Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Inclusion and Exclusion Criteria
- Girls aged 6–12 yrs (72–144 mos) diagnosed with idiopathic CPP;
- Onset of thelarche before 8 yrs of age;
- Tanner stage II or III at clinical examination;
- Underwent a left PA-HW radiograph for pubertal assessment;
- Resided in the Canary Islands for ≥5 yrs, with ≥1 parent of Canarian origin.
- Missing clinical data on anthropometric or hormonal parameters;
- Poor-quality radiographs (e.g., motion artifacts or incorrect hand positioning);
- Use of chronic medications affecting growth or skeletal maturation (e.g., corticosteroids or exogenous growth hormone);
- Presence of congenital or acquired bone disorders (e.g., endocrine, systemic, musculoskeletal conditions, fractures, or joint dislocations).
2.2.2. Sample Size Calculation
2.3. Test Methods
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.1.1. Anthropometric Characteristics of Participants
3.1.2. Serum Hormone Levels of Participants
3.2. Bone Age Assessment
3.3. Diagnostic Accuracy of Bone Age Estimation Methods
3.4. Diagnostic Accuracy of Bone Age Estimation Methods with Serum Hormone Levels
4. Discussion
4.1. Recommendations for Clinical Practice
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANCOVA | Analysis of covariance |
BA | Bone age |
BA–GPA | Bone age estimated using the Greulich–Pyle atlas |
BA–TW3 | Bone age estimated using the Tanner–Whitehouse 3 method |
BMI | Body mass index |
BSA | Body surface area |
CA | Chronological age |
DHEA-S | Dehydroepiandrosterone sulfate |
EDCs | Endocrine-disrupting chemicals |
FSH | Follicle-stimulating hormone |
GPA | Greulich–Pyle atlas |
HPG | Hypothalamic–pituitary–gonadal (axis) |
LH | Luteinizing hormone |
PACS | Picture archiving and communication system |
PA–HW | Posteroanterior hand–wrist (radiograph) |
PP | Precocious puberty |
T4 | Thyroxine |
TSH | Thyroid-stimulating hormone |
TW3 | Tanner–Whitehouse 3 method |
References
- Kuiri-Hänninen, T.; Sankilampi, U.; Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: Minipuberty. Horm. Res. Paediatr. 2014, 82, 73–80. [Google Scholar] [CrossRef]
- Abreu, A.P.; Kaiser, U.B. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016, 4, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Zevin, E.L.; Eugster, E.A. Central precocious puberty: A review of diagnosis, treatment, and outcomes. Lancet Child Adolesc. Health 2023, 7, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Eckert-Lind, C.; Busch, A.S.; Petersen, J.H.; Biro, F.M.; Butler, G.; Bräuner, E.V.; Juul, A. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: A systematic review and meta-analysis. JAMA Pediatr. 2020, 174, e195881. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, H.; Mu, C.; Liu, P.; Hao, C.; Xin, Y. Early puberty: A review on its role as a risk factor for metabolic and mental disorders. Front. Pediatr. 2024, 12, 1326864. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kwon, A.; Jung, M.K.; Kim, K.E.; Suh, J.; Chae, H.W.; Kim, D.H.; Ha, S.; Seo, G.H.; Kim, H.S. Incidence and Prevalence of Central Precocious Puberty in Korea: An Epidemiologic Study Based on a National Database. J. Pediatr. 2019, 208, 221–228. [Google Scholar] [CrossRef]
- Shu, W.; Zong, X.; Li, H. Secular Trends in Age at Pubertal Onset Assessed by Breast Development among Chinese Girls: A Systematic Review. Front. Endocrinol. 2022, 13, 1042122. [Google Scholar] [CrossRef]
- Houghton, L.C.; Paniagua-Avila, A.; Hua, S.; Terry, M.B.; McDonald, J.A.; Ulanday, K.; Van Horn, L.; Carnethon, M.; Isasi, C.R. Immigrant Generation Status and Its Association with Pubertal Timing and Tempo among Hispanic Girls and Boys. Am. J. Hum. Biol. 2023, 35, e23940. [Google Scholar] [CrossRef]
- Hoyt, L.T.; Niu, L.; Pachucki, M.C.; Chaku, N. Timing of Puberty in Boys and Girls: Implications for Population Health. SSM Popul. Health 2020, 10, 100549. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Papadimitriou, D.T. Endocrine-disrupting chemicals and early puberty in girls. Children 2021, 8, 492. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, Y.; Yang, Z.; Gong, Z.; Zhang, S.; Liu, X.; Chen, Y.; Ye, C.; Chen, L.; Wang, T. Overweight/obesity in childhood and the risk of early puberty: A systematic review and meta-analysis. Front. Pediatr. 2022, 10, 795596. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.S.; Lee, H.S.; Hwang, J.S. Genetic factors in precocious puberty. Clin. Exp. Pediatr. 2022, 65, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Harrall, K.K.; Glueck, D.H.; Hockett, C.; Dabelea, D. Epigenetic age acceleration is associated with speed of pubertal growth but not age of pubertal onset. Sci. Rep. 2024, 14, 2981. [Google Scholar] [CrossRef]
- Trujillo Armas, R. Estudio pediátrico sobre una población de adolescentes de la Comunidad Canaria. In Pediatría Canaria: Progresos y Perspectivas; Herra Hernández, M.L., López Smablás, J.P., Eds.; Editorial Comares: Granada, Spain, 1997; p. 256. [Google Scholar]
- Calleja, P.; Copperstone, C.; Cauchi, D.; Darias Curvo, S. Childhood Obesity, Food Insecurity and Climate Change: A Tale of Two Island Groups. Int. J. Food Saf. Nutr. Public Health 2023, 6, 167–184. [Google Scholar] [CrossRef]
- García Solano, M.; Re Saavedra, M.Á.D.; Gutiérrez González, E.; García López, A.; Villar Villalba, C.; Yusta Boyo, M.J.; Robledo de Dios, T.; Labrado Mendo, E.; Ruiz Álvarez, M. Estudio ALADINO 2019: Estudio sobre Alimentación, Actividad Física, Desarrollo Infantil y Obesidad en España 2019; Agencia Española de Seguridad Alimentaria y Nutrición (AESAN), Ministerio de Consumo: Madrid, Spain, 2020; 184p. [Google Scholar]
- Herrera-Ramos, E.; Tomaino, L.; Sánchez-Villegas, A.; Ribas-Barba, L.; Gómez, S.F.; Wärnberg, J.; Osés, M.; González-Gross, M.; Gusi, N.; Aznar, S.; et al. Trends in Adherence to the Mediterranean Diet in Spanish Children and Adolescents across Two Decades. Nutrients 2023, 15, 2348. [Google Scholar] [CrossRef]
- Alghamdi, A. Precocious puberty: Types, pathogenesis and updated management. Cureus 2023, 15, e47485. [Google Scholar] [CrossRef]
- Jee, Y.H.; Jumani, S.; Mericq, V. The association of accelerated early growth, timing of puberty, and metabolic consequences in children. J. Clin. Endocrinol. Metab. 2023, 108, e663–e670. [Google Scholar] [CrossRef]
- Farello, G.; Altieri, C.; Cutini, M.; Pozzobon, G.; Verrotti, A. Review of the literature on current changes in the timing of pubertal development and the incomplete forms of early puberty. Front. Pediatr. 2019, 7, 147. [Google Scholar] [CrossRef]
- Shim, K.S. Pubertal growth and epiphyseal fusion. Ann. Pediatr. Endocrinol. Metab. 2015, 20, 8–12. [Google Scholar] [CrossRef]
- Winer, J.P.; Parent, J.; Forehand, R.; Breslend, N.L. Interactive effects of psychosocial stress and early pubertal timing on youth depression and anxiety: Contextual amplification in family and peer environments. J. Child Fam. Stud. 2016, 25, 1375–1384. [Google Scholar] [CrossRef]
- Satoh, M.; Hasegawa, Y. Factors affecting prepubertal and pubertal bone age progression. Front. Endocrinol. 2022, 13, 967711. [Google Scholar] [CrossRef]
- Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed.; Stanford University Press: Stanford, CA, USA, 1959. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H.; Cameron, N.; Marshall, W.A.; Healy, M.J.R.; Goldstein, H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method), 3rd ed.; W.B. Saunders: London, UK, 2001. [Google Scholar]
- Martín Pérez, S.E.; Martín Pérez, I.M.; Vega González, J.M.; Molina Suárez, R.; León Hernández, C.; Rodríguez Hernández, F.; Herrera Pérez, M. Precision and accuracy of radiological bone age assessment in children among different ethnic groups: A systematic review. Diagnostics 2023, 13, 3124. [Google Scholar] [CrossRef]
- Martín Pérez, S.E.; Martín Pérez, I.M.; Molina Suárez, R.; Vega González, J.M.; García Hernández, A.M. The validation of the Tanner–Whitehouse 3 method for radiological bone assessments in a pediatric population from the Canary Islands. Osteology 2025, 5, 6. [Google Scholar] [CrossRef]
- Gilsanz, V.; Chalfant, J.; Kalkwarf, H.; Zemel, B.; Lappe, J.; Oberfield, S.; Shepherd, J.; Wren, T.; Winer, K. Age at Onset of Puberty Predicts Bone Mass in Young Adulthood. J. Pediatr. 2011, 158, 100–105.e2. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Su, Z.; Pan, L.; Chen, J.; Zhao, X.; Wang, L.; Zhang, L.; Su, Q.; Su, H. Pattern of Linear Growth and Progression of Bone Maturation for Girls with Early-Onset Puberty: A Mixed Longitudinal Study. Front. Pediatr. 2023, 11, 1056035. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.D.; Meister, K.; Schweizer, R.; Ranke, M.B.; Thodberg, H.H.; Binder, G. Validation of Automatic Bone Age Rating in Children with Precocious and Early Puberty. J. Pediatr. Endocrinol. Metab. 2011, 24, 1009–1014. [Google Scholar] [CrossRef]
- Cavallo, F.; Mohn, A.; Chiarelli, F.; Giannini, C. Evaluation of Bone Age in Children: A Mini-Review. Front. Pediatr. 2021, 9, 580314. [Google Scholar] [CrossRef]
- Gerván, P.; Oláh, G.; Utczás, K.; Csányi, A.; Hamar, P.; Németh, D. The Influence of Relative Pubertal Maturity on Executive Function Development in Adolescent Girls. Sci. Rep. 2024, 14, 28140. [Google Scholar] [CrossRef]
- Lazar, L.; Phillip, M. Pubertal Disorders and Bone Maturation. Endocrinol. Metab. Clin. N. Am. 2012, 41, 805–825. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Li, G.M.; Li, Y. Advanced Bone Age as an Indicator Facilitates the Diagnosis of Precocious Puberty. J. Pediatr. 2018, 94, 69–75. [Google Scholar] [CrossRef]
- Spaziani, M.; Tarantino, C.; Tahani, N.; Gianfrilli, D.; Sbardella, E.; Lenzi, A.; Radicioni, A.F. Hypothalamo–Pituitary Axis and Puberty. Mol. Cell. Endocrinol. 2021, 520, 111094. [Google Scholar] [CrossRef]
- Sessa, L.; Rotunno, G.; Sodero, G.; Pane, L.C.; Rendeli, C.; Maresca, G.; Rigante, D.; Cipolla, C. Predictive Value of Transabdominal Pelvic Ultrasonography for the Diagnosis of Central Precocious Puberty: A Single-Center Observational Retrospective Study. Clin. Pediatr. Endocrinol. 2024, 33, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Peper, J.S.; Brouwer, R.M.; van Leeuwen, M.; Schnack, H.G.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E. HPG-Axis Hormones during Puberty: A Study on the Association with Hypothalamic and Pituitary Volumes. Psychoneuroendocrinology 2010, 35, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Berberoğlu, M. Precocious Puberty and Normal Variant Puberty: Definition, Etiology, Diagnosis and Current Management. J. Clin. Res. Pediatr. Endocrinol. 2009, 1, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.; et al. STARD 2015 Guidelines for Reporting Diagnostic Accuracy Studies: Explanation and Elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef]
- SAP SE. SAP GUI for Windows, Version 8.00; SAP SE: Walldorf, Germany, 2024. [Google Scholar]
- GE Healthcare. Centricity PACS, Version 6.0; GE Healthcare: Mt. Prospect, IL, USA, 2016. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Carel, J.C.; Eugster, E.A.; Rogol, A.; Ghizzoni, L.; Palmert, M.R.; Antoniazzi, F.; Berenbaum, S.; Bourguignon, J.P.; Chrousos, G.P.; Coste, J.; et al. Consensus Statement on the Use of Gonadotropin-Releasing Hormone Analogs in Children. Pediatrics 2009, 123, e752–e762. [Google Scholar] [CrossRef]
- Martínez-Aedo Ollero, M.J.; Godoy Molina, E. Pubertad precoz y variantes de la normalidad. Protoc. Diagn. Ter. Pediatr. 2019, 1, 239–252. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 30.0.0; IBM Corp.: Armonk, NY, USA, 2024. [Google Scholar]
- Parent, A.-S.; Teilmann, G.; Juul, A.; Skakkebaek, N.E.; Toppari, J.; Bourguignon, J.-P. The Timing of Normal Puberty and the Age Limits of Sexual Precocity: Variations around the World, Secular Trends, and Changes after Migration. Endocr. Rev. 2003, 24, 668–693. [Google Scholar] [CrossRef]
- Marco Hernández, M.; Benítez, R.; Medranda, I.; Pizarro, C.; Méndez, M.J. Variaciones fisiológicas normales del desarrollo puberal: Edad del inicio puberal, edad de la menarquia y talla. An. Pediatr. 2010, 73, 320–326. [Google Scholar] [CrossRef]
- Sørensen, K.; Mouritsen, A.; Aksglaede, L.; Hagen, C.P.; Mogensen, S.S.; Juul, A. Recent Secular Trends in Pubertal Timing: Implications for Evaluation and Diagnosis of Precocious Puberty. Horm. Res. Paediatr. 2012, 77, 137–145. [Google Scholar] [CrossRef]
- García Cuartero, B.; González Vergaza, A.; Frías García, E.; Arana Cañete, C.; Díaz Martínez, E.; Tolmo, M.D. Valoración de la tendencia secular de la pubertad en niños y niñas. An. Pediatr. 2010, 73, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Kaplowitz, P. Pubertal development in girls: Secular trends. Curr. Opin. Obstet. Gynecol. 2006, 18, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Itriyeva, K. The Effects of Obesity on the Menstrual Cycle. Curr. Probl. Pediatr. Adolesc. Health Care 2022, 52, 101241. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, D.; Franssen, D.; Heger, S.; Parent, A.S. Endocrine-Disrupting Chemicals and Their Effects on Puberty. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101579. [Google Scholar] [CrossRef]
- Martín Pérez, I.M.; Martín Pérez, S.E.; Vega González, J.M.; Molina Suárez, R.; García Hernández, A.M.; Rodríguez Hernández, F.; Herrera Pérez, M. The Validation of the Greulich and Pyle Atlas for Radiological Bone Age Assessments in a Pediatric Population from the Canary Islands. Healthcare 2024, 12, 1847. [Google Scholar] [CrossRef]
- Martín Pérez, I.M.; Bourhim, S.; Martín Pérez, S.E. Artificial Intelligence-Based Models for Automated Bone Age Assessment from Posteroanterior Wrist X-Rays: A Systematic Review. Appl. Sci. 2025, 15, 5978. [Google Scholar] [CrossRef]
- Barrios Lorenzo, M.J. Lenguaje de Dominio Específico Para la Estimación de la Edad Ósea; Universidad de La Laguna: San Cristóbal de La Laguna, Spain, 2023. [Google Scholar]
- Martin, D.D.; Wit, J.M.; Hochberg, Z.; Sävendahl, L.; van Rijn, R.R.; Fricke, O.; Cameron, N.; Caliebe, J.; Hertel, T.; Kiepe, D.; et al. The Use of Bone Age in Clinical Practice—Part 1. Horm. Res. Paediatr. 2011, 76, 1–9. [Google Scholar] [CrossRef]
- Martin, D.D.; Wit, J.M.; Hochberg, Z.; van Rijn, R.R.; Fricke, O.; Werther, G.; Cameron, N.; Hertel, T.; Wudy, S.A.; Butler, G.; et al. The Use of Bone Age in Clinical Practice—Part 2. Horm. Res. Paediatr. 2011, 76, 10–16. [Google Scholar] [CrossRef]
- Fregel, R.; Ordóñez, A.C.; Serrano, J.G. The demography of the Canary Islands from a genetic perspective. Hum. Mol. Genet. 2021, 30, R64–R71. [Google Scholar] [CrossRef] [PubMed]
- Ontell, F.K.; Ivanovic, M.; Ablin, D.S.; Barlow, T.W. Bone age in children of diverse ethnicity. AJR Am. J. Roentgenol. 1996, 167, 1395–1398. [Google Scholar] [CrossRef]
- Alshamrani, K.; Messina, F.; Offiah, A.C. Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur. Radiol. 2019, 29, 2910–2923. [Google Scholar] [CrossRef] [PubMed]
- Toledo Trujillo, F.M.; Rodríguez Hernández, F.; Rodríguez Rodríguez, I. Atlas Radiológico de Referencia de la Edad Ósea en la Población Canaria; Fundación Canaria de Salud y Sanidad de Tenerife: Santa Cruz de Tenerife, España, 2009. [Google Scholar]
- Shah, N.; Khadilkar, V.; Lohiya, N.; Prasad, H.K.; Patil, P.; Gondhalekar, K.; Khadilkar, A. Comparison of Bone Age Assessments by Gruelich-Pyle, Gilsanz-Ratib, and Tanner Whitehouse Methods in Healthy Indian Children. Indian J. Endocrinol. Metab. 2021, 25, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Qian, Q.; Li, Y.; Xing, X.; He, X.; Lin, M.; Ding, Z. A Comparative Study of Three Bone Age Assessment Methods on Chinese Preschool-Aged Children. Front. Pediatr. 2022, 10, 976565. [Google Scholar] [CrossRef]
- Ahmed, J.; Ahmad, T.; Naz, R.; Khan, M.N.; Khan, A.; Shafique, M. Applicability of Greulich–Pyle and Tanner–Whitehouse Methods for Bone Age Estimation in Pakistani Children: A Comparative Study. J. Clin. Densitom. 2023, 26, 228–235. [Google Scholar]
- Martínez Martínez, J.J. Valoración de la Edad Ósea: Estudio Comparativo de los Métodos de Greulich–Pyle y Tanner–Whitehouse. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 1972. [Google Scholar]
- Plant, T.M. 60 yrs. of Neuroendocrinology: The Hypothalamic–Pituitary–Gonadal Axis. J. Endocrinol. 2015, 226, T41–T54. [Google Scholar] [CrossRef]
- Klein, D.A.; Emerick, J.E.; Sylvester, J.E.; Vogt, K.S. Disorders of Puberty: An Approach to Diagnosis and Management. Am. Fam. Physician 2017, 96, 590–599. [Google Scholar]
- Guarneri, A.M.; Kamboj, M.K. Physiology of Pubertal Development in Females. Pediatr. Med. 2019, 2, 42. [Google Scholar] [CrossRef]
- Börjesson, A.E.; Lagerquist, M.K.; Liu, C.; Shao, R.; Windahl, S.H.; Karlsson, C.; Sjögren, K.; Movérare-Skrtic, S.; Antal, M.C.; Krust, A.; et al. The Role of Estrogen Receptor α in Growth Plate Cartilage for Longitudinal Bone Growth. J. Bone Miner. Res. 2010, 25, 2690–2700. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.H.; Lee, H.A.; Kim, Y.J.; Lee, H.; Park, E.A.; Cho, S.J.; Gwak, H.S.; Ha, E.; Park, H.; Kim, H.S. Effects of Adrenal Androgen Levels on Bone Age Advancement in Prepubertal Children: Using the Ewha Birth and Growth Cohort Study. J. Korean Med. Sci. 2017, 32, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Cleemann Wang, A.; Hagen, C.P.; Johannsen, T.H.; Madsen, A.G.; Cleemann, L.H.; Christiansen, P.; Main, K.M.; Juul, A.; Jensen, R.B. Differentiation of Idiopathic Central Precocious Puberty From Premature Thelarche Using Principal Component Analysis. J. Clin. Endocrinol. Metab. 2024, 109, 370–379. [Google Scholar] [CrossRef]
- Prété, G.; Couto-Silva, A.C.; Trivin, C.; Brauner, R. Idiopathic Central Precocious Puberty in Girls: Presentation Factors. BMC Pediatr. 2008, 8, 27. [Google Scholar] [CrossRef]
- Hansen, A.B.; Renault, C.H.; Wøjdemann, D.; Gideon, P.; Juul, A.; Jensen, R.B. Neuroimaging in 205 Consecutive Children Diagnosed with Central Precocious Puberty in Denmark. Pediatr. Res. 2023, 93, 125–130. [Google Scholar] [CrossRef]
- Jung, G.; Oh, S.B.; Lee, W.Y.; Kim, H.R.; Nam, H.K.; Kim, J.H.; Rhie, Y.J.; Lee, K.H. Thyroid Function in Girls with Central Precocious Puberty. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 124–128. [Google Scholar] [CrossRef]
- Taylor, P.N.; Sayers, A.; Okosieme, O.; Das, G.; Draman, M.S.; Tabasum, A.; Abusahmin, H.; Rahman, M.; Stevenson, K.; Groom, A.; et al. Maturation in Serum Thyroid Function Parameters over Childhood and Puberty: Results of a Longitudinal Study. J. Clin. Endocrinol. Metab. 2017, 102, 2508–2515. [Google Scholar] [CrossRef]
- Veldscholte, K.; Barjaktarovic, M.; Trajanoska, K.; Jaddoe, V.W.V.; Visser, T.J.; de Rijke, Y.B.; Peeters, R.P.; Rivadeneira, F.; Korevaar, T.I.M. The Association of Thyroid Function with Bone Density during Childhood. J. Clin. Endocrinol. Metab. 2018, 103, 4125–4134. [Google Scholar] [CrossRef]
- Gouveia, C.H.A.; Miranda-Rodrigues, M.; Martins, G.M.; Neofiti-Papi, B. Thyroid Hormone and Skeletal Development. Vitam. Horm. 2018, 106, 383–472. [Google Scholar] [CrossRef]
- Zhu, S.; Pang, Y.; Xu, J.; Chen, X.; Zhang, C.; Wu, B.; Gao, J. Endocrine Regulation on Bone by Thyroid. Front. Endocrinol. 2022, 13, 873820. [Google Scholar] [CrossRef]
- Kim, H.Y.; Mohan, S. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development. Bone Res. 2013, 1, 146–161. [Google Scholar] [CrossRef]
- Barrios González, E.; Rial Rodríguez, J.M. Pubertad precoz: Protocolo de derivación. Canarias Pediátrica 2008, 32, 17–27. [Google Scholar]
- Greenspan, L.C.; Lee, M.M. Endocrine Disruptors and Pubertal Timing. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 49–54. [Google Scholar] [CrossRef]
- Gajdos, Z.K.; Henderson, K.D.; Hirschhorn, J.N.; Palmert, M.R. Genetic Determinants of Pubertal Timing in the General Population. Mol. Cell. Endocrinol. 2010, 324, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt-Veje, C.; Mouritsen, A.; Hagen, C.P.; Tinggaard, J.; Mieritz, M.G.; Boas, M.; Petersen, J.H.; Skakkebæk, N.E.; Main, K.M. Pubertal Onset in Boys and Girls Is Influenced by Pubertal Timing of Both Parents. J. Clin. Endocrinol. Metab. 2016, 101, 2667–2674. [Google Scholar] [CrossRef]
Variable | Development Stage | Mean ± SD | Median | Q1 | Q3 | Shapiro–Wilk (p Value) |
---|---|---|---|---|---|---|
Weight (Kg) | 6–7 yrs (n = 18) | 19.8 ± 3.1 | 19.1 | 17.1 | 22.4 | <0.001 *** |
7–8 yrs (n = 23) | 22.5 ± 3.8 | 21.9 | 19.8 | 25.2 | <0.001 *** | |
8–9 yrs (n = 20) | 25.3 ± 4.2 | 24.7 | 21.5 | 28.6 | <0.001 *** | |
9–10 yrs (n = 18) | 28.1 ± 5.0 | 27.4 | 23.8 | 32.3 | <0.001 *** | |
10–11 yrs (n = 15) | 31.5 ± 5.6 | 30.7 | 26.8 | 36.1 | <0.001 *** | |
11–12 yrs (n = 15) | 34.8 ± 6.2 | 33.9 | 29.7 | 39.6 | <0.001 *** | |
Height (cm) | 6–7 yrs (n = 18) | 109.1 ± 5.2 | 108.0 | 104.7 | 113.5 | <0.001 *** |
7–8 yrs (n = 23) | 113.6 ± 6.3 | 112.5 | 107.9 | 119.2 | <0.001 *** | |
8–9 yrs (n = 20) | 119.2 ± 7.6 | 117.0 | 110.4 | 134.6 | <0.001 *** | |
9–10 yrs (n = 18) | 125.5 ± 8.2 | 123.0 | 115.7 | 135.3 | <0.001 *** | |
10–11 yrs (n = 15) | 132.3 ± 9.1 | 130.4 | 120.5 | 144.8 | <0.001 *** | |
11–12 yrs (n = 15) | 139.4 ± 10.3 | 137.4 | 125.8 | 153.0 | <0.001 *** | |
BMI (Kg/m2) | 6–7 yrs (n = 18) | 14.7 ± 0.9 | 14.6 | 14.1 | 15.3 | <0.001 *** |
7–8 yrs (n = 23) | 15.0 ± 1.0 | 14.9 | 14.3 | 15.7 | <0.001 *** | |
8–9 yrs (n = 20) | 15.5 ± 1.0 | 15.3 | 14.7 | 16.6 | <0.001 *** | |
9–10 yrs (n = 18) | 15.9 ± 1.1 | 15.8 | 14.9 | 16.8 | <0.001 *** | |
10–11 yrs (n = 15) | 16.3 ± 1.2 | 16.1 | 15.2 | 17.3 | <0.001 *** | |
11–12 yrs (n = 15) | 16.7 ± 1.3 | 16.5 | 15.4 | 17.8 | <0.001 *** | |
Growth Velocity (cm/yr) | 6–7 yrs (n = 18) | 2.3 ± 0.8 | 2.2 | 1.7 | 2.9 | 0.051 |
7–8 yrs (n = 23) | 2.7 ± 1.0 | 2.6 | 2.0 | 3.3 | 0.048 * | |
8–9 yrs (n = 20) | 3.2 ± 1.3 | 3.0 | 2.4 | 4.0 | 0.045 * | |
9–10 yrs (n = 18) | 3.8 ± 1.5 | 3.5 | 2.9 | 4.7 | 0.041 * | |
10–11 yrs (n = 15) | 4.2 ± 1.6 | 4.0 | 3.2 | 5.2 | 0.039 * | |
11–12 yrs (n = 15) | 4.6 ± 1.8 | 4.4 | 3.6 | 5.7 | 0.035 * | |
Body Surface Area (m2) | 6–7 yrs (n = 18) | 0.77 ± 0.8 | 0.75 | 0.69 | 0.83 | 0.052 |
7–8 yrs (n = 23) | 0.84 ± 0.8 | 0.82 | 0.76 | 0.92 | 0.049 * | |
8–9 yrs (n = 20) | 0.91 ± 0.09 | 0.89 | 0.83 | 0.99 | 0.042 * | |
9–10 yrs (n = 18) | 0.99 ± 0.1 | 0.97 | 0.91 | 1.07 | 0.038 * | |
10–11 yrs (n = 15) | 1.08 ± 0.11 | 1.06 | 1.0 | 1.16 | 0.035 * | |
11–12 yrs (n = 15) | 1.17 ± 0.12 | 1.15 | 1.09 | 1.25 | 0.031 * |
Hormones | Development Stage | Mean ± SD | Median | Q1 | Q3 | Shapiro–Wilk (p Value) |
---|---|---|---|---|---|---|
LH (mIU/mL) | 6–7 yrs (n = 18) | 0.82 ± 0.30 | 0.75 | 0.60 | 0.90 | 0.121 |
7–8 yrs (n = 23) | 1.10 ± 0.42 | 1.00 | 0.85 | 1.30 | 0.094 | |
8–9 yrs (n = 20) | 2.00 ± 0.95 | 1.80 | 1.30 | 2.50 | 0.076 | |
9–10 yrs (n = 18) | 2.35 ± 1.10 | 2.10 | 1.50 | 3.10 | 0.063 | |
10–11 yrs (n = 15) | 2.70 ± 1.20 | 2.50 | 1.70 | 3.40 | 0.048 * | |
11–12 yrs (n = 15) | 3.10 ± 1.40 | 2.80 | 2.00 | 4.00 | 0.042 * | |
FSH (mIU/mL) | 6–7 yrs (n = 18) | 2.10 ± 0.75 | 2.00 | 1.60 | 2.50 | 0.132 |
7–8 yrs (n = 23) | 2.70 ± 0.90 | 2.60 | 2.00 | 3.30 | 0.100 | |
8–9 yrs (n = 20) | 3.90 ± 1.30 | 3.70 | 3.00 | 4.80 | 0.081 | |
9–10 yrs (n = 18) | 4.30 ± 1.45 | 4.00 | 3.20 | 5.20 | 0.070 | |
10–11 yrs (n = 15) | 4.80 ± 1.60 | 4.50 | 3.40 | 5.80 | 0.051 | |
11–12 yrs (n = 15) | 5.40 ± 1.85 | 5.00 | 4.00 | 6.50 | 0.043 * | |
Estradiol (pg/mL) | 6–7 yrs (n = 18) | 12.5 ± 6.0 | 11.0 | 8.0 | 16.0 | 0.154 |
7–8 yrs (n = 23) | 18.2 ± 8.5 | 17.0 | 12.0 | 23.0 | 0.098 | |
8–9 yrs (n = 20) | 31.0 ± 14.0 | 28.0 | 20.0 | 40.0 | 0.062 | |
9–10 yrs (n = 18) | 35.4 ± 15.5 | 32.0 | 24.0 | 44.0 | 0.049 * | |
10–11 yrs (n = 15) | 39.5 ± 17.0 | 36.0 | 27.0 | 49.0 | 0.042 * | |
11–12 yrs (n = 15) | 45.8 ± 18.5 | 43.0 | 30.0 | 57.0 | 0.036 * | |
DHEA-S (µg/dL) | 6–7 yrs (n = 18) | 68.0 ± 22.0 | 65.0 | 50.0 | 80.0 | 0.130 |
7–8 yrs (n = 23) | 85.0 ± 28.0 | 80.0 | 60.0 | 100.0 | 0.102 | |
8–9 yrs (n = 20) | 115.0 ± 35.0 | 110.0 | 90.0 | 140.0 | 0.081 | |
9–10 yrs (n = 18) | 130.0 ± 40.0 | 125.0 | 100.0 | 160.0 | 0.060 | |
10–11 yrs (n = 15) | 142.0 ± 44.0 | 135.0 | 110.0 | 170.0 | 0.049 * | |
11–12 yrs (n = 15) | 156.0 ± 50.0 | 145.0 | 120.0 | 185.0 | 0.041 * | |
Cortisol (µg/dL) | 6–7 yrs (n = 18) | 11.0 ± 3.2 | 10.5 | 8.5 | 13.0 | 0.221 |
7–8 yrs (n = 23) | 12.5 ± 3.6 | 12.0 | 9.5 | 14.5 | 0.200 | |
8–9 yrs (n = 20) | 13.8 ± 4.1 | 13.0 | 10.5 | 16.0 | 0.139 | |
9–10 yrs (n = 18) | 14.5 ± 4.5 | 14.0 | 11.0 | 17.0 | 0.120 | |
10–11 yrs (n = 15) | 15.2 ± 4.8 | 15.0 | 12.0 | 18.0 | 0.111 | |
11–12 yrs (n = 15) | 16.0 ± 5.0 | 15.5 | 12.5 | 19.5 | 0.095 | |
TSH (µIU/mL) | 6–7 yrs (n = 18) | 2.30 ± 0.65 | 2.20 | 1.80 | 2.80 | 0.289 |
7–8 yrs (n = 23) | 2.20 ± 0.72 | 2.10 | 1.70 | 2.70 | 0.271 | |
8–9 yrs (n = 20) | 2.10 ± 0.88 | 2.00 | 1.50 | 2.60 | 0.212 | |
9–10 yrs (n = 18) | 2.00 ± 0.85 | 1.90 | 1.40 | 2.50 | 0.190 | |
10–11 yrs (n = 15) | 1.90 ± 0.82 | 1.80 | 1.30 | 2.40 | 0.175 | |
11–12 yrs (n = 15) | 1.80 ± 0.80 | 1.70 | 1.20 | 2.30 | 0.162 | |
Free T4 (ng/dL) | 6–7 yrs (n = 18) | 1.12 ± 0.14 | 1.10 | 1.02 | 1.20 | 0.318 |
7–8 yrs (n = 23) | 1.13 ± 0.15 | 1.10 | 1.03 | 1.22 | 0.310 | |
8–9 yrs (n = 20) | 1.13 ± 0.15 | 1.10 | 1.02 | 1.22 | 0.310 | |
9–10 yrs (n = 18) | 1.14 ± 0.16 | 1.11 | 1.03 | 1.23 | 0.295 | |
10–11 yrs (n = 15) | 1.14 ± 0.17 | 1.12 | 1.04 | 1.24 | 0.288 | |
11–12 yrs (n = 15) | 1.15 ± 0.18 | 1.13 | 1.05 | 1.25 | 0.275 |
Variables | Development Stage | Mean ± SD | Median | Q1 | Q3 | Shapiro–Wilk (p Value) |
---|---|---|---|---|---|---|
CA (mos) | 6–7 yrs (n = 18) | 77.5 ± 2.50 | 77.7 | 75.8 | 79.0 | 0.771 |
7–8 yrs (n = 23) | 85.2 ± 2.80 | 85.3 | 83.3 | 87.1 | 0.166 | |
8–9 yrs (n = 20) | 98.5 ± 2.80 | 98.7 | 96.6 | 100.4 | 0.090 | |
9–10 yrs (n = 18) | 110.5 ± 3.10 | 110.8 | 108.4 | 112.6 | 0.284 | |
10–11 yrs (n = 15) | 125.1 ± 3.20 | 125.2 | 122.9 | 127.3 | 0.260 | |
11–12 yrs (n = 15) | 133.6 ± 3.00 | 133.8 | 131.6 | 135.6 | 0.310 | |
BA–GPA (mos) | 6–7 yrs (n = 18) | 78.0 ± 6.20 | 78.0 | 73.8 | 82.2 | 0.412 |
7–8 yrs (n = 23) | 90.0 ± 7.50 | 90.4 | 84.9 | 95.1 | 0.392 | |
8–9 yrs (n = 20) | 102.0 ± 8.10 | 102.3 | 96.5 | 107.5 | 0.232 | |
9–10 yrs (n = 18) | 114.1 ± 9.20 | 114.2 | 107.8 | 120.2 | 0.983 | |
10–11 yrs (n = 15) | 126.0 ± 9.90 | 126.2 | 119.3 | 132.7 | 0.348 | |
11–12 yrs (n = 15) | 138.0 ± 10.40 | 138.4 | 131.0 | 145.1 | 0.864 | |
BA–TW3 (mos) | 6–7 yrs (n = 18) | 77.0 ± 5.8 | 77.2 | 73.1 | 80.9 | 0.808 |
7–8 yrs (n = 23) | 88.0 ± 6.2 | 88.6 | 83.8 | 92.2 | 0.424 | |
8–9 yrs (n = 20) | 100.0 ± 6.8 | 100.9 | 95.4 | 104.6 | 0.105 | |
9–10 yrs (n = 18) | 110.9 ± 7.3 | 112.9 | 105.1 | 114.9 | 0.427 | |
10–11 yrs (n = 15) | 127.0 ± 7.9 | 123.7 | 117.7 | 128.3 | 0.099 | |
11–12 yrs (n = 15) | 136.0 ± 8.2 | 134.5 | 139.5 | 118.0 | 0.200 |
Source of Variation | Sum of Squares | df | Mean Square | F | p Value | η2p |
---|---|---|---|---|---|---|
BA method (within subjects) | 661.32 | 2.0 | 330.66 | 8.34 | <0.001 *** | 0.0049 |
Developmental stage (between subjects) | 119,670.01 | 5.0 | 23,934.00 | 603.46 | <0.001 *** | 0.893 |
BA method × developmental stage | 1326.26 | 10.0 | 132.62 | 3.34 | <0.001 *** | 0.009 |
Residual error (within subjects) | 12,255.15 | 309 | 39.66 | – | – | – |
Development Stage | Sample Size | Comparison | MD (mos) | t | p Value |
---|---|---|---|---|---|
6–7 yrs | n = 18 | ||||
CA—GPA | −0.50 | −1.112 | 0.278 | ||
CA—TW3 | 0.50 | 1.121 | 0.273 | ||
GPA—TW3 | 1.00 | 1.980 | 0.063 | ||
7–8 yrs | n = 23 | ||||
CA—GPA | −4.80 | −4.890 | <0.001 *** | ||
CA—TW3 | −2.80 | −2.430 | 0.022 * | ||
GPA—TW3 | 2.00 | 2.141 | 0.045 * | ||
8–9 yrs | n = 20 | ||||
CA—GPA | −3.50 | −3.871 | <0.001 *** | ||
CA—TW3 | −1.50 | −1.69 | 0.106 | ||
GPA—TW3 | 2.00 | 2.111 | 0.050 | ||
9–10 yrs | n = 18 | ||||
CA—GPA | −3.60 | −4.020 | <0.001 *** | ||
CA—TW3 | −0.40 | −0.440 | 0.665 | ||
GPA—TW3 | 3.20 | 2.270 | 0.036 * | ||
10–11 yrs | n = 15 | ||||
CA—GPA | −1.00 | −1.240 | 0.232 | ||
CA—TW3 | 2.10 | 1.960 | 0.070 | ||
GPA—TW3 | 3.10 | 1.970 | 0.070 | ||
11–12 yrs | n = 15 | ||||
CA—GPA | −4.40 | −4.870 | <0.001 *** | ||
CA—TW3 | −2.40 | −2.210 | 0.038 * | ||
GPA—TW3 | 2.00 | 2.220 | 0.038 * |
Source of Variation | Sum of Squares | df | Mean Square | F | p Value | η2p |
---|---|---|---|---|---|---|
BA–GPA | 59.657 | 1.00 | 59.657 | 269.23 | <0.001 *** | 0.559 |
LH | 6.553 | 1.00 | 6.553 | 29.576 | <0.001 *** | 0.061 |
FSH | 0.957 | 1.00 | 0.957 | 4.323 | 0.04 * | 0.008 |
Estradiol | 21.037 | 1.00 | 21.037 | 94.941 | <0.001 *** | 0.197 |
DHEA-S | 0.0166 | 1.00 | 0.0166 | 0.0750 | 0.784 | 0.0001 |
Cortisol | 0.0784 | 1.00 | 0.0784 | 0.353 | 0.553 | 0.0007 |
TSH | 0.169 | 1.00 | 0.169 | 0.766 | 0.383 | 0.0015 |
Free T4 | 0.152 | 1.00 | 0.152 | 0.689 | 0.408 | 0.0014 |
Residual (Error) | 17.947 | 81.00 | 0.221 | – | – | 0.1684 |
Total Model | 106.788 | 89.0 | – | 50.26 | <0.001 *** | 0.832 |
Source of Variation | Sum of Squares | df | Mean Square | F | p Value | Partial η2 |
---|---|---|---|---|---|---|
BA–TW3 | 57.797 | 1.00 | 57.797 | 236.348 | <0.001 *** | 0.532 |
LH | 7.470 | 1.00 | 7.470 | 30.547 | <0.001 *** | 0.068 |
FSH | 2.572 | 1.00 | 2.572 | 10.519 | 0.001 ** | 0.023 |
Estradiol | 20.466 | 1.00 | 20.466 | 83.692 | <0.001 *** | 0.188 |
DHEA-S | 0.027 | 1.00 | 0.027 | 0.111 | 0.739 | <0.001 |
Cortisol | 0.0002 | 1.00 | <0.001 | <0.001 | 0.975 | <0.001 |
TSH | 0.179 | 1.00 | 0.179 | 0.734 | 0.394 | <0.001 |
Free T4 | 0.174 | 1.00 | 0.174 | 0.711 | 0.401 | 0.001 |
Residual (Error) | 19.80 | 81.00 | 0.244 | – | – | 0.1879 |
Total Model | 108.495 | 89.0 | 1.219 | 45.35 | <0.001 *** | 0.817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Pérez, S.E.; Martín Pérez, I.M.; Molina Suárez, R.; Vega González, J.M.; García Hernández, A.M. Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands. Endocrines 2025, 6, 39. https://doi.org/10.3390/endocrines6030039
Martín Pérez SE, Martín Pérez IM, Molina Suárez R, Vega González JM, García Hernández AM. Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands. Endocrines. 2025; 6(3):39. https://doi.org/10.3390/endocrines6030039
Chicago/Turabian StyleMartín Pérez, Sebastián Eustaquio, Isidro Miguel Martín Pérez, Ruth Molina Suárez, Jesús María Vega González, and Alfonso Miguel García Hernández. 2025. "Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands" Endocrines 6, no. 3: 39. https://doi.org/10.3390/endocrines6030039
APA StyleMartín Pérez, S. E., Martín Pérez, I. M., Molina Suárez, R., Vega González, J. M., & García Hernández, A. M. (2025). Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands. Endocrines, 6(3), 39. https://doi.org/10.3390/endocrines6030039