Comparative Clinical and Volumetric Outcomes of Contemporary Surgical Techniques for Lumbar Foraminal Stenosis: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Period
2.2. Inclusion and Exclusion Criteria
2.3. Clinical and Imaging Assessment
2.3.1. MRI Acquisition and Standardization
2.3.2. Image Processing and Calibration
2.4. Statistical Analysis
2.5. Study Cohort
3. Results
Safety and Resource Utilization
4. Discussion
4.1. Future Directions
4.2. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PK | Foraminal canal (canalis foraminalis); |
MPD | Intervertebral disc (discus intervertebralis); |
ODI | Oswestry Disability Index; |
VAS | Visual Analogue Scale; |
SF-36 MN | Mental Health domain of the SF-36; |
SF-36 PH | Physical Health domain of the SF-36; |
ALIF | Anterior Lumbar Interbody Fusion; |
TLIF | Transforaminal Lumbar Interbody Fusion. |
Appendix A
Clinical Cases
References
- Ravindra, V.M.; Senglaub, S.S.; Rattani, A.; Dewan, M.C.; Härtl, R.; Bisson, E.; Park, K.B.; Shrime, M.G. Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Glob. Spine J. 2018, 8, 784–794. [Google Scholar] [CrossRef]
- Kalff, R.; Ewald, C.; Waschke, A.; Gobisch, L.; Hopf, C. Degenerative Lumbar Spinal Stenosis in Older People. Dtsch. Arztebl. Int. 2013, 110, 613–624. [Google Scholar] [CrossRef]
- Aaen, J.; Banitalebi, H.; Austevoll, I.M.; Hellum, C.; Storheim, K.; Myklebust, T.Å.; Anvar, M.; Weber, C.; Solberg, T.; Grundnes, O.; et al. Is the presence of foraminal stenosis associated with outcome in lumbar spinal stenosis patients treated with posterior microsurgical decompression. Acta Neurochir. 2023, 165, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- De Bonis, P.; Musio, A.; Mongardi, L.; La Marca, F.; Lofrese, G.; Visani, J.; Cavallo, M.A.; Scerrati, A. Transpars approach for L5-S1 foraminal and extra-foraminal lumbar disc herniations: Technical note. J. Neurosurg. Sci. 2023, 67, 213–218. [Google Scholar] [CrossRef]
- Ramirez, M.J.E.; Nurmukhametov, R.; Bernard, E.; Peralta, I.; Efe, I.E. A Low-Cost Three-Dimensional Printed Retractor for Transforaminal Lumbar Interbody Fusion. Cureus 2022, 14, e24185. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Horikawa, M.; Sato, T.; Kahyo, T.; Takanashi, Y.; Ushirozako, H.; Kurosu, K.; Al Mamun, M.; Mihara, Y.; Oe, S.; et al. Hypertrophy of the ligamentum flavum in lumbar spinal canal stenosis is associated with abnormal accumulation of specific lipids. Sci. Rep. 2021, 11, 23515. [Google Scholar] [CrossRef]
- Slätis, P.; Malmivaara, A.; Heliövaara, M.; Sainio, P.; Herno, A.; Kankare, J.; Seitsalo, S.; Tallroth, K.; Turunen, V.; Knekt, P.; et al. Long-term results of surgery for lumbar spinal stenosis: A randomized controlled trial. Eur. Spine J. 2011, 20, 117–1181. [Google Scholar] [CrossRef]
- Steurer, J.; Roner, S.; Gnannt, R.; Hodler, J. Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: A systematic literature review. BMC Musculoskelet. Disord. 2011, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Özer, A.F.; Akyoldaş, G.; Çevik, O.M.; Aydın, A.L.; Hekimoğlu, M.; Sasani, M.; Öktenoğlu, T.; Çerezci, Ö.; Süzer, T. Lumbar Foraminal Stenosis Classification That Guides Surgical Treatment. Int. J. Spine Surg. 2022, 16, 666–673. [Google Scholar] [CrossRef]
- Mahatthanatrakul, A.; Kim, H.S.; Lin, G.X.; Kim, J.S. Decreasing thickness and remodeling of ligamentum flavum after oblique lumbar interbody fusion. Neuroradiology 2020, 62, 971–978. [Google Scholar] [CrossRef]
- Gkasdaris, G.; Kapetanakis, S. Clinical anatomy and significance of the lumbar intervertebral foramen: A review. J. Anat. Soc. India 2015, 64, 166–173. [Google Scholar] [CrossRef]
- Breemer, M.C.; Malessy, M.J.A.; Notenboom, R.G.E. Origin, branching pattern, foraminal and intraspinal distribution of the human lumbar sinuvertebral nerves. Spine J. 2022, 22, 472–482. [Google Scholar] [CrossRef]
- Giordano, F.; Lenge, M.; Donati, P.; Mongardi, L.; Di Giacomo, G.; Mura, R.; Taverna, M.; Cini, C.; Peraio, S.; Poggi, G.; et al. Exclusive Neurogenic Bladder and Fecal Incontinency in an Achondroplasic Child Successfully Treated with Lumbar Foraminal Decompression. Pediatr. Neurosurg. 2021, 56, 471–476. [Google Scholar] [CrossRef]
- Nurmukhametov, R.; Encarnacion Ramirez, M.D.J.; Dosanov, M.; Medetbek, A.; Kudryakov, S.; Wisam Alsaed, L. Quantifying Lumbar Foraminal Volumetric Dimensions: Normative Data and Implications for Stenosis—Part 2 of a Comprehensive Series. Med. Sci. 2024, 12, 34. [Google Scholar] [CrossRef]
- Nurmukhametov, R.; De Jesus Encarnacion Ramirez, M.; Dosanov, M.; Medetbek, A.; Kudryakov, S.; Reyes Soto, G. Exploring Pathways for Pain Relief in Treatment and Management of Lumbar Foraminal Stenosis: A Review of the Literature. Brain Sci. 2024, 14, 740. [Google Scholar] [CrossRef]
- White, A.A.; Panjabi, M.M. Clinical Biomechanics of the Spine, 2nd ed.; Lippincott: Philadelphia, PA, USA, 1990; Volume 2, Chapter 18–20. [Google Scholar]
- Copay, A.G. Understanding the minimum clinically important difference: A review of concepts and methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.A.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Lim, T.-H.; An, H.S.; Tanaka, N.; Jeon, C.-H.; Andersson, G.B.J.; Haughton, V.M. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25, 3036–3044. [Google Scholar] [CrossRef] [PubMed]
- Park, C.K. Total disc replacement in lumbar degenerative disc diseases. J. Korean Neurosurg. Soc. 2015, 58, 401–411. [Google Scholar] [CrossRef]
- Byval’tsev, V.A.; Belykh, E.G.; Sorokovikov, V.A.; Arsent’eva, N.I. The use of scales and questionnaires in vertebrology. Zhurnal Nevrol. I Psichiatr. 2011, 111, 51–56. (In Russian) [Google Scholar]
- Ju, C.I.; Lee, S.M. Complications and management of endoscopic spinal surgery. Neurospine 2023, 20, 56–77. [Google Scholar] [CrossRef]
- Haimoto, S.; Nishimura, Y.; Hara, M.; Nakajima, Y.; Yamamoto, Y.; Ginsberg, H.J.; Wakabayashi, T. Clinical and radiological outcomes of microscopic lumbar foraminal decompression: A pilot analysis of possible risk factors for restenosis. Neurol. Med. Chir. 2018, 58, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Matsuda, H.; Nabeta, M.; Habunaga, H.; Suzuki, A.; Nakamura, H. Clinical outcomes of microscopic decompression for degenerative lumbar foraminal stenosis: A comparison between patients with and without degenerative lumbar scoliosis. Eur. Spine J. 2011, 20, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.J.; Lee, E.; Lee, J.W.; Park, C.Y.; Cho, J.; Kang, Y.; Ahn, J.M. Clinical validity of two different grading systems for lumbar central canal stenosis: Schizas and Lee classification systems. PLoS ONE 2020, 15, e0233633. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.S.; Kapoor, A.; Adsul, N.; Kim, K.J.; Choi, S.H.; Jang, J.-S.; Jang, I.-T.; Oh, S.-H. Feasibility of full endoscopic spine surgery in patients over the age of 70 years with degenerative lumbar spine disease. Neurospine 2018, 15, 131–137. [Google Scholar] [CrossRef]
- Park, M.K.; Son, S.K.; Park, W.W.; Choi, S.H.; Jung, D.Y.; Kim, D.H. Unilateral biportal endosccopy for decompression of extraforaminal stenosis at the lumbosacral junction: Surgical techniques and clinical out-comes outcomes. Neurospine 2021, 18, 871–879. [Google Scholar] [CrossRef]
- Vande Kerckhove, M.; d’Astorg, H.; Ramos-Pascual, S.; Saffarini, M.; Fiere, V.; Szadkowski, M. SPINE: High heterogeneity and no significant differences in clinical outcomes of endoscopic foraminotomy vs fusion for lumbar foraminal stenosis: A meta-analysis. EFORT Open Rev. 2023, 8, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Rao, P.J.; Kam, A.C.; Mobbs, R.J. Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: Systematic review and meta-analysis. Eur. Spine J. 2015, 24, 1017–1030. [Google Scholar] [CrossRef]
- Lewandrowski, K.-U.; Fiorelli, R.K.A.; Pereira, M.G.; Abraham, I.; Pachicano, H.H.A.; Elfar, J.C.; Alhammoud, A.; Landgraeber, S.; Oertel, J.; Hellinger, S.; et al. Polytomous Rasch Analyses of Surgeons’ Decision-Making on Choice of Procedure in Endoscopic Lumbar Spinal Stenosis Decompression Surgeries. Int. J. Spine Surg. 2024, 18, 164–177. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Elfar, J.C.; Li, Z.M.; Burkhardt, B.W.; Lorio, M.P.; Winkler, P.A.; Oertel, J.M.; Telfeian, A.E.; Dowling, Á.; Vargas, R.A.A.; et al. The Changing Environment in Postgraduate Education in Orthopedic Surgery and Neurosurgery and Its Impact on Technology-Driven Targeted Interventional and Surgical Pain Management: Perspectives from Europe, Latin America, Asia, and The United States. J. Pers. Med. 2023, 13, 852. [Google Scholar] [CrossRef]
- Darden, B.V., 2nd; Wade, J.F.; Alexander, R.; Wood, K.E.; Rhyne, A.L., 3rd; Hicks, J.R. Far lateral disc herniations treated by microscopic fragment excision. Techniques and results. Spine 1995, 20, 1500–1505. [Google Scholar] [CrossRef]
- Baba, H.; Uchida, K.; Maezawa, Y.; Furusawa, N.; Okumura, Y.; Imura, S. Microsurgical nerve root canal widening without fusion for lumbosacral intervertebral foraminal stenosis: Technical notes and early results. Spinal Cord 1996, 34, 644–650. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Hsieh, M.-H.; Chien, J.-T.; Liu, K.-C.; Yang, C.-C. Outcomes of FETD versus UBE in the treatment of L5S1 foraminal stenosis: A comparative study. Heliyon 2024, 10, e27592. [Google Scholar] [CrossRef] [PubMed]
- Kunogi, J.; Hasue, M. Diagnosis and operative treatment of intraforaminal and extraforaminal nerve root compression. Spine 1991, 16, 1312–1320. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Q.; Wang, X.; Jian, Q.; Fan, X.; Yu, Y.; Gu, D.; Wu, W. The biomechanical effects of foraminoplasty of different area sunder lumbar percutaneous endoscopy on intervertebral discs: A 3D finite element analysis. Medicine 2020, 99, e19847. [Google Scholar] [CrossRef]
- Nurmukhametov, R.; Dosanov, M.; Encarnacion, M.D.J.; Barrientos, R.; Matos, Y.; Alyokhin, A.I.; Baez, I.P.; Efe, I.E.; Restrepo, M.; Chavda, V.; et al. Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study. Surgeries 2022, 3, 175–184. [Google Scholar] [CrossRef]
- Zhu, K.; Yan, S.; Guo, S.; Tong, J.; Li, C.; Tan, J.; Wan, W. Morphological changes of contralateral intervertebral foramen induced by cage insertion orientation after unilateral transforaminal lumbar interbody fusion. J. Orthop. Surg. Res. 2019, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.G.; Park, S.H.; Kim, K.N.; Ha, Y.; Yoon, D.H.; Shin, D.A. A morphometric analysis of contralateral neural foramen in TLIF. Eur. Spine J. 2015, 24, 783–790. [Google Scholar] [CrossRef]
- Wang, N.; Xie, Y.; Liu, X.; Zheng, Y.; Xi, Z.; Xu, W.; Deng, R.; Tang, T.; Liu, X. Safety and clinical efficacy of endoscopic procedures for the treatment of adjacent segmental disease after lumbar fusion: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0280135. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Kim, J.H.; Chang, B.S.; Kim, H.; Kim, D.; Park, S.; Hong, S.H.; Chang, S.Y. The Fate of Pre-Existing L5-S1 Degeneration following Oblique Lumbar Interbody Fusion of L4-L5 and Above. J. Clin. Med. 2023, 12, 7463. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, X.; Zhou, H.; Jiang, W. Development and Application of Oblique Lumbar Interbody Fusion. Orthop. Surg. 2020, 12, 355–365. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.L.; Alsoof, D.; Glueck, J.; Osorio, C.; Stone, B.; McCluskey, L.; Diebo, B.G.; Daniels, A.H.; Basques, B.A. Adjacent Segment Disease After Spinal Fusion. JBJS Rev. 2023, 11, e23. [Google Scholar] [CrossRef] [PubMed]
- Parish, J.M.; Asher, A.M. Adjacent-Segment Disease Following Spinal Arthroplasty. Coric. D Neurosurg. Clin. N. Am. 2021, 32, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, C.L.; Zeng, F.; Jackson, C.; Wellington, I.J.; Patel, S.M.; Esmende, S.M. Lateral interbody fusion for adjacent segment disease: A narrative review. J. Spine Surg. 2024, 10, 286–294. [Google Scholar] [CrossRef]
- Beatty, S. We Need to Talk about Lumbar Total Disc Replacement. Int. J. Spine Surg. 2018, 12, 201–240. [Google Scholar] [CrossRef]
- Ramirez, M.D.J.E.; Chmutin, G.; Nurmukhametov, R.; Soto, G.R.; Kannan, S.; Piavchenko, G.; Nikolenko, V.; Efe, I.E.; Romero, A.R.; Mukengeshay, J.N.; et al. Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies. Brain Sci. 2024, 14, 645. [Google Scholar] [CrossRef]
- Dorsi, M.J.; Buchanan, P.; Vu, C.; Bhandal, H.S.; Lee, D.W.; Sheth, S.; Shumsky, P.M.; Brown, N.J.; Himstead, A.; Mattie, R.; et al. Pacific Spine and Pain Society (PSPS) Evidence Review of Surgical Treatments for Lumbar Degenerative Spinal Disease: A Narrative Review. Pain Ther. 2024, 13, 349–390. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Phan, K.; Malham, G.; Seex, K.; Rao, P.J. Lumbar interbody fusion: Techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J. Spine Surg. 2015, 1, 2–18. [Google Scholar]
- Montemurro, N.; Zotti, N.; Guercini, J.; De Carolis, G.; Leoni, C.; Marotta, R.; Tomei, R.; Baggiani, A.; Paolicchi, A.; Lazzini, S.; et al. Value-based healthcare in management of chronic back pain: A multidisciplinary- and lean-based approach. Surg. Neurol. Int. 2024, 15, 348. [Google Scholar] [CrossRef]
- Nurmukhametov, R.; Medetbek, A.; Ramirez, M.E.; Afsar, A.; Sharif, S.; Montemurro, N. Factors affecting return to work following endoscopic lumbar foraminal stenosis surgery: A single-center series. Surg. Neurol. Int. 2023, 14, 408. [Google Scholar] [CrossRef]
- Lewandrowski, K.-U.; Pachicano, H.H.A.; Fiorelli, R.K.A.; Elfar, J.C.; Landgraeber, S.; Oertel, J.; Hellinger, S.; Dowling, Á.; De Carvalho, P.S.T.; Ramos, M.R.F.; et al. Comparative Analysis of Learning Curve, Complexity, Psychological Stress, and Work Relative Value Units for CPT 62380 Endoscopic Lumbar Spinal Decompression vs Traditional Lumbar Spine Surgeries: A Paired Rasch Survey Study. Int. J. Spine Surg. 2024, 18, 138–151. [Google Scholar] [CrossRef] [PubMed]
Decompression Levels | L2–L3 | L3–L4 | L4–L5 | L5–S1 | ||||
---|---|---|---|---|---|---|---|---|
Group observation | 1A (n = 80)/% | n = 4 5% | n = 49 61.3% | n = 27 33.7% | n = 4 5.4% | n = 18 22.2% | n = 46 57.3% | n = 12 15.1% |
1B (n = 39)/% | n = 7 17.9% | n = 32 82.1% | - | n = 2 15.3% | n = 21 44.3% | n = 16 40.4% | ||
2A (n = 65)/% | n = 23 35.4% | n = 42 64.6% | n = 2 3.1% | n = 9 13.8% | n = 23 35.4% | n = 31 47.7% | ||
2B (n = 72)/% | n = 11 15.2% | n = 61 84.7% | - | n = 18 25.1% | n = 38 52.7% | n = 16 22.2% |
Volume mm3 | Endoscopy 1A | ALIF 1B | Microsurgery 2A | TLIF 2B |
---|---|---|---|---|
Before surgery | 471.32/458.9 | 351.43/341.46 | 379.88/364.25 | 358.86/360.84 |
[303.51; 636.69] | [227.81; 476.41] | [323.12; 516.51] | [230.76; 480.34] | |
After surgery | 655.03/655.32 | 1256.12/1213.45 | 695.76/701.35 | 1101.64/1093.51 [680.35; 1638.71] |
[559.46; 748.98] | [705.21–2003.14] | [623.45; 768,4] | ||
Difference % | 29.90% | 71.80% | 48.06% | 67.00% |
ODI | Before | 6 Weeks | 6 | 12 | 24 | |||
---|---|---|---|---|---|---|---|---|
Operation | p | Months | p | Months | p | Months | ||
1A (n = 80) | 56/54.3 | 23/22 | p < 0.001 | 20.1/20 | p < 0.001 | 19.5/19 | p < 0.001 | 18/18.3 |
[43; 67] | [20; 40] | [20; 35] | [17; 21] | [15; 19] | ||||
1B (n = 39) | 57/56 | 28/27 | p < 0.001 | 22/21 | p < 0.001 | 21/19 | p < 0.001 | 19/18 |
[46; 61] | [20; 41] | [20; 36] | [17; 23] | [15; 19] | ||||
2A (n = 65) | 56/55.5 | 23/22,5 | p < 0.001 | 21.1/20 | p < 0.001 | 20.5/20 | p < 0.001 | 18/18.2 |
[44; 60] | [20.1; 40.2] | [20; 35.3] | [17; 22] | [15.1; 19] | ||||
2B (n = 72) | 56/54 | 28.5/28 | p < 0.001 | 21.3/21 | p < 0.001 | 19.7/19 | p < 0.001 | 18.1/18 |
[44; 60] | [20; 41] | [20; 36] | [17; 23] | [15; 20] |
Outcome | Endoscopy (n = 80) | Microsurgery (n = 65) | ALIF (n = 39) | TLIF (n = 72) | Overall (n = 256) |
---|---|---|---|---|---|
Dural tear, n (%) | 1 (1.3) | 2 (3.1) | 1 (2.6) | 3 (4.2) | 7 (2.7) |
Nerve root injury, n (%) | 0 | 1 (1.5) | 2 (5.1) | 2 (2.8) | 5 (2.0) |
Wound infection, n (%) | 0 | 1 (1.5) | 1 (2.6) | 2 (2.8) | 4 (1.6) |
Blood loss (mL), mean ± SD | 72 ± 41 | 138 ± 55 | 291 ± 98 | 328 ± 104 | – |
OR time (min), mean ± SD | 91 ± 22 | 124 ± 38 | 163 ± 44 | 178 ± 52 | – |
LOS (days), median [IQR] | 2 [1–3] | 2 [1–3] | 5 [4–6] | 5 [4–7] | – |
Readmissions ≤ 24 months, n (%) | 2 (2.5) | 3 (4.6) | 3 (7.7) | 7 (9.7) | 15 (5.9) |
Reoperations, n (%) | 2 (2.5) | 1 (1.5) | 4 (10.3) | 5 (6.9) | 12 (4.7) |
ASD, n (%) | 0 | 1 (1.5) | 3 (7.7) | 5 (6.9) | 9 (3.5) |
Cage subsidence, n (%) | – | – | 5 (12.8) | 6 (8.3) | 11 (4.3) |
SF-36 PH | Before Operation | 12 Months | p | 24 Months | p |
---|---|---|---|---|---|
1A (n = 80) | 28/27 [22; 34] | 41/42 [33; 51] | p < 0.001 | 45/44 [39; 53] | p < 0.001 |
1B (n = 39) | 25/24 [22; 30] | 39/38 [32; 49] | p < 0.001 | 43/41 [38; 51] | p < 0.001 |
2A (n = 65) | 26/26 [21; 28] | 40/41 [32; 50] | p < 0.001 | 44/43 [36; 51] | p < 0.001 |
2B (n = 72) | 26/25 [21; 30] | 41/39 [33; 53] | p < 0.001 | 43/48 [36; 53] | p < 0.001 |
SF-36 PH | Before Operation | 12 Months | p | 24 Months | p |
---|---|---|---|---|---|
1A (n = 80) | 27/26 [21; 30] | 40/39 [32; 46] | p < 0.001 | 42/45 [35; 51] | p < 0.001 |
1B (n = 39) | 28/27 [22; 30] | 38/37 [30; 40] | p < 0.001 | 41/39 [32; 50] | p < 0.001 |
2A (n = 65) | 25/24 [22; 28] | 41/40 [31; 43] | p < 0.001 | 41/44 [33; 50] | p < 0.001 |
2B (n = 72) | 27/26 [20; 32] | 38/38 [32; 44] | p < 0.001 | 41/43 [32; 51] | p < 0.001 |
VAS | Before Operation | 6 Weeks | 6 | 12 | 24 | |||
---|---|---|---|---|---|---|---|---|
Spine | p | Months | p | Months | p | Months | ||
1A (n = 80) | 6/5.2 [4; 6] | 3.1/3 | p < 0.001 | 2.6/2 | p < 0.001 | 2.1/2 | p < 0.001 | 2/1.9 |
[1; 4] | [2; 4] | [2; 3] | [1; 3] | |||||
1B (n = 39) | 6.2/5.9 [5; 8] | 3.2/3 | p < 0.001 | 2.7/2.1 | p < 0.001 | 2.3/2 | p < 0.001 | 2/1.3 |
[1; 4] | [2; 4] | [2; 3] | [1; 3] | |||||
2A (n = 65) | 6.3/5.5 | 3.4/3 | p < 0.001 | 2.9/2.1 | p < 0.001 | 2.5/2.1 | p < 0.001 | 2.2/2.1 |
[5; 7] | [1; 4] | [2; 4] | [2; 4] | [1; 3] | ||||
2B (n = 72) | 7/5.8 [5; 8] | 3.7/3.2 | p < 0.001 | 3/2.3 | p < 0.001 | 2.5/2.2 | p < 0.001 | 2.2/2 |
[2; 4.5] | [2; 4] | [1; 4] | [1; 3] |
VAS Legs | Before Operation | 6 Weeks | 6 | 12 | 24 | |||
---|---|---|---|---|---|---|---|---|
p | Per Month | p | Months | p | Months | |||
1A | 7/6.9 | 3.1/3 | p < 0.001 | 3/2.7 | p < 0.001 | 2.1/2 | p < 0.001 | 2/1.7 |
n = 80 | [5; 8] | [1; 4] | [1; 4] | [1; 3] | [1; 3] | |||
1B | 6.1/6 | 3.3/3 | p < 0.001 | 2.7/2 | p < 0.001 | 2.1/2 | p < 0.001 | 2/1.2 |
n = 39 | [5; 8] | [1; 4] | [1; 4] | [1; 3] | [1; 3] | |||
2A | 7.2/6.6 | 3.2/3 | p < 0.001 | 3/2.5 | p < 0.001 | 2.2/2.1 | p < 0.001 | 2.1/1.8 |
n = 65 | [5; 8] | [1; 4] | [1; 4] | [1; 3] | [1; 3] | |||
2B | 7.1/6.6 | 3.6/3.2 | p < 0.001 | 2.5/2.1 | p < 0.001 | 2.3/2.1 | p < 0.001 | 2.1/2 |
n = 72 | [5; 8] | [2; 4] | [1; 4] | [1; 3] | [1; 3] |
MacNab | Excellent | p | Satisfactory | p | Poor | p |
---|---|---|---|---|---|---|
1A (n = 80) | 32(40%) | p < 0.001 | 43 (53.75%) | p < 0.001 | 5 (6.25%) | p < 0.001 |
1B (n = 39) | 23(58.9%) | p < 0.001 | 15 (34.4%) | p < 0.001 | 1 (2.5%) | p < 0.001 |
2A (n = 65) | 24(37.2%) | p < 0.001 | 28 (43.2%) | p < 0.001 | 13 (19.6%) | p < 0.001 |
2B (n = 72) | 27(37.5%) | p < 0.001 | 33 (45.3%) | p < 0.001 | 12 (16.6%) | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurmukhametov, R.M.; Klimov, V.; Medetbek, A.; Kudryakov, S.A.; Dosanov, M.; Alekseevna Guseva, A.; Ruslanovich Baigushev, P.; Arturovich Kerimov, T.; Montemurro, N. Comparative Clinical and Volumetric Outcomes of Contemporary Surgical Techniques for Lumbar Foraminal Stenosis: A Retrospective Cohort Study. Surgeries 2025, 6, 91. https://doi.org/10.3390/surgeries6040091
Nurmukhametov RM, Klimov V, Medetbek A, Kudryakov SA, Dosanov M, Alekseevna Guseva A, Ruslanovich Baigushev P, Arturovich Kerimov T, Montemurro N. Comparative Clinical and Volumetric Outcomes of Contemporary Surgical Techniques for Lumbar Foraminal Stenosis: A Retrospective Cohort Study. Surgeries. 2025; 6(4):91. https://doi.org/10.3390/surgeries6040091
Chicago/Turabian StyleNurmukhametov, Renat M., Vladimir Klimov, Abakirov Medetbek, Stepan Anatolevich Kudryakov, Medet Dosanov, Anastasiia Alekseevna Guseva, Petr Ruslanovich Baigushev, Timur Arturovich Kerimov, and Nicola Montemurro. 2025. "Comparative Clinical and Volumetric Outcomes of Contemporary Surgical Techniques for Lumbar Foraminal Stenosis: A Retrospective Cohort Study" Surgeries 6, no. 4: 91. https://doi.org/10.3390/surgeries6040091
APA StyleNurmukhametov, R. M., Klimov, V., Medetbek, A., Kudryakov, S. A., Dosanov, M., Alekseevna Guseva, A., Ruslanovich Baigushev, P., Arturovich Kerimov, T., & Montemurro, N. (2025). Comparative Clinical and Volumetric Outcomes of Contemporary Surgical Techniques for Lumbar Foraminal Stenosis: A Retrospective Cohort Study. Surgeries, 6(4), 91. https://doi.org/10.3390/surgeries6040091