Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum
Abstract
:1. Introduction
2. From Discovery to the Challenge of Resistance
3. Structure–Activity Relationship Considerations
4. Analogs: Definition and in Silico Development
5. Spectrum of Action, Pharmacokinetic and Safety Implications
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferrara, F.; Castagna, T.; Pantolini, B.; Campanardi, M.C.; Roperti, M.; Grotto, A.; Fattori, M.; Dal Maso, L.; Carrara, F.; Zambarbieri, G.; et al. The Challenge of Antimicrobial Resistance (AMR): Current Status and Future Prospects. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 9603–9615. [Google Scholar] [CrossRef]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; McCarthy, N.; Paul, P.; McDonald, L.C.; Kallen, A.; et al. Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Acharya, Y.; Dhanda, G.; Sarkar, P.; Haldar, J. Pursuit of Next-Generation Glycopeptides: A Journey with Vancomycin. Chem. Commun. 2022, 58, 1881–1897. [Google Scholar] [CrossRef]
- Mühlberg, E.; Umstätter, F.; Kleist, C.; Domhan, C.; Mier, W.; Uhl, P. Renaissance of Vancomycin: Approaches for Breaking Antibiotic Resistance in Multidrug-Resistant Bacteria. Can. J. Microbiol. 2020, 66, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Bian, R.; Xu, F.; Li, Q.; Wang, W.; Bian, Q. Chapter 10—New Molecular Entities and Structure–Activity Relationships of Drugs Designed by the Natural Product Derivatization Method from 2010 to 2018. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Bioactive Natural Products; Elsevier: Amsterdam, The Netherlands, 2021; Volume 69, pp. 371–415. [Google Scholar]
- Patel, S.; Preuss, C.V.; Bernice, F. Vancomycin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Moore, M.J.; Qin, P.; Keith, D.J.; Wu, Z.-C.; Jung, S.; Chatterjee, S.; Tan, C.; Qu, S.; Cai, Y.; Stanfield, R.L.; et al. Divergent Total Synthesis and Characterization of Maxamycins. J. Am. Chem. Soc. 2023, 145, 12837–12852. [Google Scholar] [CrossRef]
- Stogios, P.J.; Savchenko, A. Molecular Mechanisms of Vancomycin Resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
- Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin Resistance in Enterococcus and Staphylococcus Aureus. Microorganisms 2022, 11, 24. [Google Scholar] [CrossRef]
- Umstätter, F.; Werner, J.; Zerlin, L.; Mühlberg, E.; Kleist, C.; Klika, K.D.; Hertlein, T.; Beijer, B.; Domhan, C.; Zimmermann, S.; et al. Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics. Pharmaceuticals 2022, 15, 159. [Google Scholar] [CrossRef]
- Guffey, A.A.; Loll, P.J. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Microorganisms 2021, 9, 2026. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, G.; Sarkar, P.; Samaddar, S.; Haldar, J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J. Med. Chem. 2019, 62, 3184–3205. [Google Scholar] [CrossRef] [PubMed]
- Ruczyński, J.; Prochera, K.; Kaźmierczak, N.; Kosznik-Kwaśnicka, K.; Piechowicz, L.; Mucha, P.; Rekowski, P. New Conjugates of Vancomycin with Cell-Penetrating Peptides—Synthesis, Antimicrobial Activity, Cytotoxicity, and BBB Permeability Studies. Molecules 2024, 29, 5519. [Google Scholar] [CrossRef] [PubMed]
- Van Groesen, E.; Innocenti, P.; Martin, N.I. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014–2022. ACS Infect. Dis. 2022, 8, 1381–1407. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Hansford, K.A.; Butler, M.S.; Jia, Z.; Mark, A.E.; Cooper, M.A. Developments in Glycopeptide Antibiotics. ACS Infect. Dis. 2018, 4, 715–735. [Google Scholar] [CrossRef]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; Dias da Silva, D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef]
- Levine, D.P. Vancomycin: A History. Clin. Infect. Dis. 2006, 42, S5–S12. [Google Scholar] [CrossRef]
- Okano, A.; Isley, N.A.; Boger, D.L. Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Chem. Rev. 2017, 117, 11952–11993. [Google Scholar] [CrossRef]
- Moore, M.J.; Qu, S.; Tan, C.; Cai, Y.; Mogi, Y.; Jamin Keith, D.; Boger, D.L. Next-Generation Total Synthesis of Vancomycin. J. Am. Chem. Soc. 2020, 142, 16039–16050. [Google Scholar] [CrossRef]
- Evans, D.A.; Wood, M.R.; Trotter, B.W.; Richardson, T.I.; Barrow, J.C.; Katz, J.L. Total Syntheses of Vancomycin and Eremomycin Aglycons. Angew. Chem. Int. Ed. 1998, 37, 2700–2704. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Mitchell, H.J.; Jain, N.F.; Winssinger, N.; Hughes, R.; Bando, T. Total Synthesis of Vancomycin. Angew. Chem. Int. Ed. 1999, 38, 240–244. [Google Scholar] [CrossRef]
- Mulichak, A.M.; Losey, H.C.; Walsh, C.T.; Garavito, R.M. Structure of the UDP-Glucosyltransferase GtfB That Modifies the Heptapeptide Aglycone in the Biosynthesis of Vancomycin Group Antibiotics. Structure 2001, 9, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Koteva, K.; Xu, M.; Wang, W.; Fiebig-Comyn, A.A.; Cook, M.A.; Coombes, B.K.; Wright, G.D. Synthetic Biology Facilitates Semisynthetic Development of Type V Glycopeptide Antibiotics Targeting Vancomycin-Resistant Enterococcus. J. Med. Chem. 2023, 66, 9006–9022. [Google Scholar] [CrossRef]
- Davis, J.S.; Petersiel, N.; Tong, S.Y.C. How I Manage a Patient with MRSA Bacteraemia. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 190–194. [Google Scholar] [CrossRef]
- Guan, L.; Beig, M.; Wang, L.; Navidifar, T.; Moradi, S.; Motallebi Tabaei, F.; Teymouri, Z.; Abedi Moghadam, M.; Sedighi, M. Global Status of Antimicrobial Resistance in Clinical Enterococcus Faecalis Isolates: Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Matsuo, T.; Suzuki, T.; Kawai, F.; Uehara, Y.; Mori, N. Penicillin- and Third-Generation Cephalosporin-Resistant Strains of Streptococcus Pneumoniae Meningitis: Case Report and Literature Review. J. Infect. Chemother. 2022, 28, 663–668. [Google Scholar] [CrossRef]
- Cymbal, M.; Chatterjee, A.; Baggott, B.; Auron, M. Management of Clostridioides Difficile Infection: Diagnosis, Treatment, and Future Perspectives. Am. J. Med. 2024, 137, 571–576. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus Aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health. Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef]
- Haas, W.; Singh, N.; Lainhart, W.; Mingle, L.; Nazarian, E.; Mitchell, K.; Nattanmai, G.; Kohlerschmidt, D.; Dickinson, M.C.; Kacica, M.; et al. Genomic Analysis of Vancomycin-Resistant Staphylococcus Aureus Isolates from the 3rd Case Identified in the United States Reveals Chromosomal Integration of the vanA Locus. Microbiol. Spectr. 2023, 11, e04317-22. [Google Scholar] [CrossRef]
- Olademehin, O.P.; Shuford, K.L.; Kim, S.J. Molecular Dynamics Simulations of the Secondary-Binding Site in Disaccharide-Modified Glycopeptide Antibiotics. Sci. Rep. 2022, 12, 7087. [Google Scholar] [CrossRef]
- Xie, J.; Pierce, J.G.; James, R.C.; Okano, A.; Boger, D.L. A Redesigned Vancomycin Engineered for Dual d -Ala- d -Ala and d -Ala- d -Lac Binding Exhibits Potent Antimicrobial Activity Against Vancomycin-Resistant Bacteria. J. Am. Chem. Soc. 2011, 133, 13946–13949. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, E.; Keynan, Y. Vancomycin Revisited € 60 Years Later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.M.; Stolarzewicz, I.; Cannaerts, D.; Schuermans, J.; Lavigne, R.; Looz, Y.; Landuyt, B.; Schoofs, L.; Schols, D.; Paeshuyse, J.; et al. Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs with a High In Vitro Therapeutic Index. Front. Microbiol. 2018, 9, 1175. [Google Scholar] [CrossRef]
- Sarkar, P.; Xu, W.; Vázquez-Hernández, M.; Dhanda, G.; Tripathi, S.; Basak, D.; Xie, H.; Schipp, L.; Dietze, P.; Bandow, J.E.; et al. Enhancing the Antibacterial Efficacy of Vancomycin Analogues: Targeting Metallo-β-Lactamases and Cell Wall Biosynthesis. Chem. Sci. 2024, 15, 16307–16320. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-C.; Cameron, M.D.; Boger, D.L. Vancomycin C-Terminus Guanidine Modifications and Further Insights into an Added Mechanism of Action Imparted by a Peripheral Structural Modification. ACS Infect. Dis. 2020, 6, 2169–2180. [Google Scholar] [CrossRef]
- Ma, C.; He, N.; Ou, Y.; Feng, W. Design and Synthesis of New Vancomycin Derivatives. ChemistrySelect 2020, 5, 6670–6673. [Google Scholar] [CrossRef]
- Canales, C.S.C.; Pavan, A.R.; Dos Santos, J.L.; Pavan, F.R. In Silico Drug Design Strategies for Discovering Novel Tuberculosis Therapeutics. Expert. Opin. Drug Discov. 2024, 19, 471–491. [Google Scholar] [CrossRef]
- Maryam, L.; Usmani, S.S.; Raghava, G.P.S. Computational Resources in the Management of Antibiotic Resistance: Speeding up Drug Discovery. Drug Discov. Today 2021, 26, 2138–2151. [Google Scholar] [CrossRef]
- da Silva, T.H.; Hachigian, T.Z.; Lee, J.; King, M.D. Using Computers to ESKAPE the Antibiotic Resistance Crisis. Drug Discov. Today 2022, 27, 456–470. [Google Scholar] [CrossRef]
- Ekins, S.; Mestres, J.; Testa, B. In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling. Br. J. Pharmacol. 2007, 152, 9–20. [Google Scholar] [CrossRef]
- Chang, Y.; Hawkins, B.A.; Du, J.J.; Groundwater, P.W.; Hibbs, D.E.; Lai, F. A Guide to In Silico Drug Design. Pharmaceutics 2022, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhydzetski, A.; Głowacka-Grzyb, Z.; Bukowski, M.; Żądło, T.; Bonar, E.; Władyka, B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024, 29, 4065. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, T.H.; Balogun, T.C.; Ojewuyi, A.E.; Omole, A.C.; Olukayode, O.V.; Adewumi, A.P.; Umesi, A.J.; Ijeoma, N.P.; Apooyin, A.E.; Chinedu, C.P.; et al. In Silico Molecular Targets, Docking, Dynamics Simulation and Physiologically Based Pharmacokinetics Modeling of Oritavancin. BMC Pharmacol. Toxicol. 2024, 25, 79. [Google Scholar] [CrossRef]
- Okano, A.; Isley, N.A.; Boger, D.L. Peripheral Modifications of [Ψ[CH2 NH]Tpg4 ] Vancomycin with Added Synergistic Mechanisms of Action Provide Durable and Potent Antibiotics. Proc. Natl. Acad. Sci. USA 2017, 114, E5052–E5061. [Google Scholar] [CrossRef]
- An, W.; Holly, K.J.; Nocentini, A.; Imhoff, R.D.; Hewitt, C.S.; Abutaleb, N.S.; Cao, X.; Seleem, M.N.; Supuran, C.T.; Flaherty, D.P. Structure-Activity Relationship Studies for Inhibitors for Vancomycin-Resistant Enterococcus and Human Carbonic Anhydrases. J. Enzym. Inhib. Med. Chem. 2022, 37, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Ślusarz, R.; Dmochowska, B.; Samaszko-Fiertek, J.; Brzozowski, K.; Madaj, J. NMR and MD Analysis of the Bonding Interaction of Vancomycin with Muramyl Pentapeptide. Int. J. Mol. Sci. 2022, 23, 1146. [Google Scholar] [CrossRef]
- Cao, A.; Li, Q.; Han, M.; Liu, Q.; Liang, H.; Tan, L.; Guan, Y. Physiologically Based Pharmacokinetic Modeling of Vancomycin and its Comparison with Population Pharmacokinetic Model in Neonates. J. Clin. Pharmacol. 2024, 65, 87–95. [Google Scholar] [CrossRef]
- Ferreira, A.; Martins, H.; Oliveira, J.C.; Lapa, R.; Vale, N. In Silico Pharmacokinetic Study of Vancomycin Using PBPK Modeling and Therapeutic Drug Monitoring. Curr. Drug Metab. 2021, 22, 150–162. [Google Scholar] [CrossRef]
- Ferreira, A.; Martins, H.; Oliveira, J.C.; Lapa, R.; Vale, N. PBPK Modeling and Simulation of Antibiotics Amikacin, Gentamicin, Tobramycin, and Vancomycin Used in Hospital Practice. Life 2021, 11, 1130. [Google Scholar] [CrossRef]
- Szűcs, Z.; Bereczki, I.; Csávás, M.; Rőth, E.; Borbás, A.; Batta, G.; Ostorházi, E.; Szatmári, R.; Herczegh, P. Lipophilic Teicoplanin Pseudoaglycon Derivatives Are Active against Vancomycin- and Teicoplanin-Resistant Enterococci. J. Antibiot. 2017, 70, 664–670. [Google Scholar] [CrossRef]
- Ottonello, A.; Wyllie, J.A.; Yahiaoui, O.; Sun, S.; Koelln, R.A.; Homer, J.A.; Johnson, R.M.; Murray, E.; Williams, P.; Bolla, J.R.; et al. Shapeshifting Bullvalene-Linked Vancomycin Dimers as Effective Antibiotics against Multidrug-Resistant Gram-Positive Bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2208737120. [Google Scholar] [CrossRef] [PubMed]
- Roney, M.; Mohd Aluwi, M.F.F. The Importance of In-Silico Studies in Drug Discovery. Intell. Pharm. 2024, 2, 578–579. [Google Scholar] [CrossRef]
- Khabthani, S.; Rolain, J.-M.; Merhej, V. In Silico/In Vitro Strategies Leading to the Discovery of New Nonribosomal Peptide and Polyketide Antibiotics Active against Human Pathogens. Microorganisms 2021, 9, 2297. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational Approaches Streamlining Drug Discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Q. Prediction of Glycopeptide Fragment Mass Spectra by Deep Learning. Nat. Commun. 2024, 15, 2448. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Rinaldi, M.; Zamparini, E.; Rossi, N.; Tedeschi, S.; Conti, M.; Pea, F.; Viale, P. Population Pharmacokinetics of Dalbavancin and Dosing Consideration for Optimal Treatment of Adult Patients with Staphylococcal Osteoarticular Infections. Antimicrob. Agents Chemother. 2023, 65, e02260-20. [Google Scholar] [CrossRef]
- Guan, D.; Chen, F.; Xiong, L.; Tang, F.; Faridoon; Qiu, Y.; Zhang, N.; Gong, L.; Li, J.; Lan, L.; et al. Extra Sugar on Vancomycin: New Analogues for Combating Multidrug-Resistant Staphylococcus Aureus and Vancomycin-Resistant Enterococci. J. Med. Chem. 2018, 61, 286–304. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Chen, F.; Zou, X.; Jiao, S.; Wang, S.; Hu, Y.; Lan, L.; Tang, F.; Huang, W. Design, Synthesis, and Antibacterial Evaluation of Vancomycin-LPS Binding Peptide Conjugates. Bioorg. Med. Chem. Lett. 2021, 45, 128122. [Google Scholar] [CrossRef]
- Stephani, J.C.; Gerhards, L.; Khairalla, B.; Solov’yov, I.A.; Brand, I. How Do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS Infect. Dis. 2024, 10, 763–778. [Google Scholar] [CrossRef]
- Al Jalali, V.; Zeitlinger, M. Clinical Pharmacokinetics and Pharmacodynamics of Telavancin Compared with the Other Glycopeptides. Clin. Pharmacokinet. 2018, 57, 797–816. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Cho, S.Y.; Hughes, R.; Winssinger, N.; Smethurst, C.; Labischinski, H.; Endermann, R. Solid- and Solution-Phase Synthesis of Vancomycin and Vancomycin Analogues with Activity against Vancomycin-Resistant Bacteria. Chem. Eur. J. 2001, 7, 3798–3823. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lin, W.; Tan, S.; Wang, Y.; Wu, W.; Lu, Z. Synthesis and Antibacterial Evaluation of Novel Vancomycin Derivatives Containing Quaternary Ammonium Moieties. ACS Omega 2023, 8, 28511–28518. [Google Scholar] [CrossRef] [PubMed]
Analog/Group | Structural Modification | Spectrum of Activity | Pharmacokinetic Properties | Safety Profile | Reference(s) |
---|---|---|---|---|---|
Vancomycin | Parent compound | Gram-positive cocci; MRSA; some Enterococci | t½: 4–6 h; Vd: ~0.4–1 L/kg; Cmax: 20–40 µg/mL | Nephrotoxicity, ototoxicity at high doses | [34] |
Vancomycin–peptide conjugates (VPCs) | Peptide conjugation at C-/N-terminus, vancosamine, resorcinol | VRE (↑ activity; MIC 2 µM); VISA (MIC 2–10 µM); partial activity vs. E. coli, A. baumannii, P. aeruginosa, K. pneumoniae | Not reported | Improved safety at C-terminal; some derivatives show low toxicity | [57,58,59,60] |
Oritavancin | Lipoglycopeptide | MRSA; VRE | t½: 245 h; Vd: 87 L (~1.24 L/kg); Cmax: 138 µg/mL | Not detailed | [34,37] |
Telavancin | Lipoglycopeptide | Resistant Gram-positives | t½: 7.5–9 h; Vd: 0.11 L/kg; Cmax: 87 µg/mL | Not detailed | [61,62] |
Dalbavancin | Semisynthetic teicoplanin derivative | MRSA; Streptococci; some VRE | t½: 271 h; Vd: 0.52 L/kg; Cmax: 84.8–106.0 µg/mL | Generally well tolerated | [58] |
Vanc-83 | C-terminal biphenyl substitution | VRE; MRSA; VISA; C. difficile (↑ activity) | t½: ~12 h; bactericidal against MRSA | TI > 200; no cytotoxicity | [35] |
Vanc-42 | Fluorene C-terminal substitution | VRE (VanA, VanB, VanC1); MRSA; VISA; C. difficile | Bactericidal vs. MRSA; bacteriostatic vs. VRE | TI up to 865; low risk of resistance development | [35] |
Vanc-39 | Butyl-benzene C-terminal substitution | VRE; MRSA; VISA | Stable MICs; no cytotoxicity | Bactericidal vs. MRSA; low resistance emergence | [35] |
Amidine-van | Substitution of carbonyl oxygen with amidino nitrogen | VanA-VRE (↑ activity ×600) | Not reported | Not reported | [20,32,61] |
Dipi-Van | Dipicolyl moiety binds Zn2+ and pyrophosphate of lipid carriers | VRE (VanA, VanB); VISA (↑ activity ~375-fold) | ↑ in vivo efficacy; enhances cell wall precursor accumulation | Non-toxic in RBCs and models; no resistance development | [37] |
Lipophilic analogs (e.g., decyl, biphenyl) | Insertion of lipophilic moieties | VRE; VISA | Enhanced membrane interaction | Hydrophilic substitutions improve renal/auditory safety | [58] |
QAV-a1 | Quaternary ammonium moiety + triazole group | MRSA (↑ up to ×32); partial VRE activity | t½: 5.2 h; Cmax: 7.47 µg/mL | No toxicity at 45 mg/kg; LD50: 60.5 mg/kg in mice | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cartes-Velásquez, R.; Morales-León, F.; Valdebenito-Maturana, F.; Sáez-Riquelme, P.; Rodríguez-Ortíz, N.; Carrillo-Bestagno, H. Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum. Organics 2025, 6, 28. https://doi.org/10.3390/org6030028
Cartes-Velásquez R, Morales-León F, Valdebenito-Maturana F, Sáez-Riquelme P, Rodríguez-Ortíz N, Carrillo-Bestagno H. Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum. Organics. 2025; 6(3):28. https://doi.org/10.3390/org6030028
Chicago/Turabian StyleCartes-Velásquez, Ricardo, Felipe Morales-León, Franco Valdebenito-Maturana, Pablo Sáez-Riquelme, Nicolás Rodríguez-Ortíz, and Hernán Carrillo-Bestagno. 2025. "Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum" Organics 6, no. 3: 28. https://doi.org/10.3390/org6030028
APA StyleCartes-Velásquez, R., Morales-León, F., Valdebenito-Maturana, F., Sáez-Riquelme, P., Rodríguez-Ortíz, N., & Carrillo-Bestagno, H. (2025). Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum. Organics, 6(3), 28. https://doi.org/10.3390/org6030028