Previous Issue
Volume 6, March
 
 

Electron. Mater., Volume 6, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 157
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

10 pages, 2125 KiB  
Article
Modeling of Magnetoconductivity (MC) Behavior in Dilute p-Si/SiGe/Si
by Hamza Mabchour, Yassine Essakali, Mounir El Hassan, Samir Elouaham, Boujemaa Nassiri, Said Dlimi and Abdelhamid El Kaaouachi
Electron. Mater. 2025, 6(2), 5; https://doi.org/10.3390/electronicmat6020005 - 29 Apr 2025
Viewed by 223
Abstract
In this study, we investigate the magnetoconductivity behavior in a 2D p-Si/SiGe/Si system. To achieve this, we develop a theoretical model that incorporates three key contributions, the weak localization effect, electron–electron interaction effects, and the Zeeman effect, which is considered only in the [...] Read more.
In this study, we investigate the magnetoconductivity behavior in a 2D p-Si/SiGe/Si system. To achieve this, we develop a theoretical model that incorporates three key contributions, the weak localization effect, electron–electron interaction effects, and the Zeeman effect, which is considered only in the presence of a magnetic field. We then compare our theoretical predictions with experimental magnetoconductivity data, analyzing both the consistencies and discrepancies between the model and the measurements. Through this comparison, we aim to provide a deeper physical understanding of the factors influencing magnetoconductivity in this system. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop