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Abstract: The question addressed is whether the free oscillations of a continuous system can be
suppressed, or at least the total energy reduced, by applying external forces, using as example the
linear undamped transverse oscillations of a uniform elastic string. The non-resonant forcing at an
applied frequency, distinct from all natural frequencies, does not interact with the normal modes,
whose energy is unchanged, and adds the energy of the forced oscillation, thus increasing the total
energy, that is the opposite of the result being sought. The resonant forcing at an applied frequency,
equal to one of the natural frequencies, leads to an amplitude growing linearly with time, and hence
the energy is growing quadratically with time, implying an increase in total energy after a sufficiently
long time. A reduction in total energy is possible over a short time, say over the first period of
oscillation, by optimizing the forcing. In the case of a concentrated force, by optimizing its magnitude
and location, the total energy with forcing in one period is reduced by a modest maximum of 2%
relative to the free oscillation alone. The conclusion is similar for several concentrated forces. In the
case of a continuously distributed force, by optimizing the spatial distribution, it is possible to reduce
the energy of the total oscillation to one-fourth of that of the free oscillation over the first period of
vibration. This shows that continuously distributed forces are more effective at vibration suppression
than point forces.

Keywords: undamped oscillations; free oscillations; forced oscillations; resonance; active vibration
suppression; forcing

1. Introduction

The research in the present paper relates to the active suppression of (a) acoustic
oscillations and (b) vibrations of beams. Concerning the first topic (a) of acoustic oscillations,
the simplest one-dimensional case is the classical problem of sound propagation in ducts
[1–7], including active noise reduction [8,9]. The extensions include the acoustics of ducts
of generally varying cross-section that is studied most simply for quasi-one-dimensional
propagation [10–12], when the wavelength is larger than the transverse dimensions of
the duct; in this case, the classical wave equation is replaced by the horn wave equation,
for which a variety of solutions exist [13–24]. An extension including mean flow is the
quasi-one-dimensional propagation of sound in a duct of varying cross-section [25–31]. A
different extension, without flow, is the acoustics of curved [32–47] or twisted [48] tubes.
The applications of duct acoustics include the noise of jet engines and air conditioning
systems.

The topic (b) of vibration of beams is based on the classic Bernoulli [49] and Euler [50]
theory that is a standard introductory subject in textbooks on elasticity [51–59] and leads
to the phenomenon of buckling [60], which has been considered in several conditions: (i)
geometric and material non-linearities [61,62]; (ii) in combination with shear [63,64] that is
more significant for thin-walled beams [65–69]; (iii) constraints [70–72], such as hyper or
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non-local elasticity [73,74]; (iv) vibrations [75,76], that can be excited by unsteady applied
forces [77–83], leading to control problems [84]; (v) steady mechanical [85] or thermal
[86–88] effects; and (vi) vibrations of tapered beams [89–105], with multiple applications
like airplane wings and flexible aircraft and helicopters [106–115]. The applications include
active vibration suppression [116–120].

There are generic topics applicable to active vibration suppression [121] independent
of specific application. The active suppression of (a) noise is based on (A) boundary or
radiation conditions introducing sound waves with opposite phase. The active suppression
(b) of vibration of beams is based on (B) forcing by applied forces and/or moments either
concentrated or continuously distributed or a superposition of both. The contrast between
the two approaches suggests an hybrid case concerning the active suppression of transverse
oscillations of an elastic string, instead of (A) superimposing oscillations with opposite
phase through the boundary using (B) forcing by concentrated or distributed forces. The
hybrid case is investigated by considering whether the energy of free transverse oscillations
of an elastic string can be reduced by forcing. The (α) undamped and (β) damped cases are
described by different equations, namely the (α) classical wave equation and (β) the wave-
diffusion or telegraph equation. This suggests considering (α) the undamped case first in
the present paper (part I) to assess the interaction of free and forced oscillations, including
non-resonant and resonant cases; the additional effects of damping (β) are considered in a
follow-on paper (part II).

Thus the transverse oscillations of an elastic string are used as a sample case on the use
of forcing for active suppression of material vibration. There are two cases to be considered
[122], depending on whether the forcing is (II) or not (I) at a natural frequency of the
undamped system. Assuming the free oscillation of the system, at its natural frequency
(or frequencies), the forcing at any other, non-resonant frequency (case I) will increase the
total energy, because the energy of the forced vibration adds to that of the free vibration.
Thus, no vibration suppression will occur, unless forcing is applied at the natural frequency,
leading to the resonant case (case II). Concerning the remaining second case (case II), with
resonance: (i) the free oscillations are sinusoidal, with constant amplitude; (ii) the forced
resonant oscillation is sinusoidal with amplitude increasing linearly with time; (iii) the
total, free plus forced, oscillation, has amplitude varying with time. It is clear that the
oscillation cannot be totally suppressed, and the total energy will eventually increase. Thus,
the question can be modified: for how long can the energy of oscillation of an undamped
system be prevented from increasing by optimizing the resonant forcing relative to the free
oscillation? This is the basic question addressed in the present paper.

In this introduction, different problems have been identified by distinct symbols: (i)
acoustic oscillations (a) and vibrations of beams (b); (ii) active partial or total suppression
introducing opposite oscillations from sources or through the boundaries (A) or by forcing
with applied forces and moments (B); (iii) models without (α) and with (β) damping; (iv)
cases of non-resonant (I) or resonant (II) forcing. An additional criterion (v) would be forcing
by point or continuous forces. With this classification, the part I of the paper concerns
the transverse oscillations of an elastic string (a), forced by point or continuous forces (B),
including non-resonant (I) and resonant (II) cases, without damping (α), with damping (β)
being deferred to part II. The applications are undamped systems described by the classical
wave equation (part I) and damped systems described by the wave-diffusion or telegraph
equation (part II). The wave equation applies to acoustic, elastic and electromagnetic waves,
and damping effects can be thermal conduction or radiation, viscosity, electrical resistance
and mass diffusion. The theory of oscillations applies not only to continuous systems, but
also to discrete systems such as: (i) mechanical oscillators consisting of masses, springs,
dampers and forcing actuators; (ii) electrical circuits consisting of inductors, capacitors and
resistors powered by batteries; (iii) analogous circuits in acoustics, hydraulics and other
fields.

The question of vibration suppression is answered by an exact, analytical solution,
for the “simplest” vibrating system and forcing: (i) the transverse vibrations of an elastic
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string fixed at both ends; (ii) resonant forcing by a single or several concentrated forces
or a distributed force; (iii) minimization of the energy over the first period of oscillation.
After outlining the problem (Section 1), the method of solution is presented as follows:
calculation of the free oscillations, as a superposition of natural modes, and of the response
to a concentrated force, in non-resonant cases (Section 2); calculation of the total (kinetic plus
elastic) energy density, averaged over a period, for free, forced and combined oscillations
(Section 3), showing that the energy adds in the non-resonant case, but not in the resonant
case; thus, the energy integrated over the length of the string can be minimized with regard
to the magnitude of the force, to the position where it is applied or both simultaneously
(Section 4). In this way, the total energy can be reduced marginally (by less 2%), by optimum
forcing, over the first period, but not much longer, as shown (Section 5) by plotting the total
oscillation and its energy over a period for optimal and non-optimal forcing conditions.
The case of several concentrated forces at different locations is equivalent to a single overall
force and location (Section 6), and leads to the same result. In the case of a continuously
distributed force (Section 7), it is shown that it is possible to reduce the total energy
of the oscillation over the first period by to at best one-fourth of the energy of the free
oscillation. This requires an optimal choice of the forcing, as concerns spatial distribution
and amplitude relative to the free oscillation, and shows (Section 8) that continuously
distributed forces are more effective vibration suppressors than point forces.

This kind of analysis could be applied to more general vibrating systems [1–7,123,124].

2. Free Oscillations and Forcing by Concentrated Force

Consider the linear free vibrations of an elastic string that are described by the classical
wave equation:

∂2ỹ
∂x2 −

1
c2

∂2ỹ
∂t2 = 0, (1a)

with wave speed c specified by:

c ≡
√

T
ρ

, (1b)

where ρ is the mass density per unit length and T is the tangential tension, both assumed
to be constant. The string is fixed at the two ends at x = 0 and x = L:

ỹ(0, t) = 0 = ỹ(L, t). (2)

The transverse displacement is given by a superposition of normal spatial modes,

yn(x) = sin
(nπx

L

)
, (3a)

with sinusoidal oscillations in time:

ỹ(x, t) =
∞

∑
n=1

yn(x)
[

Pn cos
(

nπct
L

)
+ Qn sin

(
nπct

L

)]
. (3b)

The last solution is obtained with the method of separation of variables t and x. The
amplitudes are determined by the initial deflection:

ỹ(x, 0) =
∞

∑
n=1

Pn sin
(nπx

L

)
, (4a)

and initial velocity:
∂ỹ
∂t

(x, 0) =
πc
L

∞

∑
n=1

nQn sin
(nπx

L

)
, (4b)
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of the string at time t = 0. From the sine series (4a) and (4b) follows that the coefficients Pn
and Qn are specified respectively by the initial displacement:

Pn =
2
L

∫ L

0
ỹ(x, 0) sin(knx)dx, (5a)

and initial velocity:

Qn =
2

πcn

∫ L

0

∂ỹ
∂t

(x, 0) sin(knx)dx, (5b)

where kn denotes the wavenumber of the mode n:

kn ≡
nπ

L
. (6a)

The corresponding wavelength is:

λn ≡
2π

kn
=

2L
n

. (6b)

The wave period is:

τn ≡
λn

c
=

2L
nc

, (6c)

and the frequency is:

ωn ≡
2π

τn
=

nπc
L

= knc. (6d)

The partial amplitudes (Pn, Qn) may be replaced by the amplitude An and phase αn:

Pn = An cos(αn), (7a)

Qn = An sin(αn), (7b)

with inverses:

An =
∣∣∣P2

n + Q2
n

∣∣∣1/2
, (7c)

tan αn =
Qn

Pn
. (7d)

In particular, if the string has no deformation at the initial time, ỹ(x, 0) = 0, then Pn = 0 or
equivalently αn = π/2. In contrast, if the string is released without velocity, ∂ỹ/∂t(x, 0) = 0,
then Qn = 0 and therefore αn = 0. Substituting (7a) and (7b) in (3b), the total oscillation is
given by

ỹ(x, t) =
∞

∑
n=1

An sin(knx) cos(ωnt− αn). (8)

The phase αn of each mode may be eliminated by changing time to:

t′ = t− αn

ωn
, (9a)

so that:
cos(ωnt− αn) = cos

(
ωnt′

)
. (9b)

Thus there is no loss of generality in the following figures to set αn = 0, since this is
equivalent to a time shift.

The Figure 1 shows the dimensionless amplitudes, ỹ/An, of the free oscillations for
the first three natural frequencies, n = 1, 2, 3. The plots show the oscillations along the
string as a function of the dimensionless coordinate, x/L. In the case of Figure 1, the string
is released without velocity, therefore Qn = 0 = αn and An = Pn. Otherwise, if the string
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is released with some velocity, then αn 6= 0 and that case is equivalent to a time shift (9a),
implying (9b), of the plots in the Figure 1. According to (8), once the value of time shift αn
is defined, the shape of the string is dependent on the dimensionless parameter x/L, and
for each natural frequency it is plotted at six different times:

t = {0.0, 0.4, 0.8, 1.2, 1.6, 2.0}L/c. (10)

The total deformation of the string is the sum of all the contributions of each natural mode
of shape (for each value of n). The deformation is dominated by the natural modes with
larger values of An (in modulus). That influence depends only on the initial deflection, that
is, on the shape of the string at the initial time.
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Figure 1. Dimensionless amplitudes of the free oscillations of a string fixed at the two ends and
released without velocity, with αn = 0, for the first three natural frequencies, n = 1, 2, 3. The plots are
shown for six distinct dimensionless times.

The Figure 1 illustrates the shape of the string at six equally spaced times between
t = 0 and t = 2L/c. Each term of ỹ is proportional to cos(ωnt) that is a periodic function.
Its period is given by (6c). Consequently, the first mode of deformation has period equal to
2L/c. Considering the second mode, the lowest period is 2L/(2c) = L/c, implying that
the 2L/c is also a period of the second mode. Generally, each mode of deformation of
frequency ωn has the lowest period equal to 2L/(nc) (increasing the mode of deformation
n, the period decreases) and therefore, multiplying it by n, 2L/c is also the period of each
mode. That is the reason why the Figure 1 illustrates the deformation from the initial time
t = 0 until the instant t = 2L/c because it is the period of each mode of deformation
(note that the plots are the same for the two instants). In particular, for n = 2 the string
made two complete oscillations, and for n = 3 the string made three complete oscillations,
at the final instant t = 2L/c. The Figure 1 shows that the string is always fixed at the
two ends for any mode of deformation all the time. Furthermore, for each mode n, the
string has n peaks and n− 1 nodes (not counting both ends of the string). These nodes
and peaks remain at the same positions all the time due to the separation of variables t
and x in the solution. According to the Figure 1, the plots are the same for the instants
t = 0.4L/c and t = 1.6L/c. The temporal dependence of the oscillation ỹ is cos(ωnt) and
because cos(t1) = cos(2L/c− t1) for any instant t1, the free oscillation has the property
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ỹ(x, t) = ỹ(x, 2L/c− t). The plots are also the same when t = 0.8L/c and t = 1.2L/c
for the same reasons. However, the direction of the movement of the oscillation, that is
determined by ∂ỹ/∂t, is not the same. For example, at the instant t = 0.4L/c, the string of
the first natural mode oscillation (n = 1) is moving downwards while the same string at
the instant t = 1.6L/c is moving upwards.

Consider next the vibrations caused by a force, of frequency ω and amplitude F,
concentrated at the point x = ξ:

∂2y
∂x2 −

1
c2

∂2y
∂t2 = Fδ(x− ξ) cos(ωt + β), (11)

where δ is the Dirac delta function [125,126], that can be used to represent a concentrated
force. The time dependence of the concentrated force is sinusoidal with applied frequency
ω; this is one term of the representation by a Fourier series of any function of time with
bounded fluctuation [127]. In (11) was introduced a phase shift β of the forced oscillation
generally distinct from the phase shift αn of the free oscillations (8), that is determined
through the Equation (7d) by the initial conditions (5a) and (5b). The response will have
the same frequency and the same phase shift as the applied force:

y(x, t) = B(x) cos(ωt + β), (12a)

leading to the differential equation:

d2B
dx2 +

(ω

c

)2
B(x) = Fδ(x− ξ), (12b)

that can be solved by expanding the Dirac delta function in sine series in the interval (0, L):

δ(x− ξ) =
∞

∑
n=1

an sin
(nπx

L

)
. (13a)

This assumes that mathematically F is repeated at all ξ + nL positions with n = 1, 2, 3, . . .,
and with reversed sign −F at −ξ − mL with m = 0, 1, 2, . . ., so that it specifies an odd
function of x, with sine series (13a) with coefficients:

an =
2
L

∫ L

0
δ(x− ξ) sin

(nπx
L

)
dx =

2
L

sin
(

nπξ

L

)
. (13b)

Substituting (13b) in (13a) follows that the Dirac delta function is represented by the Fourier
sine series:

δ(x− ξ) =
2
L

∞

∑
n=1

sin
(

nπξ

L

)
sin
(nπx

L

)
. (13c)

Then, substituting the function δ(x− ξ) in (12b), with k ≡ ω/c, leads to:

d2B
dx2 + k2B =

2F
L

∞

∑
n=1

sin(knx) sin(knξ), (14)

and suggests the solution:

B(x) =
∞

∑
n=1

bn sin(knx), (15a)

leading to the condition: (
k2 − k2

n

)
bn =

2F
L

sin(knξ). (15b)
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Substituting (15b) in (15a) and then in (12a), the forced oscillations are given by

y(x, t) =
2F
L

cos(ωt + β)
∞

∑
n=1

1
k2 − k2

n
sin(knξ) sin(knx), (16)

for wavenumber k outside resonance, k 6= kn, and for all n = 1, . . . , ∞.
In the resonant case, k = km for some integer m, hence the m-th term of (16) would

appear to be infinite. This is physically absurd, because the oscillation cannot have infinite
amplitude or energy. It is the result of mathematical error, namely dividing (15b) by zero,
k2 − k2

m = 0, when k = km. Thus, the m-th term of (16) is invalid as a solution of (14) if
k = km or ω = ωm. To find a valid solution in this case [122,128], the Equation (15b) is
rewritten with the time dependence:

(
ω2 −ω2

m

)
bm cos(ωmt + β) =

2Fc2

L
sin(kmξ) cos(ωmt + β). (17)

Differentiating with regard to ωm to both sides of (17) leads to:

−
(

ω2 −ω2
m

)
bmt sin(ωmt + β)− 2ωmbm cos(ωmt + β) = −2Fc2

L
sin(kmξ)t sin(ωmt + β), (18)

and letting ω tending to ωm yields:

bm cos(ωmt + β) =
Fc2

ωmL
sin(kmξ)t sin(ωmt + β). (19)

Using the last equality (19) in the m-th term of (15a) and (15b), while the remaining terms
n 6= m are unchanged, leads to the forced response:

y(x, t) =
F

k2
mL

sin(kmξ) sin(kmx)ωmt sin(ωmt + β)

+
2F
L

∞

∑
n=1
n 6=m

(
k2

m − k2
n

)−1
sin(knξ) sin(knx) cos(ωmt + β), (20)

consisting of oscillations of constant amplitude at all wavenumbers kn 6= km, except km, for
which the amplitude increases linearly with time.

The Figure 2 shows the modified amplitudes, yL/F (it is not dimensionless), of the
forced oscillations for the first three natural frequencies, n = 1, 2, 3. As in the Figure 1, the
plots shown the oscillations along the string as a function of the dimensionless coordinate,
x/L. According to (20), and bearing in mind (6a), the position x appears always divided
by L, in the dimensionless coordinate x/L. The total deformation of the string due to the
external force is the sum of all the contributions of each natural mode of shape (for each
value of n). The first three contributions are plotted in the Figure 2. In contrast with the
free oscillation, the force F contributes equally to each deformation plotted in the Figure 2
for each value of n (and to the contributions not depicted in Figure 2 for n ≥ 4) because
forcing by an impulse in (13a) is equivalent to “white noise”. The total forced deformation
is obtained summing each deformation and then multiplying it by F/L. Also, in contrast to
the free oscillations, the forced oscillations do not depend on boundary conditions, that
is, on the coefficients Pn and Qn. In the Figure 2, it is assumed that the point force applied
at ξ = 0.25L. Consequently, the term sin(knξ) that appears in the solution is equal to
sin(nπ/4). The forced frequency of the excitation is equal to the first natural mode of free
oscillation, that is, the figure is obtained with ωm = ω1 = πc/2L (m = 1). Consequently,
at the initial time (t = 0), the string remains horizontal (y = 0) for the first mode of
deformation (n = 1) because, according to (20), the resonant term is proportional to the
time. Moreover, the Figure 2 is obtained with β = 0, which corresponds to a maximum
amplitude of the oscillatory applied force at the initial time, according to the right-hand
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side of (11). The plots would be similar with β 6= 0, since β only introduces a phase shift to
the results. Therefore, the plots of the Figure 2 can be obtained with β 6= 0, but for times
distinct than those indicated above each plot of the figure. The exception is the resonant
term because it also depends on the term ωmt.

The Figure 2 shows the string at six times between t = 0 and t = 2L/c, the same as
in the Figure 1. Each term of y is proportional to cos(ωt) that is a periodic function. Its
period is 2π/ω and in the particular case of Figure 2 is equal to 2π/ω1 = 2L/c. For that
reason, the Figure 2 illustrates the deformation from the initial time t = 0 until the instant
t = 2L/c because it is the period of all modes of deformation (note that the plots are the
same for the two instants, although the deformation of the resonant mode, n = 1, is not
periodic because it is proportional to ωmt.). As opposed to the free oscillations, the period
of each mode of oscillation is the same and it depends only on the frequency ω of the force.
This was already imposed by the solution in (12a). However, in the resonant mode, when
the frequency of the force is equal to one of the natural frequencies of the free oscillation,
the resonant term is not periodic because the oscillation grows linearly with ωmt.
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Figure 2. Modified amplitudes of the forced oscillations of a string fixed at the two ends, with β = 0,
for the first three natural frequencies, n = 1, 2, 3. The point oscillatory force is applied at 25% of the
length of the string, measured from its beginning. The frequency of the force ω is equal to the first
natural frequency ω1 = πc/L of the oscillation of the string. The plots are shown for the same six
distinct dimensionless times as in the Figure 1.

As in the free oscillations, the Figure 2 shows that the string is always fixed at the two
ends for any mode of forced deformation all the time. Furthermore, for each mode n, the
string has n peaks and n− 1 nodes (not counting both ends of the string). These nodes and
peaks remain at the same positions all the time due to the separation of variables t and x
in the solution. Moreover, the nodes and peaks of the forced oscillations are at the same
position as those of free oscillations. Therefore, all the terms of forced oscillations have the
same properties as the free oscillations (the only difference is the period of the oscillations
as explained before). The only exception is in the resonant term where the amplitude of
oscillation increase with time due to the term ωmt. Another property in common with free
oscillations is that the plots of the non-resonant forced oscillations are the same for the
instants t = 0.4L/c and t = 1.6L/c. The temporal dependence of the oscillation y is again
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cos(ωt + β) and therefore theses oscillations have the property y(x, t) = y(x, 2π/ω− t),
or in particular case of the Figure 2, y(x, t) = y(x, 2L/c− t). However, as in the free
oscillations, the direction of the movement of the oscillation, that is determined by ∂y/∂t, is
not the same. The plots of the non-resonant oscillations are also the same when t = 0.8L/c
and t = 1.2L/c for the same reasons. This property does not hold with the resonant term
due to the term ωmt (in the Figure 2, the resonant oscillation is the plot of n = 1). It should
also be noted that the resonant and non-resonant oscillations have phases in quadrature,
hence when the non-resonant oscillation has maximum amplitude, the resonant oscillation
has zero deformation, and vice-versa. This can be changed using the phase shift β in the
forced oscillation, for example β = −αn + π/2 would bring the free and forced oscillations
in phase.

The total oscillation, that is free plus forced oscillation:

y(x, t) = ỹ(x, t) + y(x, t), (21)

is given, for ω 6= ωn, by:

y(x, t) =
∞

∑
n=1

sin(knx)
{

An cos(ωnt− αn) +
2F
L

(
k2 − k2

n

)−1
sin(knξ) cos(ωt + β)

}
, (22)

in the absence of resonance, and, for ω = ωm, by:

y(x, t) =
∞

∑
n=1
n 6=m

sin(knx)
{

An cos(ωnt− αn) +
2F
L

(
k2

m − k2
n

)−1
sin(knξ) cos(ωmt + β)

}

+ sin(kmx)
{

Am cos(ωmt− αm) +
F

k2
mL

sin(kmξ)ωmt sin(ωmt + β)

}
, (23)

in the presence of resonance. Note that even in the case of zero phase shift, αn = 0 = β,
in neither case the forced oscillation can exactly cancel the free oscillation, because: (i) in
the non-resonant case (22) the frequencies ω 6= ωn are different; (ii) in the resonant case
(23) the frequency is the same (ω = ωm in the last term), but the amplitudes are different,
since it is constant for the free oscillation, but is increasing linearly with time for the forced
oscillation.

The plots (a) of the Figure 3 show the maximum amplitude (in modulus) of the free
oscillations over time for the first three natural modes of oscillation, n ≤ 3. The other three
plots of the Figure 3 show the maximum amplitude (in modulus) of the forced oscillations,
each one for a different location of the applied force. In all three plots, the frequency of
the force is equal to the first natural mode of the free oscillation, that is, ω = ω1 = πc/L.
Therefore, the plots for n = 1 represent the maximum amplitude of the resonant term. The
Figure 3 shows the results for the instants between t = 0 and t = 2L/c because 2L/c is the
period of all free oscillations. Since 2L/c is also the period of the applied force, the forced
oscillations also have the same period. Note that in these plots, there is no phase shift of the
free oscillations and applied force, αn = 0 = β. If αn 6= 0, there is a phase shift on the result
of n mode of oscillation, visualized in the plots (a) of the Figure 3. Setting β 6= 0 introduces
a phase shift on all n non-resonant modes of forced oscillations, while on the m resonant
mode, the plot is also modified, but not with a phase shift due to the term ωmt.

The maximum amplitude of the free oscillations over time has also an oscillatory
behaviour. Indeed, the maximum amplitudes over time can be deduced from (8), knowing
the parameters αn and An, and assuming the maximum value for |sin(knx)|, equal to 1.
Consequently, the maximum amplitude of free oscillations, for each mode of vibration n,
is proportional to cos(ωnt− αn). Therefore, the maximum amplitude can reach the value
An when t = Lk/(nc) + Lαn/(ncπ) with k being a natural number. The number of times
the maximum amplitude of the free oscillations occurs is greater when the value of n is
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decreased because the period of the oscillations is lower. These conclusions are similar
when αn 6= 0.

The oscillatory behaviour is also present in the forced oscillations over time. The times
at which the maximum amplitude occurs depend on the frequency of the applied force, not
on its location, as shown in the Figure 3 for β = 0. In this situation, all the non-resonant
terms have maximum amplitude when t = kπ/ω (in this case, when t = Lk/c) with k
being a natural number. The maximum amplitudes occur when the applied oscillatory force
is also maximum. Indeed, this result can be deduced from (22) assuming cos(ωt) = ±1.
For the non-resonant oscillations, the maximum amplitude is greater when kn approaches
the value k from the applied force (in the case of Figure 3, the greatest amplitudes of
non-resonant forced oscillations are for n = 2 because it is the mode of oscillation that is
closest to the frequency of the applied force n = 1). However, this property is not always
true due to the value sin(knξ). For instance, when the force is applied at the middle of the
beam, ξ = 0.5L, the non-resonant oscillation for n = 2 is null (therefore, the oscillation for
n = 3 is greater). This exception results from (23) for the second term (n = 2), knowing
that sin(k2ξ) = 0. The Figure 3 also shows that the maximum amplitudes of the resonant
term (in this case for n = 1) increases over time because of the term ωmt in (23). Also, the
maximum amplitudes of the non-resonant oscillations happen when the resonant oscillation
is zero, because when cos(ωt) = ±1, then sin(ωt) = 0. The maximum amplitudes of the
resonant oscillation occur when sin(ωt) + ωt cos(ωt) = 0. These conclusions are similar
when β 6= 0.

Next is investigated to what extent the forced oscillation can be used to reduce the
energy of the free oscillation.
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Figure 3. Maximum amplitude of the free or forced oscillations over time of a string fixed at the two
ends and released without velocity, αn = 0. There is no phase shift of the applied force, β = 0. The
frequency of the point force ω is equal to the first natural frequency of the free oscillation ω1 = πc/L.

3. Minimization of Total (Kinetic Plus Elastic) Energy

The time average over a period τ is defined by:

〈 f (ωt)〉 ≡ 1
τ

∫ τ

0
f (ωt)dt, (24a)
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and can be reduced to an integration along a unit circular arc, assuming the period τ as
2π/ω, specified by:

0 ≤ t < τ = 2π/ω ⇔ 0 ≤ θ ≡ ωt < ωτ = 2π, (24b)

in the integral:

〈 f (θ)〉 = 1
2π

∫ 2π

0
f (θ)dθ (24c)

The total energy density per unit length averaged over a period is:

ẽ(x) =
ρ

2

〈∣∣∣∣∂ỹ(x, t)
∂t

∣∣∣∣2
〉
+

T
2

〈∣∣∣∣∂ỹ(x, t)
∂x

∣∣∣∣2
〉

, (25)

where the kinetic energy involves the mass density per unit length ρ and the elastic energy
involves the tangential tension T. For a free oscillation with displacement (8), each mode
n of vibration has period equal to τ = 2π/ωn, as in (6d). The velocity has a mean square
over a period given by:〈∣∣∣∣ ∂ỹ(x, t)

∂t

∣∣∣∣2
〉

=
∞

∑
n=1

∞

∑
r=1

An Arωnωr sin(knx) sin(krx)〈sin(ωnt− αn) sin(ωrt− αr)〉, (26a)

and the strain has a mean square over a period given by:〈∣∣∣∣ ∂ỹ(x, t)
∂x

∣∣∣∣2
〉

=
∞

∑
n=1

∞

∑
r=1

= An Arknkr cos(knx) cos(krx)〈cos(ωnt− αn) cos(ωrt− αr)〉. (26b)

The average over a period of the product of sines and cosines with different phases is given
by (A1) and (A2) in the Appendix A:

〈sin(ωnt− αn) sin(ωrt− αr)〉 =
1
2

δnr = 〈cos(ωnt− αn) cos(ωrt− αr)〉 (27)

where δnr is the identity matrix. Thus the average kinetic energy is given by

ẽk =
ρ

2

〈∣∣∣∣∂ỹ(x, t)
∂t

∣∣∣∣2
〉

=
ρ

4

∞

∑
n=1

(ωn An)
2 sin2(knx), (28a)

and the average elastic energy is given by

ẽe =
T
2

〈∣∣∣∣∂ỹ(x, t)
∂x

∣∣∣∣2
〉

=
T
4

∞

∑
n=1

(kn An)
2 cos2(knx). (28b)

Using the wave speed (1a) in ρ(ωn)
2 = ρ(knc)2 = Tk2

n, the total energy per unit length of
string, which is the sum of average kinetic and elastic energies, is constant:

Ẽ ≡ 4ẽ(x)
T

=
4ẽk(x) + 4ẽe(x)

T
=

∞

∑
n=1

(Ankn)
2 > 0, (29)

for the free oscillation.
The Table 1 shows the total energy density of the free oscillations along the string

averaged over one period, for the first four modes of the vibration n. In this case, the
total energy is constant along the string, not depending on explicit values of position x.
The results of the Table 1 are obtained from (29) which follows from the mean square
velocity (28a) and the mean square strain (28b). To obtain the mean squares, the val-
ues of 〈sin(ωnt− αn) sin(ωrt− αr)〉 and 〈cos(ωnt− αn) cos(ωrt− αr)〉 were needed. The
time averages of the product of sines and cosines are calculated over a period in Ap-
pendix A; the period of both functions for the time average, sin(ωnt− αn) sin(ωrt− αr)



Appl. Mech. 2022, 3 1363

and cos(ωnt− αn) cos(ωrt− αr), is 2L/c for any combination of the values n and r (al-
though in some cases the lowest period is L/c or even lower). The phase shifts αn and αr
do not change the period of both functions. Therefore, in the Table 1, the first period is from
t = 0 until t = 2L/c, the second period is from t = 2L/c to t = 4L/c, and so on.

Table 1. Total energy density per unit length of the free oscillations averaged over some period. The
first period is from t = 0 to t = 2L/c, the second period is from t = 2L/c to t = 4L/c, and so on. The
numerical results correspond to the dimensionless parameter ẽ/

(
TA2

n
)
.

Order of
Vibration n

First
Period

Second
Period

Third
Period

Fourth
Period

n = 1 2.467 2.467 2.467 2.467
n = 2 9.870 9.870 9.870 9.870
n = 3 22.207 22.207 22.207 22.207
n = 4 39.478 39.478 39.478 39.478

As indicated by the Equation (29), the energy density is constant along the string for
each mode of free oscillation n. The energy density increases with n because An appears
to the square in (29). Also modes with larger An in modulus, |An|, contribute more to the
energy. For the same value of An, modes of higher order n contribute more to the energy
because kn increases with n in the respective energy density. Another property is that the
contribution of each mode of oscillation n to the energy density is independent of the other
modes of oscillation. Therefore, it is possible to show in a tabular form the contribution to
the energy for each mode of oscillation separately, as outlined in the Table 1. The energy
remains unchanged when the oscillations advance one period, because the time averages
have the same values, so the results in the Table 1 are the same for different periods. Hence,
the period used to perform the time average is irrelevant in the evaluation of the energy
density of free oscillations.

The total energy averaged over a period for the forced oscillation is given by:

e(x) =
1
2

ρ

〈∣∣∣∣∂y(x, t)
∂t

∣∣∣∣2
〉
+

1
2

T

〈∣∣∣∣∂y(x, t)
∂x

∣∣∣∣2
〉

, (30)

leading by (12a) to:

e(x) =
1
4

ρω2|B(x)|2 + 1
4

T
∣∣∣∣dB

dx

∣∣∣∣2. (31)

To obtain the last result, one of the intermediate steps is to evaluate the time averages
of sin2(ωt + β) and cos2(ωt + β) because, according to (12a), the forced oscillation is
proportional to cos(ωt + β). The period of both functions is 2π/ω (although the lowest
period is π/ω), noting that the phase shift of the applied force β does not change the period.
Both time averages are equal to 1/2, as shown in Appendix A. Using (15a) in (31), it follows
that the energy of forced oscillations is:

E ≡ 4e(x)
T

= k2

[
∞

∑
n=1

bn sin(knx)

]2

+

[
∞

∑
n=1

knbn cos(knx)

]2

. (32)

In the non-resonant case, where the frequency of the force ω is not equal to any of the
natural frequencies of the free oscillation ωn, the Equation (15b), for which k 6= kn, leads to:

E = k2

[
2F
L

∞

∑
n=1

1
k2 − k2

n
sin(knξ) sin(knx)

]2

+

[
2F
L

∞

∑
n=1

kn

k2 − k2
n

sin(knξ) cos(knx)

]2

> 0, (33)

showing that the total energy density of the forced oscillation (33) is not constant along
the string, unlike for the free oscillation (29), although both are positive. Moreover, the
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external force supplies energy to all forced n modes of oscillation, in contrast with the free
oscillations, where in some n modes the contribution to the energy is zero when An = 0.

The Figure 4 shows the energy density of the forced oscillations along the string
averaged over some period, for the first tree modes of the vibration n. The results of the
Figure 4 are obtained from (33). Contrary to the free oscillations, the energy of forced
oscillations for a certain mode n is coupled to the energy of all other modes of oscillation,
as deduced from (33). It is not possible to plot the energy for a single mode of oscillation,
in contrast to the Table 1 in which the energy values are indicated for each mode separately.
Therefore, in the Figure 4: the solid line represents the contribution of the first mode of
oscillation, n = 1; the dashed line corresponds to the first two modes of oscillation, n = 1
and n = 2 combined, as if the two series in (33) was truncated after the second term; the
dotted line is obtained with the same two series truncated after the third term, n = 1 to
n = 3. As explained before, the period τ in which the time averages were performed is
2π/ω. Hence, in the Figure 4, specifically in the plots (a) and (b), the period 1 is from t = 0
until t = 2π/ω and the period 2 is from t = 2π/ω until t = 4π/ω.
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Figure 4. Total energy density per unit length of the forced oscillations averaged over some period.
The period 1 is from t = 0 to t = 2π/ω, the period 2 is from t = 2π/ω to t = 4π/ω, and so on. The
force is applied at x = 0.25L, x = 0.5L or x = 0.75L. In this figure, ω is equal to 1.5πc/L, hence not
being equal to any of the natural frequencies ωn of the free oscillations.

As indicated by the Equation (33), the energy density is not constant along the string
and exhibits an almost oscillatory behaviour. The plots also show that using only the first
three terms in the series of (33) is not accurate to represent the energy density and therefore
more terms of the series should be used, although some properties can be verified. The
contribution of each mode of oscillation n to the forced energy density is coupled to all the
other modes of oscillation. Similar to the free oscillations, the energy remains unchanged
when the forced oscillations advance one period, hence the plots (a) and (b) of the Figure 4
are the same for different periods. Consequently, the period used to perform the time
average is also irrelevant in the evaluation of the energy density of forced oscillations (that
is the reason why, in the plots (c) and (d), the period number is not stated because they are
equal whatever the period). This property holds for any location ξ and frequency ω of the
applied force.
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Concerning the total energy of the total or combined (free plus forced) oscillation:

e(x) =
1
2

ρ

〈∣∣∣∣∂y(x, t)
∂t

∣∣∣∣2
〉
+

1
2

T

〈∣∣∣∣∂y(x, t)
∂x

∣∣∣∣2
〉

, (34)

since in the outside resonance the frequencies are different with ω 6= ωn, the cross-products
of sines and cosines have zero average over a period if the ratio of ω to some natural
frequency ωn is equal to a rational number, recalling (A3) to (A5) in the Appendix A:

〈cos(ωnt− αn) cos(ωt + β)〉 = 0 = 〈sin(ωnt− αn) sin(ωt + β)〉, (35)

and the energy is the sum of the parts due to the free and forced oscillations:

e(x) = ẽ(x) + e(x) (36a)

with:

E =
4e(x)

T
= Ẽ + E > Ẽ. (36b)

If the frequency of the force ω is not equal to some rational number times the natural
frequency ωn, the functions cos(ωnt− αn) cos(ωt + β) and sin(ωnt− αn) sin(ωt + β) may
not be periodic and consequently their time averages to evaluate the integral in (24a) may
result in a non-zero value. In that case, an additional term appear on the right-hand side of
(36a) that represents the coupling between free and forced oscillations. Anyway, if starting
with a free vibration consisting of normal modes, forcing at any other frequency will only
serve to increase the energy. Thus, if the energy of the free oscillation can be reduced at
all, it must be through forcing at a natural frequency, which then leads to resonance. It is
investigated next whether it is feasible or not to prevent energy growth at an undamped
resonance condition, and for how long.

Concerning forcing at a natural frequency with ω = ωm, for all terms n 6= m, the func-
tions cos(ωnt− αn) cos(ωmt− αm) and sin(ωnt− αn) sin(ωmt− αm) are always periodic
(Appendix A) with τ = 2L/c (it may not be the lowest period). Therefore, the result (35)
holds when ω = ωm for certain m. Consequently, forcing at a natural frequency, for all
terms n 6= m, leads to the same result (22) as before, that is, the energies of the free and
forced oscillations add up to (36b). Hence can be singled out for further analysis only the
resonant term, specifically the second term on the right-hand side of (23), that is:

ym(x, t) = sin(kmx)
{

Am cos(ωmt− αm) +
F

k2
mL

sin(kmξ)ωmt sin(ωmt + β)

}
, (37)

and the subscript m can be omitted in the sequel, corresponding to the change of notation
{km, ωm, Am, αm} → {k, ω, A, α}, which cannot cause any confusion henceforth.

The total energy (kinetic plus elastic) of the total (free plus forced) resonant oscillation,
for the resonant mode n = m, written explicitly in (37), is:

2em

ρ
=

〈∣∣∣∣∂ym(x, t)
∂t

∣∣∣∣2
〉
+ c2

〈∣∣∣∣∂ym(x, t)
∂x

∣∣∣∣2
〉

. (38)

It involves two terms: the first term, evaluated for the first period, is:
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〈∣∣∣∣∂ym(x, t)
∂x

∣∣∣∣2
〉

= k2 cos2(kx)

{
A2
〈

cos2(ωt− α)
〉

+

(
F

k2L

)2
sin2(kξ)

〈
(ωt)2 sin2(ωt + β)

〉
+ 2

(
AF
k2L

)
sin(kξ)〈(ωt) cos(ωt− α) sin(ωt + β)〉

}
(39a)

and the second term, also evaluated for the first period, is:〈∣∣∣∣ ∂ym(x, t)
∂t

∣∣∣∣2
〉

= ω2 sin2(kx)

{
A2
〈

sin2(ωt− α)
〉

+

(
F

k2L

)2
sin2(kξ)

〈
[sin(ωt + β) + (ωt) cos(ωt + β)]2

〉
− 2

(
AF
k2L

)
sin(kξ)〈sin(ωt− α)[sin(ωt + β) + (ωt) cos(ωt + β)]〉

}
. (39b)

In the last two equations appear the following averages over a period 2π/ω = 2L/(mc)
evaluated in Appendix A as (A6) to (A14). The first result,〈

cos2(ωt− α)
〉
=

1
2
=
〈

sin2(ωt− α)
〉

, (40a)

is independent of the period (for instance, if the integral in (24a) is evaluated from t =
2L/(mc) to t = 4L/(mc), the last result would be equal). Since the last result is independent
of the period, the last time average can be evaluated from t = 0 to t = 2π/ω because
τ = 2π/ω is always a period of the function, regardless the value of α. In the calculation of
the energy of forced resonant oscillations, the following averages over a period are also
needed:

〈ωt cos(ωt− α) sin(ωt + β)〉 = π

2
sin(α + β)− 1

4
cos(β− α), (40b)〈

(ωt)2 sin2(ωt + β)
〉
=

2π2

3
− π

2
sin(2β)− 1

4
cos(2β), (40c)〈

[sin(ωt + β) + ωt cos(ωt + β)]2
〉
=

1
2
+

2π2

3
+

π

2
sin(2β)− 1

4
cos(2β), (40d)

〈sin(ωt− α)[sin(ωt + β) + ωt cos(ωt + β)]〉 = cos(α + β)

2
− cos(β− α)

4
− π

2
sin(α + β). (40e)

These last results are only valid for the first “period”, that is, when the integral (24a) is
evaluated from t = 0 to t = 2π/ω. Indeed, none of the last functions to do the time average
are periodic functions, due to the term ωt. However, the results are deduced assuming
τ = 2π/ω. Substitution of (40a) to (40e) in the total resonant energy Equation (38) shows
that the total energy, averaged over the first period, depends on phase values and on
position, in the resonant case:

2em(x)
ρω2 =

A2

2
+

(
F

k2L

)2
sin2(kξ)

[
2π2

3
+

1
2

sin2(kx)
]

−
(

AF
2k2L

)
sin(kξ)

[
cos(β− α) cos(2kx) + 2 cos(α + β) sin2(kx)− 2π sin(α + β)

]
−
(

F
2k2L

)2
sin2(kξ)[cos(2β) + 2π sin(2β) cos(2kx)]. (41)

The phase α of the free oscillation can be set to zero by suitable choice of initial time. The
total energy of the free plus forced resonant oscillation has four terms on the right-hand
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side of (41): (i) the first is the energy of the free oscillation; (ii) in the second term adds
to the total energy, and is independent of the phases α and β; (iii) the third term, when
α = 0, the factor in square brackets is simplified to cos β− 2π sin β, and hence this term
does not have a fixed sign, but reduces the total energy most for the forcing phase shift
β = −2 arctan

[
2π/

(
1 +
√

1 + 4π2
)]

, when the factor in square brackets is
√

1 + 4π2; (iv)
the fourth term does not depend on the phase of free oscillations, does not have a fixed sign
and the reduction of the total energy due to that term depends not only on the phase β, but
also on the value kx. Choosing the phases α = 0 and β = 0, the total energy is simplified to:

2em(x)
ρω2 =

A2

2
+

2π2

3

(
F

2k2L

)2
sin2(kξ)

[
8π2

3
− cos(2kx)

]
−
(

AF
2k2L

)
sin(kξ). (42)

The Figure 5 shows the energy density of the total resonant oscillation (37) along
the string averaged over one period, for the resonant mode of oscillation n = m. For the
first period, the plots (a) of the Figure 5 are obtained from (42). The only difference to
the other periods are the results of the time averages in (40b) to (40e). Independently of
the period, the energy of the resonant oscillation em has always three terms (as in (42) for
the first period). One term is proportional to A2 and represents the free oscillation for the
resonant mode of oscillation n = m. It is represented by the solid lines in the Figure 5.
As usual with free oscillations, it is constant along the string and does not change with
the period. A second term is proportional to F2/L2 and is due to the forced oscillation in
the resonant mode. It corresponds to the dashed lines. As usual with forced oscillations,
it is not constant along the string and has an oscillatory term, not dominant because
cos(2kx) ≤ 1� 8π2/3 ≈ 26.32 in (42). It also changes with the period because of the time
averages (40b) to (40e) that appear in this contribution. The last term is proportional to
AF/L and corresponds to the dotted lines. This term represents the coupling between free
and forced oscillations in the resonant energy. It is constant along the string and does not
change with the period when α = 0 = β as in the Figure 5. It is the only negative term in
the energy em. Otherwise, all the terms are proportional to k2 and therefore are dependent
on the square of the frequency of the force ω2. Therefore, for different frequencies of the
force, the numeric values would be different, but the shape of the plots (constant for the
solid and dotted lines; oscillatory for the dashed line) are unchanged.

Bearing in mind that (42) is the resonant energy density, or energy per unit length, for
α = 0 = β, the total resonant energy for the string of length L:

G(F, ξ) =
2

ρω2L

∫ L

0
em(x)dx, (43)

is given by:

G =
1
2

A2 +
2π2

3

(
F

k2L

)2
sin2(kξ)−

(
AF

2k2L

)
sin(kξ). (44)

The term “total” energy has been used with three distinct meanings: (i) kinetic plus elastic
energies; (ii) energy of the total or combined oscillation, that is free plus forced oscillation;
(iii) energy of the string, that is energy density integrated over its length. The function
(44), to be optimized, is the “total” energy in all of these three senses, that is the kinetic
plus elastic energy density, averaged over one period, for the free plus forced resonant
oscillation, integrated along the length of the string. This total energy should be minimized,
by optimizing the magnitude F and location ξ of the force; the aim is to check whether, due
to the presence of resonant forcing, the total resonant energy over the first period (44), can
be made smaller than the energy A2/2 of the free oscillation in the first term.
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Figure 5. Total energy density per unit length of the free plus forced resonant oscillations averaged
over one period. The period 1 is from t = 0 to t = 2L/c, the period 2 is from t = 2L/c to t = 4L/c,
and so on. The force is applied at x = 0.5L. The solid line represents the term of the resonant energy
em proportional to A2, the dashed line represents the term proportional to F2/L2 and the dotted line
corresponds to the term proportional to AF/L. The frequency of the force ω is equal to πc/L, that is,
equal to the first natural frequency ω1. The plots are obtained with α = 0 = β.

4. Optimization of Strength and Location of Forcing Effect

Consider first the dependence of the total energy (44), with respect to the magnitude F
of the applied force. The latter F = F+ is chosen so as to minimize the energy:

∂G
∂F+

= 0,
∂2G
∂F2

+

> 0. (45)

From (44) it follows that the energy does have a minimum with respect to the magnitude
of the force:

∂2G
∂F2 =

4π2

3k4L2 sin2(kξ) > 0; (46)

equating to zero:
∂G
∂F

= sin(kξ)

{
4π2F
3k4L2 sin(kξ)− A

2k2L

}
, (47)

specifies the magnitude of the optimal force:

F+ =
3

8π2 k2LA csc(kξ), (48)

which minimizes the total energy:

G+ ≡ G(F+, ξ) =
1
2

A2
(

1− 3
16π2

)
. (49)
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This optimal result does not depend on the point of application of the force. Compared
with the energy of the free oscillation:

G0 =
1
2

A2, (50a)

optimal forcing at resonance provides a very small reduction of energy:

G+

G0
= 1− 3

16π2 = 0.981, (50b)

of less than 2%, over the first period. Since resonant forcing causes an oscillation of
amplitude increasing with time, it is clear that even with optimal forcing, the total energy
will exceed that of the free vibration, for a time span slightly longer than a period. Thus,
active suppression of a normal mode by a resonant point force can be achieved very
marginally, for a time span of at most one period.

It is shown next that the total energy has a maximum with respect to the point of
application ξ of the concentrated force:

∂G
∂ξ±

= 0,
∂2G
∂ξ2
±

< 0. (51)

Substituting (44) in the first condition of optimization (51) leads to:

0 =
∂G
∂ξ

=
F

kL
cos(kξ)

{
−A

2
+

4π2

3

(
F

k2L

)
sin(kξ)

}
. (52)

There are two sets of stationary values: one coincident with (48):

sin(kξ+) =
3

8π2
Ak2L

F+
, (53a)

and one different:
cos(kξ−) = 0. (53b)

Since the minimization with regard to F did not depend on ξ in (49), it may be expected
that the second set (53b) is not a minimum. Indeed, from (44) or (52), it follows that:

∂2G
∂ξ2 =

AF
2L

sin(kξ) +
4π2

3

(
F

kL

)2{
1− 2 sin2(kξ)

}
. (54)

In particular for the second set of roots (53b), it implies sin(kξ−) = ±1, and the second
condition of optimization (51) leads to:

∂2G
∂ξ2

∣∣∣∣
ξ=ξ−

=
F

2L

{
±A− 8π2

3

(
F

k2L

)}
< 0; (55a)

the last expression is negative for − sign and also for + sign with F >
(
3/8π2)k2LA in

(48), so the second condition of (51) is met. For the first set of roots (53a):

∂2G
∂ξ2

∣∣∣∣
ξ=ξ+

=
1
3

(
2πF
kL

)2
− 3
(

kA
4π

)2
=

4π2

3k2L2

[
F2 −

(
3k2LA

8π2

)2]
< 0, (55b)
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so the second condition of (51) is met again. Thus, the case F = F+ is a minimum at constant
ξ, but ξ = ξ± is a maximum at constant F. The maximum ξ = ξ− at constant F in (53b)
would correspond in (48) to:

F− =
3k2LA

8π2 csc(kξ−) = ±
3k2LA

8π2 . (56)

The minimum for F in (48) with ξ fixed, and the maximum for ξ in (53a) and (53b) with F
fixed, are particular cases of the general case when both F and ξ can vary.

The most general approach is to regard the total energy (44) as a joint function of
magnitude F and location ξ of the applied force, so that the conditions of stationarity are:

∂G
∂F

= 0,
∂G
∂ξ

= 0, (57)

and the second-order differential is:

d2G =

(
∂2G
∂F2

)
dF2 +

(
∂2G
∂ξ2

)
dξ2 + 2

(
∂2G
∂F∂ξ

)
dFdξ. (58)

The second-order differential specifies (i) a global minimum if it is positive, (ii) a maximum
if it is negative, and (iii) an inflexion or higher-order extremum if it is zero. Since G is (a)
maximum (51) with regard to ξ at fixed F and (b) minimum (45) with regard to F at fixed ξ,
this suggests the case (iii) of inflexion or higher-order extremum, with the condition

∆ ≡
∣∣∣∣ ∂2G/∂F2 ∂2G/∂F∂ξ
∂2G/∂F∂ξ ∂2G/∂ξ2

∣∣∣∣ = 0. (59)

The condition (59) involves a cross-derivate which can be evaluated from (47) leading to:

∂2G
∂F∂ξ

= cos(kξ)

{
8π2F
3k3L2 sin(kξ)− A

2kL

}
. (60)

The second order derivatives of (44) in (46), (54) and (60) are given, for the case (48)≡(53a),
which includes (56) by:

∂2G
∂F2

∣∣∣∣
ξ=ξ+

= 3
(

A
4πF

)2
, (61a)

∂2G
∂ξ2

∣∣∣∣
ξ=ξ+

=
1
3

(
2πF
kL

)2
− 3
(

kA
4π

)2
, (61b)

∂2G
∂F∂ξ

∣∣∣∣
ξ=ξ+

= ± A
2kL

[
1−

(
3k2LA
8π2F

)2]1/2

. (61c)

It can be checked that the determinant is zero,

∆ =
∂2G
∂F2

∂2G
∂ξ2 −

(
∂2G
∂F∂ξ

)2

= 0, (62)

confirming (59).
The Figure 6 provides an overview of the total resonant energy, given by (44), in the

plane of the parameters F/L and ξ/L, the last one between 0 and 1. The values of the
contour lines result from the difference between the resonant energy and the free oscillation
energy, that is, G− A2/2, for the first period. It means that the value 0 of the contour plot
happens when the forced resonant energy is zero, in other words, when the total resonant
energy equals only the free oscillation energy, G = A2/2. The values of the contour plots
depend also on the explicit value of A, because of the third term of (44). In this case, the
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Figure 6 is obtained setting A = 1. Each plot corresponds to a different resonant frequency.
For example, the plots (a) of the Figure 6 corresponds to the frequency of the applied force
ω equal to the first natural frequency of the free oscillation, ω1. The thick red line highlights
the combination of the values of the parameters F/L and ξ/L for a minimum possible
resonant energy G.

Although the resonant energy depends on the two parameters F and ξ simultaneously,
according to (44), the parameters are combined only in the form F sin(kξ). The resonant
energy can be interpreted as a quadratic equation of the combined parameter F sin(kξ),
that is, G = c1[F sin(kξ)]2 + c2[F sin(kξ)] + c3 with c1 > 0. Consequently, the minimum of
the value of the resonant energy G is given by F sin(kξ) = −c2/(2c1) which corresponds
to the Equation (48) and to the thick red lines presented in the Figure 6. The figure shows
therefore that the minimum value of the resonant energy can be obtained with a force
applied at any position of the string, except at the points where sin(kx) = 0. In those
positions, regardless the value of the applied force F, the resonant energy equals the free
oscillation energy, G = A2/2, the same effect as if there is no applied force, F = 0. The
contour values, as mentioned before, depend on the value of A; the minimum value of G,
according to (49), also depends on the value of A. Furthermore, due to the thick red lines
of the Figure 6, there are infinite combinations of the values of both parameters to get the
minimum possible resonant energy. Observing the red lines, to reduce the resonant energy,
the point force must be applied at a position where cos(kx) = 0 if it is intended that the
force has the lowest possible value. For instance, when ω = ω1, the best position to apply
a force is at the middle of the string. The worst locations to apply a force are in the vicinity
of the positions where sin(kx) = 0 that are the ends of the string. The number of these best
or worst locations to apply a force increases with the resonant frequency.

Figure 6. Difference between the total resonant energy G, given by (44), and the free oscillation energy
A2/2, for a given pair of the parameters (ξ/L, F/L). The thick red line represents the combination of
the values of ξ/L and F/L to obtain the minimum possible resonant energy G. Each plot corresponds
to a different resonant frequency. The plots are obtained for A = 1.
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5. Oscillation and Energy for Optimal and Non-Optimal Forcing

The free vibrations of an elastic string consist of a superposition of normal modes.
The question addressed in the present paper is whether forcing can be used to suppress
totally normal modes, or failing that, at least reduce the energy of the total free plus forced
oscillation relative to the energy of the free oscillation alone. Clearly, forcing at a frequency
distinct from all natural frequencies will not do: it does not couple to the free motion, and
just increases the total energy. Forcing at a natural frequency will cause resonance, that is
an amplitude increasing linearly with time, for the forced vibration:

y(x, t) =
F

k2L
sin(kξ) sin(kx)ωt sin(ωt), (63a)

compared to the free vibration:

ỹ(x, t) = A sin(kx) cos(ωt). (63b)

The total energy over the first period can be marginally reduced (48) if:

F = ε0 Ak2L csc(kξ), (64a)

with:
ε0 ≡

3
8π2 = 0.038, (64b)

but for longer time spans it will be increased by any choice of the magnitude of the forcing.
The preceding result holds optimizing the magnitude F of the forcing at a fixed location.

The total or combined oscillation is given by:

y(x, t) ≡ ỹ(x, t) + y(x, t) = sin(kx)
{

A cos(ωt) +
F

k2L
sin(kξ)ωt sin(ωt)

}
, (65)

which can be written in the form:

y(x, t) = A sin(kx)g(θ, ε) (66a)

with the independent variable θ defined by θ ≡ ωt in (24b) and the other independent
variable ε as:

ε ≡ F/
(

Ak2L
)

sin(kξ), (66b)

leading to:
g(θ, ε) ≡ cos θ + εθ sin θ, (66c)

where all the time dependence appears in (66c). The Equation (67) gives an indication of
the energy:

h(θ, ε) ≡ [g(θ, ε)]2. (67)

The functions g and h are plotted respectively in Figures 7 and 8 for small values of ε around
ε0 in (64b):

ε = {0.00, 0.01, 0.02, 0.03, ε0, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}; (68)

the thick line corresponds to ε0 and leads to the oscillation (in Figure 7) with the smallest
energy or area below the curve in Figure 8. For larger values of ε:

ε = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, (69)

the resonance dominates the total oscillation even in the first period, leading to large
amplitude (in Figure 9) and energy (in Figure 10).
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Figure 7. Peak spatial amplitude of the oscillation of the string, normalized to free oscillation
amplitude, as a function of dimensionless time θ ≡ ωt = 2πt/τ over one period 0 ≤ t ≤ τ or
0 ≤ θ ≤ 2π. The magnitude of forcing relative to the amplitude of free oscillation is given with values
around the optimum for minimum total energy (thick line).
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Figure 8. As in Figure 7 for the square of peak spatial amplitude of the oscillation of the string,
normalized to free oscillation amplitude, representing dimensionless energy.
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Figure 9. Amplitude as in Figure 7 for larger values of the forcing parameter.
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Figure 10. Energy as in Figure 8, for the same values of forcing parameter as in Figure 9.

The conclusion that the energy of the combined oscillation cannot be kept below the
energy of the free oscillation, for much longer than a period, applies to a single concentrated
force. Use of several concentrated forces or a distributed force would be possible also, and
is investigated next.

6. Forcing by Multiple Concentrated Forces

In the case of M forces Fm concentrated at the points x = ξm with m = 1, . . . , M, the
undamped resonant response (63a) would be replaced by:

y(x, t) =
1

k2L
sin(kx)ωt sin(ωt)

M

∑
m=1

Fm sin(kξm). (70)
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This is equivalent by (63a) to a single force F concentrated at ξ, such that:

F sin(kξ) =
M

∑
m=1

Fm sin(kξm). (71)

Thus, the conclusions are the same, for instance, regarding (64a), the energy over the first
wave period can be marginally reduced if:

M

∑
m=1

Fm sin(kξm) = ε0 Ak2L, (72)

where A is the amplitude of the free oscillation (63b) and ε0 is the constant (64b). The
difference between (72) and (64a) is that there is a greater choice of pairs (Fm, ξm). A further
case deserves investigation, namely that of continuously distributed forces.

7. Optimization of Continuously Distributed Forces

In the case of an applied force, which is harmonic in time, with frequency ω and
continuously distributed in space, the forced wave Equation (11) is replaced by:

∂2y
∂x2 −

1
c2

∂2y
∂t2 = f (x) cos(ωt), (73)

which has a solution (12a), where B(x) satisfies:

d2B
dx2 + k2B = f (x). (74)

If the spatial force distribution f (x) is a function of bounded fluctuation in 0 ≤ x ≤ L, it
has [129] a Fourier series representation:

f (x) = f0 +
∞

∑
n=1

[ fn cos(knx) + f−n sin(knx)]. (75)

A solution of (74) may be sought as a series:

B(x) =
∞

∑
n=−∞

Bn(x), (76)

in which the terms satisfy:

d2B0

dx2 + k2B0 = f0, (77a)

d2Bn

dx2 + k2Bn = fn cos(knx), (77b)

d2B−n

dx2 + k2B−n = f−n sin(knx), (77c)

with given fn, k and kn.
In the non-resonant case k 6= kn, the solution of (77a) to (77c) is a sinusoidal oscillation

with constant amplitude, for all terms in (78b) and (78c) with n 6= 0:

B0 = f0/k2, (78a)

Bn(x) =
fn

k2 − k2
n

cos(knx), (78b)

B−n(x) =
f−n

k2 − k2
n

sin(knx), (78c)
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except for the term n = 0 in (78a) that is constant. In the case of resonance, k = km for some
m, the solution may be obtained as in (17) to (20), that is differentiating the numerator and
denominator with regard to kn, leading to:

Bm(x) =
fm

2km
x sin(kmx), (79a)

B−m(x) = − f−m

2km
x cos(kmx). (79b)

The first boundary condition of (2) is not satisfied by (78b), and the second boundary
condition is not satisfied by (79b) in general, implying:

f−m = f0 = f1 = . . . = fm−1 = fm+1 = fm+2 = . . . = 0, (80)

as restrictions on the applied force (75), that simplifies to:

f (x) = fm cos(kmx) +
∞

∑
n=1
n 6=m

f−n sin(knx). (81)

The forced response of the string is:

B(x) =
fm

2km
x sin(kmx) +

∞

∑
n=1
n 6=m

f−n

k2 − k2
n

sin(knx). (82)

Taking a free oscillation of the form (63b), it cannot be suppressed for the same reasons
as before: (i) if n 6= m, the last terms on the right-hand side of (82) have a different
wavenumber; (ii) if the wavenumber coincides, k = km, the first term on the right-hand
side of (82) shows that the undamped resonance has a growing amplitude which cannot be
matched to the remaining term of (82), that is the total, free (63b) plus forced (first term on
the right-hand side of (82)) oscillation is:

y∗(x, t) =
(

A +
f

2k
x
)

sin(kx) cos(ωt), (83)

where the index m is again suppressed for brevity, { fm, km, ωm} → { f , k, ω}.
As in (36a) and (38), the energy of the total oscillation per unit length of string is given

by:
2E∗(x)

ρ
≡
〈∣∣∣∣∂y∗

∂t

∣∣∣∣2
〉
+ c2

〈∣∣∣∣∂y∗
∂x

∣∣∣∣2
〉

(84)

where the time averages (24a) are evaluated readily, by (A6) and (A7), after substituting
(83) into (84), leading to:

2E∗(x)
ρ

=
ω2

2

(
A +

f
2k

x
)2

sin2(kx) +
k2c2

2

{(
A +

f
2k

x
)

cos(kx) +
f

2k2 sin(kx)
}2

, (85)

which can be simplified to:

2E∗(x)
ρ

=
ω2

2

{(
A +

f
2k

x
)2

+

(
f

2k2

)2
sin2(kx) +

f
2k2

(
A +

f
2k

x
)

sin(2kx)

}
. (86)

The total energy over the length of the string is defined as in (43), namely:

G∗( f ) ≡ 2
ρω2L

∫ L

0
E∗(x)dx, (87)
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and substitution of (86) in (87) leads to two integrals: (i) the first integral uses kL = 2π:

f 2

8k4L

∫ L

0
sin2(kx)dx =

f 2

16k4 ; (88a)

(ii) the second integral uses β = kx:

1
2L

∫ L

0

f
2k

x
f

2k2 sin(2kx)dx =
f 2

8k5L

∫ 2π

0
β sin(2β)dβ = − π f 2

8k5L
= − f 2

16k4 . (88b)

Since (88a) and (88b) add to zero, the total energy over the length of the string (87) follows

G∗( f ) =
A2

2
+

A f L
4k

+
f 2L2

24k2 . (89)

The total energy has a minimum, since the second order derivative of G∗ is positive. That
minimum corresponds to dG∗/d f = 0 leading to the applied force

f∗ = −
3kA

L
, (90a)

or in dimensionless form,

f∗
L2

A
= −3kL = −6π. (90b)

The minimum energy is:

G∗( f∗) =
A2

8
=

1
4

G0, (91)

25% of the energy of oscillation, that is a 75% reduction. Thus, choosing the continuously
distributed force (90a) leads, by (82), to a resonant oscillation:

y(x, t) =
f∗
2k

x sin(kx) cos(ωt) = −3
2

A
x
L

sin(kx) cos(ωt); (92)

the latter adds to the free oscillation, to produce a combined oscillation,

y(x, t) = A
(

1− 3
2

x
L

)
sin(kx) cos(ωt), (93)

which reduces the energy by a factor 0.25 in (91), which is the lowest (because the second
derivative is negative) attainable value. This value is lower than the obtainable (50b) with
single (48) or multiple (72), (64b) point forces.

8. Conclusions

The question addressed in the present paper is whether the linear undamped free
vibrations of an elastic string can be suppressed, or at least their total energy reduced,
by using external applied forces concentrated or distributed along its length. The linear
undamped free vibrations of an elastic string consist of the superposition of a fundamental
mode and harmonics, and two cases are considered, namely the applied frequency of the
external forces: (case I) does not coincide with any natural frequency, for non-resonant
forcing; (case II) coincides with one of the natural frequencies for resonant forcing. The
two cases are quite distinct because: (I) non-resonant forcing has constant amplitude and
energy; (II) resonant forcing has amplitude increasing linearly with time, and hence energy
increasing quadratically with time, until non-linear effects come into play.

Starting with (I) non-resonant forcing at an applied frequency distinct from all natural
frequencies: (i) the energy, that is the sum of kinetic and elastic energies, in constant both
for the (a) linear undamped free oscillation and for the (b) linear forced non-resonant
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oscillation; (ii) the applied frequency being distinct from all natural frequencies, there is
no interaction with the free oscillations, whose energy remains the same; (iii) the forced
non-resonant oscillation adds a constant energy, so the total energy of free plus forced
oscillation is larger than the energy of the free oscillation alone; (iv) this is the reverse of
the result sought, and thus non-resonant forcing cannot decrease and instead increases the
total energy when superimposed on free oscillations. Thus, if it is possible at all to reduce
the energy of free oscillations, it can only be through (II) resonant forcing using either (IIa)
concentrated or (IIb) distributed forces, that can be optimized to minimize the total energy.

The reduction of the total energy of oscillation by resonant forcing is possible with two
limitations: (i) it applies only to the free oscillation whose natural frequency coincides with
the applied frequency, and has no effect on all the other modes; (ii) since the energy of the
resonant forced oscillation increases quadratically with time, it will ultimately dominate the
total energy over a sufficiently long time, so that total energy reduction is possible only over
a short initial time, say the first period of oscillation. Thus, the question being addressed
can be rephrased: can the resonant forcing reduce the total energy over the first period of
oscillation? Although the answer is “yes” in both cases, the result is quite different for (IIa)
concentrated and (IIb) distributed applied forces, using optimization in each case.

In the case (IIa) of single or multiple point forces, the total energy over the first
period of oscillation, relative to the free oscillation, can be reduced by a maximum of no
more than 2% by resonant forcing at an applied frequency equal to the natural frequency.
The less than 2% reduction is a minimum of the total energy obtained by optimizing the
magnitude of the applied concentrated force at a fixed location. Since the energy of the
forced resonant oscillation increases quadratically with time, this small reduction is quickly
overwhelmed beyond the first period of oscillation. The case (IIb) is rather more favourable,
since by optimizing the magnitude and spatial variation of the continuously distributed
force applied along the length of the string, the resonant forcing reduces the total energy
over the first period of oscillation by 75% relative to the free oscillation alone. Since the
energy of the forced oscillation increases quadratically with time, it becomes dominant for
times moderately beyond one period. These results exclude the effects of damping, that is
present in many practical situations, and is considered in the follow-on paper (part II).
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Appendix A. Averages over a Period

Several averages over a period (24a) to (24b) were used in the text. In all cases, the
period τ of the function to be integrated must be determined.

(i) To evaluate the relation (27), the period of the function sin(ωnt− αn) sin(ωrt− αr)
has to be determined. The period of the trigonometric function sin(ωnt− αn) is 2π/ωn =
2L/(nc) while the period of sin(ωrt− αr) is 2L/(rc). Generally, the product of the two
functions does not result in a periodic function. In this case, 2L/c is a period of both
functions and therefore 2L/c is also a period of the multiplication of both (however, this
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does not imply that 2L/c is the lowest period; in some cases, the lowest period is L/c). For
that reason, the value of τ in (24a) is 2L/c for any combination of the values of n and r. The
integrals in (27) are then given by:

〈sin(ωnt− αn) sin(ωrt− αr)〉 =
1
2
〈cos[(ωn −ωr)t + αr − αn]〉

+
1
2
〈cos[(ωn + ωr)t− αr − αn]〉 =

1
2

δnr, (A1)

〈cos(ωnt− αn) cos(ωrt− αr)〉 =
1
2
〈cos[(ωn + ωr)t− αn − αr]〉

+
1
2
〈cos[(ωn −ωr)t + αr − αn]〉 =

1
2

δnr. (A2)

where δnr is the identity matrix. This result follows from the fact that when ωn 6= ωr, the
time average is zero, otherwise it is cos(αr − αn)/2. But in this last case, when ωr = ωn,
meaning the same mode of oscillation, then αr = αn, and so the result is simplified to 1/2.

(ii) In (35), the time averages are:

〈cos(ωt + β) cos(ωnt− αn)〉 =
1
2
〈cos[(ω + ωn)t + β− αn]〉

+
1
2
〈cos[(ω−ωn)t− β− αn]〉 = 0, (A3)

〈sin(ωt + β) sin(ωnt− αn)〉 =
1
2
〈cos[(ω−ωn)t + β + αn]〉

− 1
2
〈cos[(ω + ωn)t + β− αn]〉 = 0, (A4)

assuming that ω/ωn = p/q is a rational number so that cos[(ω∓ωn)t] is a periodic
function with period:

τ =
2π

ω∓ωn
=

2π

ωn

1
p/q± 1

=
τnq

p± q
. (A5)

Generally, let τ1 be a period of f (t) and let τ2 be a period of g(t). Suppose that there
are two positive integers c1 and c2 such that c1τ1 = c2τ2 = τ. Then, the product of
the two functions is also a periodic function. The period is τ. On the other hand, if
it is not possible to get the positive integers c1 and c2, maybe the function f (t)g(t) is
not periodic. For example, if f (t) is sin(ωnt− αn) and has τ1 = 2π/ωn = nπc/L as a
period, and g(t) is sin(ωt + β) and has τ2 = 2π/ω as a period, then f (t)g(t) is a periodic
function if c12π/ω = c22π/ωn (meaning that ω/ωn must be equal to a rational number)
or equivalently if ω = (nc2/c1)(πc/L). In this case, if the period of ωn is 2L/(nc), then
2L/c is also a period of the same function, regardless of the value of n. Consequently,
sin(ωt) sin(ωnt) is a periodic function if ω = (c2/c1)(πc/L) or if ωL/(πc) = c2/c1. The
period of the product of both functions is τ = c1τ1 = c1πc/L = c2τ2 = c22π/ω.

(iii) The time averages evaluated in (i) can be simplified when ωn = ωr ≡ ω and
αn = αr ≡ α, leading to the time averages (40a) given by:〈

sin2(ωt− α)
〉
=

1
2

, (A6)〈
cos2(ωt− α)

〉
=

1
2

, (A7)

where (A6) and (A7) follow from (A1) and (A2) respectively with n = r;
(iv) The function in (40b) is not periodic due to the term ωt. In this case, it is assumed

that τ = 2π/ω. With this assumption, this last result depends on which “period” the
integration is evaluated. For instance, if the limits of the integral are 2π and 4π, the result of
the integration would not be the same. Using a trigonometric identity and the integration
by parts, the time average for the first “period” is equal to:
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〈ωt cos(ωt− α) sin(ωt + β)〉 = 1
2π

∫ 2π

0
θ cos(θ − α) sin(θ + β)dθ

=
1

4π

∫ 2π

0
θ[sin(α + β)− sin(α− β− 2θ)]dθ

=
π

2
sin(α + β)− 1

4
cos(β− α). (A8)

(v) in (40c), the integration for the first period is given by:

〈
(ωt)2 sin2(ωt + β)

〉
=

1
4π

∫ 2π

0
θ2[1− cos(2θ + 2β)]dθ =

2π2

3
− I, (A9)

with

I ≡ 1
4π

∫ 2π

0
θ2 cos(2θ + 2β)dθ =

π

2
sin(2β) +

1
4

cos(2β). (A10)

To evaluate the integral I, it was performed another integration by parts. Substituting (A10)
in (A9) gives:

〈
(ωt)2 sin2(ωt + β)

〉
=

2π2

3
− π

2
sin(2β)− 1

4
cos(2β). (A11)

(vi) The time average (40d), from t = 0 to t = 2π/ω (the function is not periodic), is
given by:〈

[sin(ωt + β) + ωt cos(ωt + β)]2
〉
=
〈

sin2(ωt + β)
〉
+
〈
(ωt)2 cos2(ωt + β)

〉
+ 2〈ωt sin(ωt + β) cos(ωt + β)〉

=
1
2
+

2π2

3
+

π

2
sin(2β)− 1

4
cos(2β), (A12)

using (A6) for the first time average and (A8) for the third time average, both with α = −β.
The second time average is obtained similarly to (A9), knowing that cos2(θ + β) = 1 +

cos(2θ + 2β), so the time average of (ωt)2 cos2(ωt + β) is equal to 2π2/3 + I.
(vii) In (40e), knowing that:

〈sin(ωt− α) sin(ωt + β)〉 = 1
2

cos(α + β)− 1
2
〈cos(β− α + 2ωt)〉 = 1

2
cos(α + β), (A13)

the time average is equal to:

〈sin(ωt− α)[sin(ωt + β) + ωt cos(ωt + β)]〉 = 1
2

cos(α + β)− π

2
sin(α + β)

− 1
4

cos(β− α), (A14)

where were used (A13) and (A8) with the transformation α→ β and β→ −α.
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69. Lanc, D.; Turkalj, G.; Vo, T.P.; Brnić, J. Nonlinear buckling behaviours of thin-walled functionally graded open section beams.

Compos. Struct. 2016, 152, 829–839. https://doi.org/10.1016/j.compstruct.2016.06.023.
70. Hutchinson, J.W.; Budiansky, B. Dynamic Buckling Estimates. AIAA J. 1966, 4, 525–530. https://doi.org/10.2514/3.3468.
71. Zhao, J.; Jia, J.; He, X.; Wang, H. Post-buckling and Snap-Through Behavior of Inclined Slender Beams. J. Appl. Mech. 2008, 75.

https://doi.org/10.1115/1.2870953.



Appl. Mech. 2022, 3 1383

72. Vega-Posada, C.; Areiza-Hurtado, M.; Aristizabal-Ochoa, J.D. Large-deflection and post-buckling behavior of slender beam-
columns with non-linear end-restraints. Int. J. -Non-Linear Mech. 2011, 46, 79–95. https://doi.org/10.1016/j.ijnonlinmec.2010.07.006.

73. Goriely, A.; Vandiver, R.; Destrade, M. Nonlinear Euler buckling. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008, 464, 3003–3019.
https://doi.org/10.1098/rspa.2008.0184.

74. Li, L.; Hu, Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci.
2015, 97, 84–94. https://doi.org/10.1016/j.ijengsci.2015.08.013.

75. Nayfeh, A.H.; Kreider, W.; Anderson, T.J. Investigation of natural frequencies and mode shapes of buckled beams. AIAA J. 1995,
33, 1121–1126. https://doi.org/10.2514/3.12669.

76. Lestari, W.; Hanagud, S. Nonlinear vibration of buckled beams: Some exact solutions. Int. J. Solids Struct. 2001, 38, 4741–4757.
https://doi.org/10.1016/S0020-7683(00)00300-0.

77. Abou-Rayan, A.M.; Nayfeh, A.H.; Mook, D.T.; Nayfeh, M.A. Nonlinear Response of a Parametrically Excited Buckled Beam.
Nonlinear Dyn. 1993, 4, 499–525. https://doi.org/10.1007/BF00053693.

78. Kreider, W.; Nayfeh, A.H. Experimental Investigation of Single-Mode Responses in a Fixed-Fixed Buckled Beam. Nonlinear Dyn.
1998, 15, 155–177. https://doi.org/10.1023/A:1008231012968.

79. Nayfeh, A.H.; Lacarbonara, W.; Chin, C.M. Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal
Resonances. Nonlinear Dyn. 1999, 18, 253–273. https://doi.org/10.1023/A:1008389024738.

80. Jensen, J.S. Buckling of an elastic beam with added high-frequency excitation. Int. J. -Non-Linear Mech. 2000, 35, 217–227.
https://doi.org/10.1016/S0020-7462(99)00010-4.

81. Emam, S.A.; Nayfeh, A.H. Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations. Nonlinear Dyn. 2004,
35, 105–122. https://doi.org/10.1023/B:NODY.0000020878.34039.d4.

82. Emam, S.A.; Nayfeh, A.H. On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation. Nonlinear
Dyn. 2004, 35, 1–17. https://doi.org/10.1023/B:NODY.0000017466.71383.d5.

83. Emam, S.A.; Nayfeh, A.H. Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. -Non-Linear Mech.
2013, 52, 12–25. https://doi.org/10.1016/j.ijnonlinmec.2013.01.018.

84. Pinto, O.C.; Gonçalves, P.B. Non-linear control of buckled beams under step loading. Mech. Syst. Signal Process. 2000, 14, 967–985.
https://doi.org/10.1006/mssp.2000.1300.

85. Li, S.; Zhou, Y. Post-buckling of a hinged-fixed beam under uniformly distributed follower forces. Mech. Res. Commun. 2005,
32, 359–367. https://doi.org/10.1016/j.mechrescom.2004.10.019.

86. Li, S.r.; Zhang, J.h.; Zhao, Y.g. Thermal post-buckling of Functionally Graded Material Timoshenko beams. Appl. Math. Mech.
2006, 27, 803–810. https://doi.org/10.1007/s10483-006-0611-y.

87. Li, S.R.; Batra, R.C. Thermal Buckling and Postbuckling of Euler-Bernoulli Beams Supported on Nonlinear Elastic Foundations.
AIAA J. 2007, 45, 712–720. https://doi.org/10.2514/1.24720.

88. Song, X.; Li, S.R. Thermal buckling and post-buckling of pinned–fixed Euler–Bernoulli beams on an elastic foundation. Mech. Res.
Commun. 2007, 34, 164–171. https://doi.org/10.1016/j.mechrescom.2006.06.006.

89. Kirchhoff, G. Ueber die Transversalschwingungen eines Stabes von veränderlichem Querschnitt. Ann. Phys. 1880, 246, 501–512.
https://doi.org/10.1002/andp.18802460709.

90. Wrinch, D. On the lateral vibrations of bars of conical type. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1922, 101, 493–508.
https://doi.org/10.1098/rspa.1922.0061.

91. Ono, A. Lateral vibrations of tapered bars. J. Soc. Mech. Eng. 1925, 28, 429–441. https://doi.org/10.1299/jsmemagazine.28.99_429.
92. Conway, H.D. The large deflection of simply supported beams. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1947, 38, 905–911.

https://doi.org/10.1080/14786444708561149.
93. Gaines, J.H.; Volterra, E. Transverse Vibrations of Cantilever Bars of Variable Cross Section. J. Acoust. Soc. Am. 1966, 39, 674–679.

https://doi.org/10.1121/1.1909940.
94. Wang, H.c.; Worley, W.J. Tables of Natural Frequencies and Nodes for Transverse Vibration of Tapered Beams; Technical Report; University

of Illinois: Washington, DC, USA, 1966.
95. Wang, H.C. Generalized Hypergeometric Function Solutions on the Transverse Vibration of a Class of Nonuniform Beams. J.

Appl. Mech. 1967, 34, 702–708. https://doi.org/10.1115/1.3607764.
96. Lau, J.H. Vibration Frequencies of Tapered Bars With End Mass. J. Appl. Mech. 1984, 51, 179–181. https://doi.org/10.1115/1.3167564.
97. Naguleswaran, S. Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth. J. Sound Vib. 1992,

153, 509–522. https://doi.org/10.1016/0022-460X(92)90379-C.
98. Downs, B. Transverse Vibrations of Cantilever Beams Having Unequal Breadth and Depth Tapers. J. Appl. Mech. 1977, 44, 737–742.

https://doi.org/10.1115/1.3424165.
99. Sato, K. Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force.

Int. J. Mech. Sci. 1980, 22, 109–115. https://doi.org/10.1016/0020-7403(80)90047-8.
100. Chen, R.S. Evaluation of natural vibration frequency and buckling loading of bending bar by searching zeros of a target

function. Commun. Numer. Methods Eng. 1997, 13, 695–704. https://doi.org/10.1002/(SICI)1099-0887(199709)13:9<695::AID-
CNM95>3.0.CO;2-M.

101. Amabili, M.; Garziera, R. A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method. J. Sound Vib.
1999, 224, 519–539. https://doi.org/10.1006/jsvi.1999.2198.



Appl. Mech. 2022, 3 1384

102. Zhou, D.; Cheung, Y.K. The free vibration of a type of tapered beams. Comput. Methods Appl. Mech. Eng. 2000, 188, 203–216.
https://doi.org/10.1016/S0045-7825(99)00148-6.

103. Bayat, M.; Pakar, I.; Bayat, M. Analytical study on the vibration frequencies of tapered beams. Lat. Am. J. Solids Struct. 2011,
8, 149–162. https://doi.org/10.1590/S1679-78252011000200003.

104. Cazzani, A.; Rosati, L.; Ruge, P. The contribution of Gustav R. Kirchhoff to the dynamics of tapered beams. Z. Angew. Math. Mech.
2017, 97, 1174–1203. https://doi.org/10.1002/zamm.201600250.

105. Wang, C.Y. Vibration of a tapered cantilever of constant thickness and linearly tapered width. Arch. Appl. Mech. 2013, 83, 171–176.
https://doi.org/10.1007/s00419-012-0637-1.

106. Storti, D.; Aboelnaga, Y. Bending Vibrations of a Class of Rotating Beams with Hypergeometric Solutions. J. Appl. Mech. 1987,
54, 311–314. https://doi.org/10.1115/1.3173013.

107. Auciello, N.M.; Maurizi, M.J. On the natural vibrations of tapered beams with attached inertia elements. J. Sound Vib. 1997,
199, 522–530. https://doi.org/10.1006/jsvi.1996.0636.

108. Yoo, H.H.; Shin, S.H. Vibration analysis of rotating cantilever beams. J. Sound Vib. 1998, 212, 807–828.
https://doi.org/10.1006/jsvi.1997.1469.

109. Balakrishnan, A.V.; Iliff, K.W. Continuum Aeroelastic Model for Inviscid Subsonic Bending-Torsion Wing Flutter. J. Aerosp. Eng.
2007, 20, 152–164. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(152).

110. Chang, C.S.; Hodges, D.H. Parametric Studies on Ground Vibration Test Modeling for Highly Flexible Aircraft. J. Aircr. 2007,
44, 2049–2059. https://doi.org/10.2514/1.30733.

111. Su, W.; Cesnik, C.E.S. Dynamic Response of Highly Flexible Flying Wings. AIAA J. 2011, 49, 324–339.
https://doi.org/10.2514/1.J050496.

112. Saltari, F.; Riso, C.; Matteis, G.D.; Mastroddi, F. Finite-Element-Based Modeling for Flight Dynamics and Aeroelasticity of Flexible
Aircraft. J. Aircr. 2017, 54, 2350–2366. https://doi.org/10.2514/1.C034159.

113. Changchuan, X.; Lan, Y.; Yi, L.; Chao, Y. Stability of Very Flexible Aircraft with Coupled Nonlinear Aeroelasticity and Flight
Dynamics. J. Aircr. 2018, 55, 862–874. https://doi.org/10.2514/1.C034162.

114. Rui, X.; Abbas, L.K.; Yang, F.; Wang, G.; Yu, H.; Wang, Y. Flapwise Vibration Computations of Coupled Helicopter Rotor/Fuselage:
Application of Multibody System Dynamics. AIAA J. 2018, 56, 818–835. https://doi.org/10.2514/1.J056591.

115. Campos, L.M.B.C.; Marta, A.C. On The Vibrations of Pyramidal Beams With Rectangular Cross-Section and Application to
Unswept Wings. Q. J. Mech. Appl. Math. 2021, 74, 1–31. https://doi.org/10.1093/qjmam/hbaa017.

116. Zippo, A.; Ferrari, G.; Amabili, M.; Barbieri, M.; Pellicano, F. Active vibration control of a composite sandwich plate. Compos.
Struct. 2015, 128, 100–114. https://doi.org/10.1016/j.compstruct.2015.03.037.

117. Christie, M.D.; Sun, S.; Deng, L.; Ning, D.H.; Du, H.; Zhang, S.W.; Li, W.H. A variable resonance magnetorheological-fluid-
based pendulum tuned mass damper for seismic vibration suppression. Mech. Syst. Signal Process. 2019, 116, 530–544.
https://doi.org/10.1016/j.ymssp.2018.07.007.

118. Pernod, L.; Lossouarn, B.; Astolfi, J.A.; Deü, J.F. Vibration damping of marine lifting surfaces with resonant piezoelectric shunts.
J. Sound Vib. 2021, 496. https://doi.org/10.1016/j.jsv.2020.115921.

119. Saffari, P.R.; Fakhraie, M.; Roudbari, M.A. Size-Dependent Vibration Problem of Two Vertically-Aligned Single-Walled Boron
Nitride Nanotubes Conveying Fluid in Thermal Environment Via Nonlocal Strain Gradient Shell Model. J. Solid Mech. 2021,
13, 164–185. https://doi.org/10.22034/jsm.2020.1895313.1561.

120. Thongchom, C.; Saffari, P.R.; Saffari, P.R.; Refahati, N.; Sirimontree, S.; Keawsawasvong, S.; Titotto, S. Dynamic response of
fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle. Mech. Adv.
Mater. Struct. 2022. https://doi.org/10.1080/15376494.2022.2051101.

121. Campos, L.M.B.C. Note on a generalization of Gauss least squares method applied to active noise reduction systems. J. Sound
Vib. 1999, 219, 925–926. https://doi.org/10.1006/jsvi.1998.1894.

122. Campos, L.M.B.C. Linear Differential Equations and Oscillators, 1st ed.; Mathematics and Physics for Science and Technology; CRC
Press: Boca Raton, FL, USA, 2019; Volume 4. https://doi.org/10.1201/9780429028984.

123. Campos, L.M.B.C. On waves in gases. Part II: Interaction of sound with magnetic and internal modes. Rev. Mod. Phys. 1987,
59, 363–463. https://doi.org/10.1103/RevModPhys.59.363.

124. Campos, L.M.B.C. Higher-Order Differential Equations and Elasticity, 1st ed.; Mathematics and Physics for Science and Technology;
CRC Press: Boca Raton, FL, USA, 2019; Volume 4. https://doi.org/10.1201/9780429029691.

125. Campos, L.M.B.C. Generalized Calculus with Applications to Matter and Forces, 1st ed.; Mathematics and Physics for Science and
Technology; CRC Press: Boca Raton, FL, USA, 2014; Volume 3. https://doi.org/10.1201/b17019.

126. Lighthill, M.J. Introduction to Fourier Analysis and Generalised Functions; Cambridge Monographs on Mechanics and Applied
Mathematics; Cambridge University Press: Cambridge, UK, 1958.

127. Campos, L.M.B.C. Complex Analysis with Applications to Flows and Fields, 1st ed.; Mathematics and Physics for Science and
Technology; CRC Press: Boca Raton, FL, USA, 2011; Volume 1. https://doi.org/10.1201/b13580.

128. Forsyth, A.R. A Treatise on Differential Equations, 6th ed.; Macmillan & Co. Ltd.: London, UK, 1956.
129. Campos, L.M.B.C. Transcendental Representations with Applications to Solids and Fluids, 1st ed.; Mathematics and Physics for Science

and Technology; CRC Press: Boca Raton, FL, USA, 2012; Volume 2. https://doi.org/10.1201/b11862.


	Introduction
	Free Oscillations and Forcing by Concentrated Force
	Minimization of Total (Kinetic Plus Elastic) Energy
	Optimization of Strength and Location of Forcing Effect
	Oscillation and Energy for Optimal and Non-Optimal Forcing
	Forcing by Multiple Concentrated Forces
	Optimization of Continuously Distributed Forces
	Conclusions
	Appendix A
	References

