M.; Wu, Z.; Si, J.; Chen, Z.; Cheng, M. Analysis of Stator Slots and Rotor Pole Pairs Combinations of Rotor-Permanent Magnet Flux-Switching Machines. IEEE Trans. Ind. Electron. 2020, 67, 906–918. [Google Scholar] [CrossRef]
- Wu, L.; Ming, G.; Zhang, L.; Fang, Y. Improved Stator/Rotor-Pole Number Combinations for Torque Ripple Reduction in Doubly Salient PM Machines. IEEE Trans. Ind. Electron. 2020, 68, 10601–10611. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W.; Wu, Z.; Huang, W.; Zhang, H.; Cheng, M. Analytical Approach for Cogging Torque Reduction in Flux-Switching Permanent Magnet Machines Based on Magnetomotive Force-Permeance Model. IEEE Trans. Ind. Electron. 2018, 65, 1965–1979. [Google Scholar] [CrossRef]
- Zheng, P.; Sui, Y.; Zhao, J.; Tong, C.; Lipo, T.A.; Wang, A. Investigation of a Novel Five-Phase Modular Permanent-Magnet In-Wheel Motor. IEEE Trans. Magn. 2011, 47, 4084–4087. [Google Scholar] [CrossRef]
- Sung, S.; Jang, G.; Kang, K. Noise and vibration due to rotor eccentricity in a HDD spindle system. Microsyst. Technol. 2014, 20, 1461–1469. [Google Scholar] [CrossRef]
- Nizam, M.; Tri Waloyo, H.; Inayati, I. Brushless Direct Current Electric Motor Design with Minimum Cogging Torque. In Proceedings of the International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20–21 August 2014; p. 342. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, C.-M.; Hwang, G.-Y.; Hwang, S.-M. Effect of the number of poles on the acoustic noise from BLDC motors. J. Mech. Sci. Technol. 2011, 25, 273–277. [Google Scholar] [CrossRef]
- Fei, W.; Shen, J.-X.; Wang, C.; Luk, P.C.-K. Design and analysis of a new outer-rotor permanent-magnet flux-switching machine for electric vehicle propulsion. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.-Q. Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 9–31. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.-Q.; Wu, X.; Thomas, A.; Zhan-Yuan, W. Comparative Study of Modular Dual 3-Phase Permanent Magnet Machines with Overlapping/Non-overlapping Windings. IEEE Trans. Ind. Appl. 2019, 55, 3566–3576. [Google Scholar] [CrossRef]
- Ou, L.; Wang, X.; Xiong, F.; Ye, C. Reduction of torque ripple in a wound-rotor brushless doubly-fed machine by using the tooth notching. IET Electr. Power Appl. 2018, 12, 635–642. [Google Scholar] [CrossRef]
- Scuiller, F.; Becker, F.; Zahr, H.; Semail, E. Design of a Bi-Harmonic 7-Phase PM Machine with Tooth-Concentrated Winding. IEEE Trans. Energy Convers. 2020, 35, 1567–1576. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wang, K.; Liu, L.; Zhu, S.; Liu, C. EMF Voltage Distortion Mitigation in Fractional-Slot Permanent Magnet Machines by Varying Coil Distribution and Turn Ratio. IEEE Trans. Magn. 2021, 57, 3027020. [Google Scholar] [CrossRef]
- Zhiqing, Z.; Yong-bin, C. Design and Analysis of a Novel Two Phase Doubly Salient Permanent Magnet Machine. TELKOMNIKA Indones. J. Electr. Eng. 2014, 12, 234–244. [Google Scholar] [CrossRef]
- Ahsanullah, K.; Dutta, R.; Rahman, M.F. Preliminary Design Analysis of Low Speed Interior Permanent Magnet Machine with Distributed and Concentrated Windings. J. Int. Conf. Electr. Mach. Syst. 2014, 3, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Xiaogang, L.; Dinyu, Q.; Lipo, T.A. A novel two phase doubly salient permanent magnet motor. In Proceedings of the IAS ’96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Volume 802, pp. 808–815. [Google Scholar]
- Surong, H.; Aydin, M.; Lipo, T.A. Torque quality assessment and sizing optimization for surface mounted permanent magnet machines. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference, 36th IAS Annual Meeting (Cat. No.01CH37248), Chicago, IL, USA, 30 September–4 October 2001; pp. 1603–1610. [Google Scholar]
- Huang, S.; Aydin, M.; Lipo, T.A. Electromagnetic vibration and noise assessment for surface mounted PM machines. In Proceedings of the 2001 Power Engineering Society Summer Meeting, Conference Proceedings (Cat. No.01CH37262), Vancouver, BC, Canada, 15–19 July 2001; pp. 1417–1426. [Google Scholar]
- Bouloukza, I.; Mordjaoui, M.; Kurt, E.; Bal, G.; Ökmen, C. Electromagnetic design of a new radial flux permanent magnet motor. J. Energy Syst. 2018, 2, 13–27. [Google Scholar] [CrossRef]
- Koo, B.; Kim, J.; Nam, K. Halbach Array PM Machine Design for High Speed Dynamo Motor. IEEE Trans. Magn. 2021, 57, 3022894. [Google Scholar] [CrossRef]
- Momen, F.; Rahman, K.M.; Son, Y. Electrical Propulsion System Design of Chevrolet Bolt Battery Electric Vehicle. IEEE Trans. Ind. Appl. 2019, 55, 376–384. [Google Scholar] [CrossRef]
- Neethu, S.; Nikam, S.P.; Pal, S.; Wankhede, A.K.; Fernandes, B.G. Performance Comparison Between PCB-Stator and Laminated-Core-Stator-Based Designs of Axial Flux Permanent Magnet Motors for High-Speed Low-Power Applications. IEEE Trans. Ind. Electron. 2020, 67, 5269–5277. [Google Scholar] [CrossRef]
- Petrov, I.; Ponomarev, P.; Alexandrova, Y.; Pyrhonen, J. Unequal Teeth Widths for Torque Ripple Reduction in Permanent Magnet Synchronous Machines with Fractional-Slot Non-Overlapping Windings. IEEE Trans. Magn. 2015, 51, 2355178. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Sun, X.; Lei, G.; Yang, Z.; Guo, Y.; Zhu, J. Analysis and Optimization of Radial Force of Permanent-Magnet Synchronous Hub Motors. IEEE Trans. Magn. 2020, 56, 2953731. [Google Scholar] [CrossRef]
- Ueda, Y.; Takahashi, H. Transverse-Flux Motor Design with Skewed and Unequally Distributed Armature Cores for Reducing Cogging Torque. IEEE Trans. Magn. 2017, 53, 2703087. [Google Scholar] [CrossRef]
- Yang, Y.; Castano, S.M.; Yang, R.; Kasprzak, M.; Bilgin, B.; Sathyan, A.; Dadkhah, H.; Emadi, A. Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. IEEE Trans. Transp. Electrif. 2017, 3, 86–97. [Google Scholar] [CrossRef]
- Yeşilbağ, E.; Ertuğrul, Y.; Ergene, L.T. Axial flux PM BLDC motor design methodology and comparison with a radial flux PM BLDC motor. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 3455–3467. [Google Scholar] [CrossRef]
- Baig, M.A.; Ikram, J.; Iftikhar, A.; Bukhari, S.S.H.; Khan, N.; Ro, J.-S. Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets. IEEE Access 2020, 8, 227193–227201. [Google Scholar] [CrossRef]
- Du, Z.S.; Lipo, T.A. Reducing Torque Ripple Using Axial Pole Shaping in Interior Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2020, 56, 148–157. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, S.; Liu, C.; Wang, K. Electromagnetic Performance Analysis of Interior PM Machines for Electric Vehicle Applications. IEEE Trans. Energy Convers. 2018, 33, 199–208. [Google Scholar] [CrossRef]
- Jung, Y.-H.; Lim, M.-S.; Yoon, M.-H.; Jeong, J.-S.; Hong, J.-P. Torque Ripple Reduction of IPMSM Applying Asymmetric Rotor Shape under Certain Load Condition. IEEE Trans. Energy Convers. 2018, 33, 333–340. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Mou, Q.; Liu, X.; Haddad, A.; Liang, J. Research on torque characteristics of a modular arc-linear flux switching permanent-magnet motor. IEEE Access 2019, 7, 57312–57320. [Google Scholar] [CrossRef]
- Song, C.-H.; Kim, H.; Kim, K.-C. Design of a Novel IPMSM Bridge for Torque Ripple Reduction. IEEE Trans. Magn. 2021, 57, 3016985. [Google Scholar] [CrossRef]
- Torkaman, H.; Ghaheri, A.; Keyhani, A. Design of Rotor Excited Axial Flux-Switching Permanent Magnet Machine. IEEE Trans. Energy Convers. 2018, 33, 1175–1183. [Google Scholar] [CrossRef]
- Wang, K.; Liang, Y.; Wang, D.; Wang, C. Cogging torque reduction by eccentric structure of teeth in external rotor permanent magnet synchronous motors. IET Electr. Power Appl. 2018, 13, 57–63. [Google Scholar] [CrossRef]
- Wu, R.; Xu, Q.; Qiong, L.; Zhou, L. Reduction of Cogging Torque and Torque Ripple in Interior PM Machines With Asymmetrical V-Type Rotor Design. IEEE Trans. Magn. 2016, 52, 2530840. [Google Scholar] [CrossRef]
- Yousuf, M.; Khan, F.; Ikram, J.; Badar, R.; Bukhari, S.S.H.; Ro, J.-S. Reduction of Torque Ripples in Multi-Stack Slotless Axial Flux Machine by Using Right Angled Trapezoidal Permanent Magnet. IEEE Access 2021, 9, 22760–22773. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W. An Improved Configuration for Cogging Torque Reduction in Flux-Reversal Permanent Magnet Machines. IEEE Trans. Magn. 2017, 53, 2655727. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W.; Wu, Z. Cogging torque minimisation in FSPM machines by right-angle-based tooth chamfering technique. IET Electr. Power Appl. 2018, 12, 627–634. [Google Scholar] [CrossRef]
- Toba, A.; Lipo, T.A. Generic torque-maximizing design methodology of surface permanent-magnet vernier machine. IEEE Trans. Ind. Appl. 2000, 36, 1539–1546. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yan, Y.; Li, B.; Liu, X.; Zhen, C. Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles. Energies 2014, 7, 8056–8075. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Zhouyun, Z. Multiobjective optimum design method with anti-demagnetization of high-density permanent magnet synchronous motor. IEEJ Trans. Electr. Electron. Eng. 2014, 9, 555–562. [Google Scholar] [CrossRef]
- Shin, P.S.; Kim, H.Y.; Kim, Y.B. Minimization of Torque Ripple for an IPMSM with a Notched Rotor Using the Particle Swarm Optimization Method. J. Electr. Eng. Technol. 2014, 9, 1577–1581. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.-X.; Shi, D.; Wang, C.; Li, P.; Wang, K.; Jin, M.-J. Torque ripple analysis for IPM AC motors. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2014, 33, 1514–1526. [Google Scholar] [CrossRef]
- Lee, C.-U.; Kim, D.; Kim, D.-H. Robust Design Optimization for Reducing Cogging Torque of a BLDC Motor through an Enhanced Taguchi Method. J. Korean Magn. Soc. 2014, 24, 160–164. [Google Scholar] [CrossRef]
- Kim, K.-C. Study of the Reduction of Torque Ripples for Multi-pole Interior Permanent Magnet Synchronous Motors using Rotor Saliency. J. Korea Acad. Ind. Coop. Soc. 2014, 15, 6270–6275. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Seo, J.-M.; Jung, H.-K.; Won, C.-Y. Analysis and Design of a Novel-Shape Permanent Magnet Synchronous Motor for Minimization of Torque Ripple and Iron Loss. J. Magn. 2014, 19, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovski, G.; Petkovska, L. Cogging torque minimisation of PM synchronous motor using genetic algorithm. Int. J. Appl. Electromagn. Mech. 2014, 46, 327–334. [Google Scholar] [CrossRef]
- Cui, J.; Xiao, W.; Longhua, W.; Hao, F.; Jianbo, Z.; Wang, H. Optimization design of low-speed surface-mounted PMSM for pumping unit. Int. J. Appl. Electromagn. Mech. 2014, 46, 217–228. [Google Scholar] [CrossRef]
- Soleimani, J.; Vahedi, A.; Mirimani, S.M. Inner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere. Iran. J. Electr. Electron. Eng. 2011, 7, 241–248. [Google Scholar]
- Rashidaee, S.; Gholamian, S.A. Reduction of cogging torque in ipm motors by using the taguchi and finite element method. Int. J. Comput. Sci. Eng. Surv. 2011, 2, 1–10. [Google Scholar] [CrossRef]
- Meng, X.; Wang, S.; Qiu, J.; Zhu, J.; Guo, Y. Cogging torque reduction of Bldc motor using level set based topology optimization incorporating with triangular finite element. Int. J. Appl. Electromagn. Mech. 2010, 33, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Masmoudi, A. On the sizing of fractional slot PM machines oriented towards the improvement of their torque production capability. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 32–47. [Google Scholar] [CrossRef]
- Lim, S.-B.; Park, H.-J.; Kang, D.-W.; Ham, S.-H.; Lee, J. Surface Mounted Permanent Magnet Synchronous Motor Design for Torque Ripple Reduction in EPS. J. Korean Inst. Illum. Electr. Install. Eng. 2010, 24, 27–31. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, T.H. Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology. J. Magn. 2010, 15, 74–77. [Google Scholar] [CrossRef]
- Kang, D.-W.; Go, S.-C.; Won, S.H.; Lim, S.-B.; Lee, J. Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor. J. Magn. 2010, 15, 36–39. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Chang, C.-M.; Li, P.-L.; Liu, C.T. Design of rotor shape to reduce torque ripple in IPM motors. J. Phys. Conf. Ser. 2011, 266, 012068. [Google Scholar] [CrossRef]
- Hur, J.; Kim, B.-W. Rotor Shape Design of an Interior PM Type BLDC Motor for Improving Mechanical Vibration and EMI Characteristics. J. Electr. Eng. Technol. 2010, 5, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Hongliang, Y.; Zhang, Z.; Gong, J.; Huang, S.; Ding, X. Application for Step-skewing of Rotor of IPM Motors Used in EV. World Electr. Veh. J. 2010, 4, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Hafner, M.; Franck, D.; Hameyer, K. Accounting for saturation in conformal mapping modeling of a permanent magnet synchronous machine. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 916–928. [Google Scholar] [CrossRef]
- Choi, G.-S.; Hahn, S.-C. Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method. J. Korean Inst. Illum. Electr. Install. Eng. 2010, 24, 123–130. [Google Scholar] [CrossRef]
Reference | Machine Topology | Design Technique | Torque Ripple Reduction Ratio (%) | Slot/Pole Number | Rated Power (W) | Average Torque (Nm) | Rated Speed (rpm) |
---|---|---|---|---|---|---|---|
High Torque Density and Low Torque Ripple-Shaped Magnet Machines Using Sinusoidal Plus Third Harmonic-Shaped Magnets [12] | Radial flux, surface permanent magnets | Magnets shaping | 88.50 | 24/8 | 54 | 184 | 2800 |
A Dual Notched Design of Radial-Flux Permanent Magnet Motors with Low Cogging Torque and Rare Earth Material [13] | Radial flux, surface permanent magnets | Gear-shaping the surfaces of magnets and teeth | 62.8 | 18/12 | 80 | − | 10,000 |
Torque Ripple Reduction of Saliency-Based Sensorless Drive Concentrated Winding IPMSM Using Novel Flux Barrier [14] | Saliency-based, interior permanent magnets | Flux barrier design | 28 | 9/6 | 5500 | 45 | 1750 |
Reduction of Torque Ripple in Consequent Pole Permanent Magnet Machines Using Staggered Rotor [15] | Consequent-Pole permanent magnet motor | Staggered rotor design | 60 | 9/6 | − | 2.13 | 1500 |
Optimal Design to Reduce Torque Ripple of IPM Motor with Radial-Based Function Meta-Model Considering Design Sensitivity Analysis [16] | Radial flux, interior permanent magnets | Slots, teeth, and magnet size optimization | 58 | 48/8 | 50,000 | 400 | 1200 |
Permanent Magnet Motor Design for Satellite Attitude Control With High Torque Density and Low Torque Ripple [17] | Radial flux, dual rotor | Slotless windings and Halbach array magnets | 67 | 9/8 | 11.5 | 32.15 m | 6000 |
Optimization of Torque Ripples in an Interior Permanent Magnet Synchronous Motor Based on the Orthogonal Experimental Method and MIGA and RBF Neural Networks [18] | Radial flux, interior permanent magnets | Stator, rotor, and magnets sizes optimization | 84 | 24/8 | 5010 | 4.2 | − |
Asymmetric Rotor Design of IPMSM for Vibration Reduction Under Certain Load Condition [19] | Radial flux, interior permanent magnets | Asymmetric rotor shape | 33.10 | 12/8 | 5000 | 24 | 2000 |
Ferrite PM Optimization of SPM BLDC Motor for Oil-Pump Applications, According to Magnetization Direction [20] | Brushless DC | Parallel magnetization direction of permanent magnets | 69.20 | 12/8 | 126 | 0.33 | 3200 |
Design and Analysis of Halbach Ironless Flywheel BLDC Motor/Generators [21] | Brushless DC, outer rotor | Halbach array magnets | 20 | 6/8 | − | 800 m | 40,000 |
Design Optimisation of an Outer Rotor Permanent Magnet Synchronous Hub Motor for a Low-Speed Campus Patrol EV [22] | Radial flux, outer rotor | Similar number of slots and poles | 29 | 51/50 | − | 94.5 | 600 |
Effect Comparison of Zigzag Skew PM Pole and Straight Skew Slot for Vibration Mitigation of PM Brush DC Motors [23] | Brush DC | Zigzag skewed magnets | 37.5 | 24/4 | 800 | 2.147 | 2700 |
Analytical Prediction and Optimization of Cogging Torque in Surface-Mounted Permanent Magnet Machines With Modified Particle Swarm Optimization [24] | Radial flux, surface permanent magnets | Air-gap length and magnet thickness optimization, fractional slot-pole number, and parallel magnetization of permanent magnets | 92.48 | 12/8 | − | − | − |
Material-Efficient Permanent Magnet Shape for Torque Pulsation Minimization in SPM Motors for Automotive Applications [25] | Radial flux, surface permanent magnets | Magnets shaping and skewing | 86.1 | 6/4 | 264.4 | 0.5053 | 1000 |
Modeling of Novel Permanent Magnet Pole Shape SPM Motor for Reducing Torque Pulsation [26] | Radial flux, surface permanent magnets | Magnets shaping | 72.08 | 6/4 | 340.48 | 0.6503 | 5000 |
Reduction of Torque Ripple Caused by Slot Harmonics in FSCW Spoke-Type FPM Motors by Assisted Poles [27] | Spoke-type | Fractional slot concentrated winding and assisted poles | 40 | 12/10 | − | 6.5 | 1500 |
Torque Ripple Reduction in Five-Phase IPM Motors by Lowering Interactional MMF [28] | Radial flux, interior permanent magnets | Asymmetrical rotor poles shifting | − | 40/8 | − | 10.45 | 1500 |
Torque Ripple Reduction of a Salient Pole Permanent Magnet Synchronous Machine, with an Advanced Step-Skewed Rotor Design [29] | Salient-pole, surface permanent magnets | Eccentric airgap, advanced step-skewed rotor, and pole shoes skewing | 91 | 36/4 | 1500 | 10.52 | 1500 |
Efficient Utilization of Rare Earth Permanent-Magnet Materials and Torque Ripple Reduction in Interior Permanent-Magnet Machines [30] | Radial flux, interior permanent magnets | Rotor made by segments arranged in the axial direction, and pole shaping | 50 | 48/8 | 68,000 | 210 | 3080 |
Investigation of Short Permanent Magnet and Stator Flux Bridge Effects on Cogging Torque Mitigation in FSPM Machines [31] | Flux-switching | Short magnet and stator flux bridge | 32.70 | 12/10 | 500 | 3.05 | 1500 |
Reduction of Torque Ripple in Inset Permanent Magnet Synchronous Motor by Magnets Shifting [32] | Radial flux, interior permanent magnets | Magnets shifting | 28 | 48/8 | − | 244 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriano-Sánchez, S.I.; Ponce-Silva, M.; Olivares-Peregrino, V.H.; De León-Aldaco, S.E. A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors. Eng 2022, 3, 646-661. https://doi.org/10.3390/eng3040044
Suriano-Sánchez SI, Ponce-Silva M, Olivares-Peregrino VH, De León-Aldaco SE. A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors. Eng. 2022; 3(4):646-661. https://doi.org/10.3390/eng3040044
Chicago/Turabian StyleSuriano-Sánchez, Sergio I., Mario Ponce-Silva, Víctor H. Olivares-Peregrino, and Susana E. De León-Aldaco. 2022. "A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors" Eng 3, no. 4: 646-661. https://doi.org/10.3390/eng3040044
APA StyleSuriano-Sánchez, S. I., Ponce-Silva, M., Olivares-Peregrino, V. H., & De León-Aldaco, S. E. (2022). A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors. Eng, 3(4), 646-661. https://doi.org/10.3390/eng3040044