Lipidomic and Metabolomic Signatures of the Traditional Fermented Milk Product Gioddu
Abstract
1. Introduction
- -
- Thermophilic fermented milk products typical of yogurt, in which the fermentation process is driven exclusively by lactic acid bacteria (LAB) (Lactobacillus and Streptococcus), that grow optimally at high temperatures (42 °C) and convert lactose into lactic acid without alcohol production. These cultures may be used in combination with mesophilic LAB (e.g., Dhai and Sky).
- -
- Mesophilic fermented milk products obtained by homo- and heterofermentative microorganisms of the genera Lactococcus, Lactobacillus and Leuconostoc, fermented at room temperature (<30 °C). These products include buttermilk ferments, sour creams, Ymer and stringy fermented milks from Scandinavian countries.
- -
- Probiotic fermented milks, which contain probiotic microbial species belonging to the Lactobacillus and/or Bifidobacterium genera, with more pronounced beneficial effects on health,
- -
- Acid-alcoholic fermented milks, which contain both LAB and yeasts that play an essential role in alcoholic acid-fermented milks such as Lben, kefir, and Gioddu [11,12] yeasts contribute to the production of ethanol and carbon dioxide along with lactic acid, resulting in beverages that have a unique combination of acidity and moderate alcohol content.
2. Materials and Methods
2.1. Chemicals
2.2. Sample Production
2.3. Sample Preparation for Lipidomic and Metabolomic Analysis
2.4. UHPLC-QTOF-MS Lipidomic Analysis
2.5. GC-MS Metabolomic Analysis
2.6. Data Analysis
3. Results and Discussion
3.1. Lipidomic Analysis
3.2. Metabolomic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintsis, T. Lactic acid bacteria: Their applications in foods. J. Bacteriol. Mycol. Open Access 2018, 6, 89–94. [Google Scholar] [CrossRef]
- Macori, G.; Cotter, P.D. Novel insights into the microbiology of fermented dairy foods. Curr. Opin. Biotechnol. 2018, 49, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Curry, A. The milk revolution. Nature 2013, 500, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Kindstedt, P.S. Global Cheesemaking Technology: Cheese Quality and Characteristics, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bintsis, T.; Papademas, P. The Evolution of Fermented Milks, from Artisanal to Industrial Products: A Critical Review. Fermentation 2022, 8, 679. [Google Scholar] [CrossRef]
- Manis, C.; Scano, P.; Nudda, A.; Carta, S.; Pulina, G. LC-QTOF/MS Untargeted Metabolomics of Sheep Milk under Cocoa Husks Enriched Diet. Dairy 2021, 2, 112–121. [Google Scholar] [CrossRef]
- Tamime, A.Y. Fermented milks: A historical food with modern applications–a review. Eur. J. Clin. Nutr. 2002, 56, S2–S15. [Google Scholar] [CrossRef]
- Deiana, P.; Torriani, S. Fermented Milks. In Food Microbiology; Farris, G., Gobbetti, M., Nevian, E., Vincenzin, M., Eds.; Casa Editrice Ambrosiana: Milan, Italy, 2012; pp. 385–403. [Google Scholar]
- Mangia, N.P.; Garau, G.; Murgia, M.A.; Bennani, A.; Deiana, P. Influence of autochthonous lactic acid bacteria and enzymatic yeast extracts on the microbiological, biochemical and sensorial properties of Lben generic products. J. Dairy Res. 2014, 81, 193–201. [Google Scholar] [CrossRef]
- Maoloni, A.; Milanović, V.; Cardinali, F.; Mangia, N.P.; Murgia, M.A.; Garofalo, C.; Clementi, F.; Osimani, A.; Aquilanti, L. Bacterial and Fungal Communities of Gioddu as Revealed by PCR–DGGE Analysis. Indian J. Microbiol. 2020, 60, 119–123. [Google Scholar] [CrossRef]
- Gambelli, L.; Manzi, P.; Panfili, G.; Vivanti, V.; Pizzoferrato, L. Constituents of nutritional relevance in fermented milk products commercialised in Italy. Food Chem. 1999, 66, 353–358. [Google Scholar] [CrossRef]
- Arrizza, S.; Ledda, A.; Sarra, P.G.; Dellaglio, F. Identification of lactic acid bacteria in “Gioddu”. Sci. Tech. Latt. 1983, 34, 87–102. [Google Scholar]
- Maoloni, A.; Blaiotta, G.; Ferrocino, I.; Mangia, N.P.; Osimani, A.; Milanović, V.; Cardinali, F.; Cesaro, C.; Garofalo, C.; Clementi, F.; et al. Microbiological characterization of Gioddu, an Italian fermented milk. Int. J. Food Microbiol. 2020, 323, 108610. [Google Scholar] [CrossRef]
- Ortu, S.; Felis, G.E.; Marzotto, M.; Deriu, A.; Molicotti, P.; Sechi, L.A.; Dellaglio, F.; Zanetti, S. Identification and functional characterization of Lactobacillus strains isolated from milk and Gioddu, a traditional Sardinian fermented milk. Int. Dairy J. 2007, 17, 1312–1320. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Iversen, C.; Mullane, N.; McCardell, B.; Tall, B.D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. Nov. Int. J. Syst. Evol. Microbiol. 2008, 58 Pt 6, 1442–1447. [Google Scholar] [CrossRef]
- Kuligowski, J.; Sánchez-Illana, Á.; Sanjuán-Herráez, D.; Vento, M.; Quintás, G. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 2015, 140, 7810–7817. [Google Scholar] [CrossRef]
- Papagianni, M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 2012, 3, e201210003. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Shi, G. Secretory expression of a phospholipase A2 from Lactobacillus casei DSM20011 in Kluyveromyces lactis. J. Biosci. Bioeng. 2015, 120, 601–607. [Google Scholar] [CrossRef]
- Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther. 2009, 23, 49–59. [Google Scholar] [CrossRef]
- Meneghel, J.; Passot, S.; Dupont, S.; Fonseca, F. Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation. Appl. Microbiol. Biotechnol. 2017, 101, 1427–1441. [Google Scholar] [CrossRef]
- Fonseca, F.; Pénicaud, C.; Tymczyszyn, E.E.; Gómez-Zavaglia, A.; Passot, S. Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters. Appl. Microbiol. Biotechnol. 2019, 103, 6867–6883. [Google Scholar] [CrossRef] [PubMed]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 2016, 291, 3658–3667. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.V.; Baigorí, M.D.; Alvarez, S.; Castro, G.R.; Oliver, G. Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate. FEMS Microbiol. Lett. 2001, 204, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Munsch-Alatossava, P.; Käkelä, R.; Ibarra, D.; Youbi-Idrissi, M.; Alatossava, T. Phospholipolysis caused by different types of bacterial phospholipases during cold storage of bovine raw milk is prevented by N2 gas flushing. Front. Microbiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Michlmayr, H.; Kneifel, W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 2014, 352, 1–10. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, M.; Oh, H.; Seo, W.; Kim, G.S.; Ban, O.H.; Shin, M.; Jung, Y.H.; Yang, J. Enhanced ceramides production by Lactobacillus rhamnosus IDCC 3201 and its proposed mechanism. Appl. Biol. Chem. 2021, 64, 50. [Google Scholar] [CrossRef]
- Karrar, E.; Usman, M.; Ahmed, I.A.M.; Brennan, C.S.; Xu, M.; Jin, Z. Analytical advances in the determinations of dietary sphingolipids in milk, dairy products, and infant formula and impacts on human health. Int. J. Food Sci. Technol. 2024, 59, 6885–6904. [Google Scholar] [CrossRef]
- He, X.; Schuchman, E.H. Identification of a Novel Acid Sphingomyelinase Activity Associated with Recombinant Human Acid Ceramidase. Biomolecules 2023, 13, 1623. [Google Scholar] [CrossRef]
- FMartinez, A.C.; Balciunas, E.M.; Salgado, J.M.; González, J.M.D.; Converti, A.; de Souza Oliveira, R.P. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact. 2020, 26, 169. [Google Scholar] [CrossRef]
- De Moraes, J.; Chandan, R.C. Factors Influencing the Production and Activity of a Streptococcus thermophilus Lipase. J. Food Sci. 1982, 47, 1579–1583. [Google Scholar] [CrossRef]
- Liu, S.Q.; Holland, R.; Crow, V.L. Ester synthesis in an aqueous environment by Streptococcus thermophilus and other dairy lactic acid bacteria. Appl. Microbiol. Biotechnol. 2003, 63, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Jandrositz, A.; Petschnigg, J.; Zimmermann, R.; Natter, K.; Scholze, H.; Hermetter, A.; Kohlwein, S.D.; Leber, R. The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2005, 1735, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Yebra, M.J.; Zúñiga, M.; Beaufils, S.; Pérez-Martínez, G.; Deutscher, J.; Monedero, V. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl. Environ. Microbiol. 2007, 73, 3850–3858. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, S.; Wu, T.; Zhang, J.; Kwok, L.Y.; Sun, Z.; Zhang, H.; Wang, J. Untargeted mass spectrometry-based metabolomics approach unveils biochemical changes in compound probiotic fermented milk during fermentation. NPJ Sci. Food 2023, 7, 21. [Google Scholar] [CrossRef]
- Yamamoto, E.; Watanabe, R.; Tooyama, E.; Kimura, K. Effect of fumaric acid on the growth of Lactobacillus delbrueckii ssp. bulgaricus during yogurt fermentation. J. Dairy Sci. 2021, 104, 9617–9626. [Google Scholar] [CrossRef]
- Thierry, A.; Maillard, M.-B.; Yvon, M. Conversion of l-Leucine to Isovaleric Acid by Propionibacterium freudenreichii TL 34 and ITGP23. Appl. Environ. Microbiol. 2002, 68, 608–615. [Google Scholar] [CrossRef]
- Prell, C.; Burgardt, A.; Meyer, F.; Wendisch, V.F. Fermentative Production of l-2-Hydroxyglutarate by Engineered Corynebacterium glutamicum via Pathway Extension of l-Lysine Biosynthesis. Front. Bioeng. Biotechnol. 2021, 8, 630476. [Google Scholar] [CrossRef]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A metabolomics comparison between sheep’s and goat’s milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef]
- Cesaro, C.; Maoloni, A.; Milanovic, V.; Cardinali, F.; Mangia, N.P.; Murgia, M.A.; Garofalo, C.; Clementi, F.; Osimani, A.; Aquilanti, L. Gioddu: From the Italian tradition, a functional kefir-like fermented milk? Ind. Aliment. 2020, 59, 4–9. [Google Scholar]
- Li, S.; Tang, S.; He, Q.; Hu, J.; Zheng, J. Changes in Proteolysis in Fermented Milk Produced by Streptococcus thermophilus in Co-Culture with Lactobacillus plantarum or Bifidobacterium animalis subsp. lactis during Refrigerated Storage. Molecules 2019, 24, 3699. [Google Scholar] [CrossRef]
- Habibi-Najafi, M.B.; Lee, B.H.; Law, B. Bitterness in cheese: A review. Crit. Rev. Food Sci. Nutr. 1996, 36, 397–411. [Google Scholar] [CrossRef]
- Bouchier, P.J.; Fitzgerald, R.J.; O’Cuinn, G. Hydrolysis of αs1- and β-casein-derived peptides with a broad specificity aminopeptidase and proline specific aminopeptidases from Lactococcus lactis subsp. cremoris AM2. FEBS Lett. 1999, 445, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.M.; Zeno, W.F.; Lerno, L.A.; Longo, M.L.; Block, D.E. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2013, 79, 5345–5356. [Google Scholar] [CrossRef] [PubMed]
- Larson, T.J.; Ehrmann, M.; Boss, W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J. Biol. Chem. 1983, 258, 5428–5432. [Google Scholar] [CrossRef]
- Cornelissen, A.; Sadovskaya, I.; Vinogradov, E.; Blangy, S.; Spinelli, S.; Casey, E.; Mahony, J.; Noben, J.P.; Bello, F.D.; Cambillau, C.; et al. The baseplate of Lactobacillus delbrueckii bacteriophage Ld17 harbors a glycerophosphodiesterase. J. Biol. Chem. 2016, 291, 16816–16827. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Jomaa, S.A.; El-Wahed, A.A.; El-Seedi, H.R. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef]






| Milk | Gioddu | |||
|---|---|---|---|---|
| Samples | pH | SD | pH | SD |
| P | 6.28 | 0.27 | 4.13 | 0.38 |
| F | 6.33 | 0.16 | 3.78 | 0.35 |
| M | 6.32 | 0.23 | 3.71 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manis, C.; Casula, M.; Chessa, M.; Mangia, N.P.; Caboni, P. Lipidomic and Metabolomic Signatures of the Traditional Fermented Milk Product Gioddu. Dairy 2025, 6, 61. https://doi.org/10.3390/dairy6050061
Manis C, Casula M, Chessa M, Mangia NP, Caboni P. Lipidomic and Metabolomic Signatures of the Traditional Fermented Milk Product Gioddu. Dairy. 2025; 6(5):61. https://doi.org/10.3390/dairy6050061
Chicago/Turabian StyleManis, Cristina, Mattia Casula, Margherita Chessa, Nicoletta P. Mangia, and Pierluigi Caboni. 2025. "Lipidomic and Metabolomic Signatures of the Traditional Fermented Milk Product Gioddu" Dairy 6, no. 5: 61. https://doi.org/10.3390/dairy6050061
APA StyleManis, C., Casula, M., Chessa, M., Mangia, N. P., & Caboni, P. (2025). Lipidomic and Metabolomic Signatures of the Traditional Fermented Milk Product Gioddu. Dairy, 6(5), 61. https://doi.org/10.3390/dairy6050061

