A Newly Developed Compressed Air Cannon Test Bench Designed for Multi-Impact Analysis of Composite Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Essential Parameters for Cannon Design
2.2.2. Compressed Air Cannon Reservoirs
2.2.3. Automation of Multi-Impact Testing and Data Acquisition
3. Results
3.1. Configuration of the Test Bench
3.2. Energy Verification
3.3. 30 J Mono-Impact Configuration
3.4. 6J/Ball Multi-Impact Configuration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cesari, F.; Dal Re, V.; Minak, G.; Zucchelli, A. Damage and residual strength of laminated carbon–epoxy composite circular plates loaded at the centre. Compos. Part Appl. Sci. Manuf. 2007, 38, 1163–1172. [Google Scholar] [CrossRef]
- Xiao-Yu, S.; Jian-Xin, T.; Zheng, H.; Xuan, G. A study on the failure mechanisms of composite laminates simultaneously impacted by two projectiles. Adv. Compos. Lett. 2018, 27, 96–106. [Google Scholar] [CrossRef]
- Abrate, S. Impact Engineering of Composite Structures; CISM International Centre for Mechanical Sciences; Springer: Vienna, Austria, 2011; pp. 97–128. [Google Scholar]
- Wang, C.; Yew, C.H. Impact damage in composite laminates. Comput. Struct. 1990, 37, 967–982. [Google Scholar]
- Davies, G.A.O.; Olsson, R. Impact on composite structures. Aeronaut. J. 2004, 542–561. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Worton, J. Comparison of the low and high velocity impact response of CFRP. Compos. J. 1989, 20, 545–551. [Google Scholar] [CrossRef]
- Mokhtar, H.B. Contribution to the Study of Impact Damage on Composite Laminates: The Effect of Hygrothermal Ageing and Preloading. Ph.D Thesis, University of Burgundy, Nevers, France, 2012; pp. 78–85. [Google Scholar]
- Amouzou, A.S.E.; Sicot, O.; Chettah, A.; Aivazzadeh, S. Experimental characterization of composite laminates under low-velocity multi-impact loading. J. Compos. Mater. 2019, 53, 2391–2405. [Google Scholar] [CrossRef]
- Amaro, A.; Reis, P.; Moura, M.; Neto, M. Influence of multi-impacts on GRP composite laminates. Compos. Part 2013, 52, 93–99. [Google Scholar] [CrossRef]
- Bartus, S. Simultaneous and Sequential Multi-Site Impact Response of Composite Laminates. Ph.D Thesis, The University of Alabama at Birmingham, Birmingham, AL, USA, 2006; p. 49. [Google Scholar]
- Hall, Z.E.C.; Liu, J.; Brooks, R.A.; Liu, H.; Dear, J.P. Impact testing on the pristine and repaired composite materials for aerostructures. Appl. Mech. 2023, 4, 421–444. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Yidris, N.; Mustapha, F. Low velocity and high velocity impact test on composite materials—A review. Int. J. Eng. Sci. (IJES) 2014, 3, 50–60. [Google Scholar]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; Monteiro, S.N. Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. J. Mater. Res. Technol. 2020, 9, 373–382. [Google Scholar] [CrossRef]
- Hufenbach, W.; Ibraim, F.M.; Langkamp, A.; Böhm, R.; Hornig, A. Charpy impact tests on composite structures—An experimental and numerical investigation. Compos. Sci. Technol. 2008, 68, 2391–2400. [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Santulli, C.; Paoletti, A.; Paoletti, D.; Sarasini, F.; Bendada, A.; Maldague, X. Falling weight impacted glass and basalt fibre woven composites inspected using non-destructive techniques. Compos. Part Eng. 2013, 45, 601–608. [Google Scholar] [CrossRef]
- VanderKlok, A.; Stamm, A.; Dorer, J.; Eryi, H.; Auvenshine, M.; Pereira, J.M.; Xiao, X. An experimental investigation into the high velocity impact responses of S2-glass/SC15 epoxy composite panels with a gas gun. Int. J. Impact Eng. 2018, 111, 244–254. [Google Scholar] [CrossRef]
- Gama, B.A.; Lopatnikov, S.L.; Gillespie, J.W., Jr. Hopkinson bar experimental technique: A critical review. Appl. Mech. Rev. 2004, 57, 223–250. [Google Scholar] [CrossRef]
- Sultan, M.T.H.; Basri, S.; Rafie, A.S.M.; Mustapha, F.; Majid, D.L.; Ajir, M.R. High velocity impact damage analysis for glass epoxy laminated plates. Adv. Mater. Res. 2012, 399–401, 2318–2328. [Google Scholar] [CrossRef]
- Lamberson, L. Investigations of high-performance fiberglass impact using a combustionless two-stage light-gas gun. Procedia Eng. 2015, 103, 341–348. [Google Scholar] [CrossRef]
- Zhou, H.; Jing, K.; Xie, S.; Feng, Z.; Wang, H. Experiment of high-speed cumulative impact of carbon fiber plate based on air cannon. Sci. Technol. Compos. Mater. 2023, 40, 29–35. [Google Scholar]
- Rohrbach, Z.J.; Buresh, T.R.; Madsen, M.J. Modeling the exit velocity of a compressed air cannon. Am. J. Phys. 2012, 24–26. [Google Scholar] [CrossRef]
- Woojin, S.; Jihoon, K.; Kyeong, S.J.; Thi, T.G.L.; Jeonglae, K.; Dong, H.K.; Hyoungsoon, L.; Jaiyoung, R. Parametric study of a projectile launched by a compressed air cannon. J. Mech. Sci. Technol. 2023, 37, 5913–5933. [Google Scholar]
- Hosur, M.V.; Murthy, C.R.L.; Ramamurthy, T.S.; Shet, A. Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging. NDT E Int. 1998, 31, 359–374. [Google Scholar] [CrossRef]
- Deconinck, P. Étude du Comportement à l’Impact de Matériaux Composites Renforcés par Tufting. Ph.D. Thesis, University of Lorraine, Nancy, France, 2014; pp. 13–16. [Google Scholar]
- Mukhammad, A.F.H.; Nurhadiyanto, D.; Hassan, S.A.; Riyadi, T.W.B. Preliminary study of fragment simulating projectile on epoxy-ramie composite. J. Phys. Conf. Ser. 2020, 1446, 012001. [Google Scholar] [CrossRef]
- Ari, A.; Karahan, M.; Ahrari, M. The effect of manufacturing parameters on various composite plates under ballistic impact. Polym. Polym. Compos. 2022, 30, 09673911221144874. [Google Scholar] [CrossRef]
- Trellu, A.; Bouvet, C.; Rivallant, S.; Ratsif, R.L.; Chardonneau, A. Simulation d’Impact à Moyenne Vitesse et de Compression ou Cisaillement Après Impact sur Grandes Plaques Composites Stratifiées. JNC21 (21ème Journées Nationales sur les Composites). 2019, pp. 1–7. Available online: https://hal.science/hal-02420721/ (accessed on 8 December 2024).
- Wan, Y.; Liu, Y.; Hu, C.; Yao, J.; Wang, F.; Yang, B. The failure mechanism of curved composite laminates subjected to low-velocity impact. Acta Mech. Sin. 2023, 39, 2–10. [Google Scholar] [CrossRef]
- Molina-Viedma, Á.; López-Alba, E.; Felipe-Sesé, L.; Díaz, F. Full-field operational modal analysis of an aircraft composite panel from the dynamic response in multi-impact test. Sensors 2021, 21, 1602. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, M.; Pernas-Sanchez, J.; Artero-Guerrero, J.A.; Varas, D. Detection of barely visible multi-impact damage on carbon/epoxy composite plates using frequency response function correlation analysis. Measurement 2022, 196, 111194. [Google Scholar] [CrossRef]
- Soufri, A. Multi-Impact Behavior of Composite Structures: Experimental and Numerical Approach. Ph.D Thesis, University of Burgundy, Nevers, France, 2023; pp. 49–76. [Google Scholar]
- Gurit. SE 84LV: Epoxy-Based Prepreg Curing at Low Temperature (SE84LV-25-0519). 2007. Available online: https://www.gurit.com/ (accessed on 8 December 2024).
Property | Value (MPa) | Property | Value (GPa) |
---|---|---|---|
0° Tensile Strength () | 2458 | 0° Tensile Modulus () | 134 |
0° Compressive Strength () | 1354 | 0° Compressive Modulus () | 121 |
90° Tensile Strength () | 39.2 | 90° Tensile Modulus () | 8.3 |
0° Flexural Strength () | 1448 | 0° Flexural Modulus () | 106 |
0° ILSS () | 86.6 | Fiber Modulus () | 257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soufri, A.; Chettah, A.; Piezel, B.; Bouvet, C. A Newly Developed Compressed Air Cannon Test Bench Designed for Multi-Impact Analysis of Composite Structures. Appl. Mech. 2024, 5, 997-1010. https://doi.org/10.3390/applmech5040055
Soufri A, Chettah A, Piezel B, Bouvet C. A Newly Developed Compressed Air Cannon Test Bench Designed for Multi-Impact Analysis of Composite Structures. Applied Mechanics. 2024; 5(4):997-1010. https://doi.org/10.3390/applmech5040055
Chicago/Turabian StyleSoufri, Ayoub, Ameur Chettah, Benoît Piezel, and Christophe Bouvet. 2024. "A Newly Developed Compressed Air Cannon Test Bench Designed for Multi-Impact Analysis of Composite Structures" Applied Mechanics 5, no. 4: 997-1010. https://doi.org/10.3390/applmech5040055
APA StyleSoufri, A., Chettah, A., Piezel, B., & Bouvet, C. (2024). A Newly Developed Compressed Air Cannon Test Bench Designed for Multi-Impact Analysis of Composite Structures. Applied Mechanics, 5(4), 997-1010. https://doi.org/10.3390/applmech5040055