Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul
Abstract
1. Introduction
- We propose a novel dual wireless backhaul system for RIS-assisted UAV and LEO networks for reliable communications.
- We formulate an UAV placement optimization using a grid search algorithm for better line of site (LOS) between the UAV and Users.
- We optimize the placement of RIS with optimized UAV using the Simulated Annealing (SA) algorithm to connect all the users for reliable communications.
- We maximize the sum rate through phase shift optimization using metaheuristic algorithms: PSO, GWO, SSA, MPA, GA, and hybrid PSO-GWO.
2. Related Work
3. System Model and the Problem Formulations
3.1. Backhaul Link Budget
3.1.1. Link Budget Calculation for BS-to-UAV at 28 GHz
3.1.2. Bachhaul Networks and Link Budget
3.2. Access Networks
Algorithm 1 Grid Search for Optimal UAV Coverage |
|
3.2.1. UAV Placement Optimization with LOS Constraints
3.2.2. RIS Placement Optimization Using SA
3.2.3. Rician Channel Model for UAV–RIS–User Communication
Algorithm 2 SA for RIS Placement Optimization |
|
3.2.4. Sum Rate Maximization Problem Formulation
3.3. Metaheuristic Algorithms
3.4. Experimental Setup
4. Results and Discussion
4.1. Link Budget Calculation and Outcomes
4.2. UAV and RIS Placement Optimization
4.3. RIS Phase Shift Optimization Under Rician Fading
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pogaku, A.C.; Do, D.T.; Lee, B.M.; Nguyen, N.D. UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis. IEEE Access 2022, 10, 16320–16336. [Google Scholar] [CrossRef]
- Khatiwoda, N.R.; Dawadi, B.R.; Joshi, S.R. An Integrated Architecture of RIS-based Non-Terrestrial Networks with 6G for Rural Communications. In Proceedings of the 2024 International Conference on Emerging Technologies and Innovation for Sustainability (EmergIN), Greater Noida, India, 20–21 December 2024; pp. 30–36. [Google Scholar]
- Khatiwoda, N.R.; Dawadi, B.R.; Joshi, S.R. Capacity and Coverage Dimensioning for 5G Standalone Mixed-Cell Architecture: An Impact of Using Existing 4G Infrastructure. Future Internet 2024, 16, 423. [Google Scholar] [CrossRef]
- Khaled, A.; Alwakeel, A.S.; Shaheen, A.M.; Fouda, M.M.; Ismail, M.I. Placement optimization and power management in a multiuser wireless communication system with reconfigurable intelligent surfaces. IEEE Open J. Commun. Soc. 2024, 5, 4186–4206. [Google Scholar] [CrossRef]
- Xu, Q.; You, Q.; Gong, Y.; Yang, X.; Wang, L. RIS-assisted UAV-enabled green communications for industrial IoT exploiting deep learning. IEEE Internet Things J. 2024, 11, 26595–26609. [Google Scholar] [CrossRef]
- Toka, M.; Lee, B.; Seong, J.; Kaushik, A.; Lee, J.; Lee, J.; Lee, N.; Shin, W.; Poor, H.V. RIS-empowered LEO satellite networks for 6G: Promising usage scenarios and future directions. IEEE Commun. Mag. 2024, 11, 128–135. [Google Scholar] [CrossRef]
- Shayea, I.; El-Saleh, A.A.; Ergen, M.; Saoud, B.; Hartani, R.; Turan, D.; Kabbani, A. Integration of 5G, 6G and IoT with Low Earth Orbit (LEO) networks: Opportunity, challenges and future trends. Results Eng. 2024, 23, 102409. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Rihan, M. Bandit approach for unmanned aerial vehicle-centric low earth orbit satellite selection. Digit. Signal Process. 2024, 151, 104546. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, W.; Wang, C.; Chen, H.H. Ris-enabled uav cognitive radio networks: Trajectory design and resource allocation. Information 2023, 14, 75. [Google Scholar] [CrossRef]
- Othman, W.M.; Ateya, A.A.; Nasr, M.E.; Muthanna, A.; ElAffendi, M.; Koucheryavy, A.; Hamdi, A.A. Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks. J. Sens. Actuator Netw. 2025, 14, 30. [Google Scholar] [CrossRef]
- Worka, C.E.; Khan, F.A.; Ahmed, Q.Z.; Sureephong, P.; Alade, T. Reconfigurable Intelligent Surface (RIS)-Assisted Non-Terrestrial Network (NTN)-Based 6G Communications: A Contemporary Survey. Sensors 2024, 24, 6958. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, H.; Qian, B.; Cheng, N.; Shen, X.; Chen, X.; Bai, B. UAV-LEO integrated backbone: A ubiquitous data collection approach for B5G internet of remote things networks. IEEE J. Sel. Areas Commun. 2021, 39, 3491–3505. [Google Scholar] [CrossRef]
- Chen, R.; Wang, W.; Wu, W. An Adjustable Wireless Backhaul Link Selection Algorithm for LEO-UAV-Sensor-Based Internet of Remote Things Network. Sensors 2024, 24, 1973. [Google Scholar] [CrossRef]
- Janji, S.; Wawrzyniak, P.; Formanowicz, P.; Kliks, A. Integrating UAV-Enabled Base Stations in 3D Networks: QoS-Aware Joint Fronthaul and Backhaul Design. arXiv 2024, arXiv:2404.17547. [Google Scholar]
- Yu, B.; Zhang, J.; Chen, J.; Xu, Y.; Gao, R.; Wang, J. Aerial RIS-Enabled Wireless Coverage Enhancement Under UAV Jitter. In Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 20–22 October 2023; pp. 1716–1721. [Google Scholar]
- El Hammouti, H.; Saoud, A.; Ennahkami, A.; Bergou, E.H. Energy Efficient Aerial RIS: Phase Shift Optimization and Trajectory Design. In Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), Singapore, 24–27 June 2024; pp. 1–7. [Google Scholar]
- Wei, Z.; Cai, Y.; Sun, Z.; Ng, D.W.K.; Yuan, J.; Zhou, M.; Sun, L. Sum-rate maximization for IRS-assisted UAV OFDMA communication systems. IEEE Trans. Wirel. Commun. 2020, 20, 2530–2550. [Google Scholar] [CrossRef]
- Jia, H.; Chen, G.; Huang, C.; Dang, S.; Chambers, J.A. Trajectory and phase shift optimization for RIS-equipped UAV in FSO communications with atmospheric and pointing error loss. Electronics 2023, 12, 4275. [Google Scholar] [CrossRef]
- Elnabty, I.A.; Fahmy, Y.; Kafafy, M. A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Phys. Commun. 2022, 51, 101564. [Google Scholar] [CrossRef]
- Darem, A.A.; Alkhaldi, T.M.; Alhashmi, A.A.; Mansouri, W.; Alghawli, A.S.A.; Al-Hadhrami, T. Optimizing resource allocation for enhanced urban connectivity in LEO-UAV-RIS networks. J. King Saud Univ.—Comput. Inf. Sci. 2024, 36, 102238. [Google Scholar] [CrossRef]
- Yao, Y.; Lv, K.; Huang, S.; Li, X.; Xiang, W. UAV trajectory and energy efficiency optimization in RIS-assisted multi-user air-to-ground communications networks. Drones 2023, 7, 272. [Google Scholar] [CrossRef]
- Huroon, A.M.; Huang, Y.C.; Wang, L.C. Optimized transmission strategy for UAV-RIS 2.0 assisted communications using rate splitting multiple access. In Proceedings of the 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), Hong Kong, China, 10–13 October 2023; pp. 1–6. [Google Scholar]
- Zeng, S.; Zhang, H.; Di, B.; Han, Z.; Song, L. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization. IEEE Commun. Lett. 2020, 25, 269–273. [Google Scholar] [CrossRef]
- Tran, T.T.M.; Vu, B.M.; Shin, O.S. Optimization of Bandwidth Allocation and UAV Placement in Active RIS-Assisted UAV Communication Networks with Wireless Backhaul. Drones 2025, 9, 111. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J.; Zhang, R.; Yang, L. Downlink Transmissions of UAV-RIS-Assisted Cell-Free Massive MIMO Systems: Location and Trajectory Optimization. Sensors 2024, 24, 4064. [Google Scholar] [CrossRef]
- Jeon, H.B.; Park, S.H.; Park, J.; Huang, K.; Chae, C.B. An energy-efficient aerial backhaul system with reconfigurable intelligent surface. IEEE Trans. Wirel. Commun. 2022, 21, 6478–6494. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Yu, W.; Ding, P.; Wang, J.; Zhang, X. Algorithm for UAV path planning in high obstacle density environments: RFA-star. Front. Plant Sci. 2024, 15, 1391628. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Soofi, A.A.; Khan, F.; Raza, S.; Khan, W.U.; Su, L.; Xu, F.; Han, Z. Toward a Sustainable Low-Altitude Economy: A Survey of Energy-Efficient RIS-UAV Networks. arXiv 2025, arXiv:2504.02162. [Google Scholar]
- Mihertie, H.D.; Wang, Z. Resource allocation for UAV-RIS-assisted RSMA system with hardware impairments. Comput. Netw. 2025, 266, 111336. [Google Scholar] [CrossRef]
- Saleh, A.M.; Omar, S.S.; Abd El-Haleem, A.M.; Ibrahim, I.I.; Abdelhakam, M.M. Trajectory optimization of UAV-IRS assisted 6G THz network using deep reinforcement learning approach. Sci. Rep. 2024, 14, 18501. [Google Scholar] [CrossRef]
- Maral, G.; Bousquet, M. Satellite Communications Systems: Systems, Techniques and Technology, 5th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Xiao, Z.; Xia, P.; Xia, X.G. Enabling UAV cellular with millimeter-wave communication: Potentials and approaches. IEEE Commun. Mag. 2016, 54, 66–73. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef]
- Alghamdi, R.; Alhadrami, R.; Alhothali, D.; Almorad, H.; Faisal, A.; Helal, S.; Shalabi, R.; Asfour, R.; Hammad, N.; Shams, A.; et al. Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE access. 2020, 8, 202795–202818. [Google Scholar] [CrossRef]
- ITU-R. Propagation Data and Prediction Methods Required for the Design of Earth-Space Telecommunication Systems. Recommendation ITU-R P.618-13. 2017. Available online: https://www.itu.int/rec/R-REC-P.618/en (accessed on 14 March 2025).
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Lin, M.; Huang, Q.; Cola, T.D.; Wang, J.B.; Wang, J.; Guizani, M.; Wang, J.Y. Integrated 5G-satellite networks: A perspective on physical layer reliability and security. IEEE Wirel. Commun. 2020, 27, 152–159. [Google Scholar] [CrossRef]
- Saboor, A.; Vinogradov, E.; Cui, Z.; Pollin, S. Probability of line of sight evaluation in urban environments using 3D simulator. In Proceedings of the 2023 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, Turkiye, 4–7 July 2023; pp. 135–140. [Google Scholar]
- Dufour, J.M.; Neves, J. Finite-sample inference and nonstandard asymptotics with Monte Carlo tests and R. In Handbook of Statistics; Elsevier: Boca Raton, FL, USA, 2019; Volume 41, pp. 3–31. [Google Scholar]
- Kang, Z.; You, C.; Zhang, R. Placement learning for multi-UAV relaying: A Gibbs sampling approach. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Zhang, T.; Lei, J.; Liu, Y.; Feng, C.; Nallanathan, A. Trajectory optimization for UAV emergency communication with limited user equipment energy: A safe-DQN approach. IEEE Trans. Green Commun. Netw. 2021, 5, 1236–1247. [Google Scholar] [CrossRef]
- Mazaherifar, A.; Mostafavi, S. UAV placement and trajectory design optimization: A survey. Wirel. Pers. Commun. 2022, 124, 2191–2210. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Liu, Y.; Yang, D.; Xiao, L.; Tao, M. Computation capacity enhancement by joint UAV and RIS design in IoT. IEEE Internet Things J. 2022, 9, 20590–20603. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, Z.; Dong, L.; Zhang, R.; Du, Q. UAV-enabled aerial active RIS with learning deployment for secured wireless communications. Chin. J. Aeronaut. 2024, 103383. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Aarts, E.; Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Zhai, L.; Zou, Y.; Zhu, J.; Jiang, Y. RIS-assisted UAV-enabled wireless powered communications: System modeling and optimization. IEEE Trans. Wirel. Commun. 2023, 23, 5094–5108. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Elkashlan, M.; Nallanathan, A.; Wang, J.; Hanzo, L. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 2020, 38, 1719–1734. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, H. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Şenel, F.A.; Gökçe, F.; Yüksel, A.S.; Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput. 2019, 35, 1359–1373. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by AI reconfigurable meta-surfaces: An overview. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Abuzgaia, N.; Younis, A.; Mesleh, R. UAV Communications in 6G Cell-Free Massive MIMO Systems. In Proceedings of the 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Benghazi, Libya, 21–23 May 2023; pp. 634–639. [Google Scholar]
- Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.W.K.; Yang, H.; Love, D.J. Prospective multiple antenna technologies for beyond 5G. IEEE J. Sel. Areas Commun. 2020, 38, 1637–1660. [Google Scholar] [CrossRef]
- Poli, R. Analysis of the publications on the applications of particle swarm optimization. J. Artif. Evol. Appl. 2008, 2008, 685175. [Google Scholar]
- Castelli, M.; Manzoni, L.; Mariot, L.; Nobile, M.S.; Tangherloni, A. Salp swarm optimization: A critical review. Expert Syst. Appl. 2022, 189, 116029. [Google Scholar] [CrossRef]
- Faramarzi, S.; Heidarinejad, M.; Gandomi, A.H. Marine Predators Algorithm: A Nature-Inspired Metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Rai, R.; Dhal, K.G.; Das, A.; Ray, S. An inclusive survey on marine predators algorithm: Variants and applications. Arch. Comput. Methods Eng. 2023, 30, 3133–3172. [Google Scholar] [CrossRef]
- Prasad, R.; Roy, A.; Kumari, S. Enhancing Cloud Task Scheduling Using a Hybrid Particle Swarm and Grey Wolf Optimization Approach. arXiv 2025, arXiv:2505.15171. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saad, M.R.; Djenouri, Y.; Hu, G.; Ali, A.A.; Shaban, H. Metaheuristic algorithms and their applications in wireless sensor networks: Review, open issues, and challenges. Clust. Comput. 2024, 27, 13643–13673. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [Google Scholar] [CrossRef]
- Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Huang, T.; Yin, H.; Huang, X. Improved genetic algorithm for multi-threshold optimization in digital pathology image segmentation. Sci. Rep. 2024, 14, 22454. [Google Scholar] [CrossRef]
Algorithm | Features | Advantages | Disadvantages |
---|---|---|---|
PSO | Swarm-based population | Simple, scalable and flexible | Trap to local optima for complex |
Velocity and position updates | Few control parameters | problems, sensitive to parameters | |
GWO | Wolf leadership hierarchy | Balanced global and local search | Slower in high dimensions |
Encircling and hunting models | Robust for complex landscapes | Sensitive to population size | |
SSA | Bio-inspired Salp swarm | Fast convergence, flexible | Slow, trap to local optima |
Leader and follower models | Few parameters, good exploration | Limited constraint handling | |
GA | Selection, crossover, mutation | Flexible, global search, adaptable | Many parameters, slow |
Genetics, probabilistic search | Handles discrete and continuous | Stochastic results, time-consuming | |
MPA | Marine predators, elite matrix | Strong exploration and exploitation | Premature convergence |
Lévy and Brownian foraging | Fast, robust for complex problems | diversity loss, computational cost | |
PSO–GWO | Exploits PSO’s swarm intelligence | Adaptable, fast convergence | More complex; tuning needed |
with GWO’s hierarchical strategy | Robust for complex landscapes | Potential redundancy |
Parameter | Value | Unit |
---|---|---|
Transmit Power () | 30 | dBm |
Transmit Antenna Gain () | 15 | dBi |
Receiver Antenna Gain () | 5 | dBi |
Carrier Frequency (f) | 28 | GHz |
Propagation Distance (d) | 1000 | m |
Free Space Path Loss () | 121.39 | dB |
Miscellaneous Losses () | 3 | dB |
Speed of Light (c) | m/s | |
Received Power () | –74.39 | dBm |
Parameter | Value | Unit |
---|---|---|
Input Parameters | ||
Carrier frequency (f) | 28 | GHz |
Distance to satellite (d) | 500 | km |
Transmit power () | 43 | dBm |
Transmit antenna gain () | 30 | dBi |
Receive antenna gain () | 30 | dBi |
Transmitter losses () | 2 | dB |
Receiver losses () | 2 | dB |
Atmospheric losses () | 2 | dB |
Bandwidth (B) | 100 | MHz |
Noise temperature (T) | 500 | K |
Boltzmann constant (k) | J/K | |
Calculated Outcomes | ||
Free space path loss () | 175.37 | dB |
Received power () | −78.37 | dBm |
Noise power (N) | −91.61 | dBm |
Carrier-to-noise ratio () | 13.24 | dB |
Parameter | Value | Unit |
---|---|---|
Carrier Frequency () | 28 | GHz |
Wavelength () | 0.0107 | m |
UAV Transmit Power () | 43 | dBm |
UAV Antenna Gain () | 20 | dBi |
User Antenna Gain () | 0 | dBi |
RIS Tile Gain (Passive) () | 0 | dBi |
RIS Tile Gain (Active) () | 20 | dBi |
Receiver Noise Floor () | −90 | dBm |
Rician K-factor (K) | 10 | dB |
Number of RIS elements () | 64 | – |
Scatter variance () | 1 | – |
RIS element spacing () | m |
Parameters | Values |
---|---|
GA | Tournament selection; single-point crossover; mutation rate 0.1 per generation |
PSO | Inertia w = 0.7, cognitive/social factors |
GWO | Convergence coefficient a linearly decreases from 2 to 0 |
SSA | Salp leader coefficient , chain update for followers |
MPA | Predator—prey switch probability (), Lévy exponent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatiwoda, N.R.; Dawadi, B.R.; Joshi, S.R. Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul. Telecom 2025, 6, 61. https://doi.org/10.3390/telecom6030061
Khatiwoda NR, Dawadi BR, Joshi SR. Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul. Telecom. 2025; 6(3):61. https://doi.org/10.3390/telecom6030061
Chicago/Turabian StyleKhatiwoda, Naba Raj, Babu R. Dawadi, and Shashidhar R. Joshi. 2025. "Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul" Telecom 6, no. 3: 61. https://doi.org/10.3390/telecom6030061
APA StyleKhatiwoda, N. R., Dawadi, B. R., & Joshi, S. R. (2025). Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul. Telecom, 6(3), 61. https://doi.org/10.3390/telecom6030061