Virulence Potential, Biofilm Formation, and Disinfectants Control of Escherichia coli from Raw Milk Bulk Tanks in the Southeast of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms Description and Isolation of Escherichia coli
- Cows of Holstein breed or Holstein crossbreeds.
- Farms housing a minimum of 200 lactating cows.
- Milk yield exceeding 20 kg per cow per day.
- Bulk tank milk somatic cell count (SCC) below 400,000 cells/mL.
- Utilization of milk machines on the farms.
- Availability of electronic health and production records.
2.2. Biofilm Formation and Efficacy of Antiseptics for Its Control
2.3. Genes Detection through Polymerase Chain Reaction (PCR)
- Invasion: ibe10 [22]
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guh, A.; Phan, Q.; Nelson, R.; Purviance, K.; Milardo, E.; Kinney, S.; Mshar, P.; Kasacek, W.; Cartter, M. Outbreak of Escherichia coli O157 associated with raw milk, Connecticut, 2009. Clin. Infec. Dis. 2010, 12, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- LeJeune, J.T.; Besser, T.E.; Rice, D.H.; Ber, J.L.; Stilborn, R.P.; Hancock, D.D. Longitudinal Study of Fecal Shedding of Escherichia coli O157:H7 in Feedlot Cattle: Predominance and Persistence of Specific Clonal Types despite Massive Cattle Population Turnover. Appl. Environm. Microbiol. 2004, 70, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, R.; Michiels, C.W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 2005, 156, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, R.; Michiels, C.W. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 2010, 109, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, L.R.; Ordoñez, J.; Martinez, M. Enterobacteriaceae. In Microbiologia, 4th ed.; Trabulsi, L.R., Alterthum, F., Eds.; Editora Atheneu: Sao Paulo, SP, Brazil, 2005; pp. 269–276. (In Portuguese) [Google Scholar]
- Vasudevan, P.; Nair, M.K.M.; Annamalai, T.; Venkitanarayanan, K.S. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol. 2003, 92, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Oosterik, L.H.; Tuntufye, H.N.; Butaye, P.; Goddeeris, B.M. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli. Vet. J. 2014, 202, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, R.T.; Velsko, I.; Sampaio, S.C.F.; Elias, W.P.; Robins-Browne, R.M.; Gomes, T.A.T.; Girón, J.A. Fimbrial adhesins produced by Atypical Enteropathogenic Escherichia coli strains. Appl. Environ. Microbiol. 2011, 77, 8391–8399. [Google Scholar] [CrossRef] [PubMed]
- Saldaña, Z.; Xicohtencatl-Cortes, J.; Avelino, F.; Phillips, A.D.; Kaper, J.B.; Puente, J.L.; Girón, J.A. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environm. Microbiol. 2009, 11, 992–1006. [Google Scholar] [CrossRef]
- Xicohtencatl-Cortes, J.; Monteiro-Neto, V.; Ledesma, M.A.; Jordan, D.M.; Francetic, O.; Kaper, J.B.; Puente, J.L.; Girón, J.A. Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157: H7. J. Clin. Invest. 2007, 117, 3519–3529. [Google Scholar] [CrossRef]
- Tennant, S.M.; Tauschek, M.; Azzopardi, K.; Bigham, A.; Bennett-Wood, V.; Hartland, E.L.; Qi, W.; Whittam, T.; Robins-Browne, R.M. Characterisation of atypical enteropathogenic E. coli strains of clinical origin. BMC Microbiol. 2009, 9, 1–11. [Google Scholar] [CrossRef]
- Scaletsky, I.C.A.; Aranda, K.R.S.; Souza, T.B.; Silva, N.P.; Morais, M.B. Evidence of pathogenic subgroups among atypical enteropathogenic Escherichia coli strains. J. Clinic. Microbiol. 2009, 47, 3756–3759. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Stell, A.L. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clinic. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Li, G.; Wilking, H.; Kiebling, S.; Alt, K.; Antáo, E.M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T.; et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int. J. Medic. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Tóth, I.; Hérault, F.; Beutin, L.; Oswald, E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: Establishment of the existence of a new cdt variant (type IV). J. Clin. Microbiol. 2003, 41, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Russo, T.A.; Tarr, P.I.; Carlino, U.; Bilge, S.S.; Vary JR, J.C.; Stell, A.L. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN (E. coli), among Escherichia coli isolates from patients with urosepsis. Infect. Immun. 2000, 68, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Czeczulin, J.R.; Whittam, T.S.; Henderson, I.R.; Navarro-Garcia, F.; Nataro, J.P. Phylogenetic analysis of enteroaggregative and diffusely adherent Escherichia coli. Infect. Immun 1999, 67, 2692–2699. [Google Scholar] [CrossRef]
- Herrero, M.; De Lorenzo, V.; Neilands, J.B. Nucleotide sequence of the iucD gene of the pCoIV-K30 aerobactin operon and topology of its product studied with phoA and lacZ gene fusions. J. Bacteriol. 1988, 170, 56–64. [Google Scholar] [CrossRef]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Nolan, L.K. Characterizing the APEC pathotype. Vet. Res. 2005, 36, 241–256. [Google Scholar] [CrossRef]
- Huang, S.H.; Wass, C.; Fu, Q.; Prasadarao, N.V.; Stins, M.; Kim, K.S. Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: Molecular cloning and characterization of invasion gene ibe10. Infect. Immun. 1995, 63, 4470–4475. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; O’Bryan, T.T.; Low, D.A.; Ling, G.; Delavari, P.; Fasching, C.; Russo, T.A.; Carlino, U.; Stell, A.L. Evidence of commonality between canine and human extraintestinal pathogenic Escherichia coli strains that express papG allele III. Infect. Immun. 2000, 68, 3327–3336. [Google Scholar] [CrossRef] [PubMed]
- Kasnowski, M.C.; Mantilla, S.P.S.; Oliveira, L.A.T.; Francoo, R.M. Biofilm formation in the food industry and surface validation methods. Rev. Cient. Eletr. Med. Vet. 2010, 15, 1–23. [Google Scholar]
- Milanov, D.; Prunic, B.; Velhner, M.; Todorovic, D.; Polacek, V. Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Sci. Vet. 2015, 65, 202–216. [Google Scholar] [CrossRef]
- Lee, S.H.; Mangolin, B.L.; Gonçalves, J.L.; Neeff, D.V.; Silva, M.P.; Cruz, A.G.; Oliveira, C.A. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Castilho, I.G.; Dantas, S.T.A.; Langoni, H.; Araújo, J.P., Jr.; Fernandes, A., Jr.; Alvarenga, F.C.L.; Maia, L.; Cagnini, D.Q.; Rall, V.L.M. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis. J. Dairy Sci. 2017, 100, 6414–6421. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.; Tremblay, Y.D.N.; Lamarche, D.; Blondeau, A.; Gaudreau, A.M.; Labrie, J.; Malouin, F.; Jacques, M. Coagulase-negative staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. J. Dairy Sci. 2017, 8, 6454–6464. [Google Scholar] [CrossRef] [PubMed]
- Chagnot, C.; Caccia, N.; Loukiadis, E.; Ganet, S.; Durand, A.; Bertin, Y.; Talon, R.; Astruc, T.; Desvaux, M. Colonization of the meat extracellular matrix proteins by O157 and non-O157 enterohemorrhagic Escherichia coli. Int. J. Food Microbiol. 2014, 188, 92–98. [Google Scholar] [CrossRef]
- Marouani-Gadri, N.; Firmesse, O.; Chassaing, D.; Sandris-Nielsen, D.; Arneborg, N.; Carpentier, B. Potential of Escherichia coli O157:H7 to persist and form viable but non-culturable cells on a food-contact surface subjected to cycles of soiling and chemical treatment. Int. J. Food Microbiol. 2010, 144, 96–103. [Google Scholar] [CrossRef]
- Cherif-Antar, A.; Moussa–Boudjemâa, B.; Didouh, N.; Medjahdi, K.; Mayo, B.; Flórez, A.B. Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Sci. Technol. 2016, 96, 27–38. [Google Scholar] [CrossRef]
- Wang, R.; Neoh, K.G.; Shi, Z.; Kang, E.T.; Tambyah, P.A.; Chiong, E. Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 2012, 109, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.; Hewett, P. Activity of antiseptics against Escherichia coli growing as biofilms on silicone surfaces. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.A.; Berenguer, J. Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol. Rev. 2000, 24, 21–44. [Google Scholar] [CrossRef] [PubMed]
- Pratt, L.A.; Kolter, R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 1998, 30, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Rendón, M.A.; Saldaña, Z.; Erdem, A.L.; Monteiro-Neto, V.; Vázquez, A.; Kaper, J.B.; Puente, J.l.; Girón, J.A. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc. Natl. Acad. Sci. USA 2007, 104, 10637–10642. [Google Scholar] [CrossRef] [PubMed]
- Pouttu, R.; Westerlund-Wikström, B.; Lång, H.; Alsti, K.; Virkola, R.; Saarela, U.; Siitonen, A.; Kalkkinen, N.; Korhonen, T.K. MatB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J. Bact. Res. 2001, 183, 4727–4736. [Google Scholar] [CrossRef] [PubMed]
- Brombacher, E.; Dorel, C.; Zehnder, A.J.B.; Landini, P. The curli biosynthesis regulator CsgD coordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 2003, 149, 2847–2857. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Beuchat, L.R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and Curli production on its resistance to chlorine. Appl. Environm. Microbiol. 2005, 71, 247–254. [Google Scholar] [CrossRef]
- Farfan, M.J.; Torres, A.G. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect. Immun. 2012, 80, 903–913. [Google Scholar] [CrossRef]
- Sharma, M.; Anand, S.K.; Prasad, D.N. In vitro propagation of mixed species biofilms using online consortia for dairy processing lines. Milchwissenschaft 2003, 58, 270–274. [Google Scholar]
- Sinde, E.; Carballo, J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluoroethylene: The influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000, 17, 439–447. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Badouei, M.A.; Morabito, S.; Najafifar, A.; Mazandarani, E. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains. Infect. Genet. Evol. 2016, 39, 342–348. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Garénaux, A.; Caza, M.; Dozois, C.M. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet. Microbiol. 2011, 153, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R. Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect. Dis. Clin. North Am. 2003, 17, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 1991, 4, 80–128. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, C. Structural features, physiological roles, and biotechnological applications of the membrane proteases of the OmpT bacterial endopeptidase family: A micro-review. Membr. Cell Biol. 1998, 12, 1–8. [Google Scholar]
Virulence Factors | Genes | ||||
---|---|---|---|---|---|
Fimbriae | fimA | fimE | ecpRAB | ecpA | csgD |
100% (149/149) | 99.3% (148/149) | 34.2% (51/149) | 91.3% (136/149) | 96.0% (143/149) | |
elfA | hcpA | ||||
100% (149/149) | 6.7% (10/149) | ||||
Adhesins | sfaDE | fimH | iha | papA | papC |
0% | 100% | 0% | 0% | 0% | |
(0/149) | (149/149) | (0/149) | (0/149) | (0/149) | |
afaBC | |||||
0% | |||||
(0/149) | |||||
Toxins | hlyA | sat | vat | ehxA | cnf |
5.4% | 0% | 0% | 0% | 0% | |
(8/149) | (0/149) | (0/149) | (0/149) | (0/149) | |
cdt | |||||
0% | |||||
(0/149) | |||||
Siderophores | iroN | irp2 | iucD | ireA | sitA |
0% | 2.7% | 0% | 0% | 10.7% | |
(0/149) | (4/149) | (0/149) | (0/149) | (16/149) | |
Invasins | ibe | ||||
0% | |||||
(0/149) | |||||
Resistance to serum | kpsMTll | ompT | traT | ||
0% | 43.6% | 98.0% | |||
(0/149) | (65/149) | (146/149) |
Material | Polystyrene | Stainless Steel | Silicone | |||
---|---|---|---|---|---|---|
Genes | Biofilm Production % (N) | p-Value | Biofilm Production % (N) | p-Value | Biofilm Production % (N) | p-Value |
fimA | N/A | N/A | N/A | |||
Positive | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
Negative | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
fimE | 1.00 | 1.00 | 1.00 | |||
Positive | 42.57 (63/148) | 21.62 (32/148) | 56.08 (83/148) | |||
Negative | 0.00 (0/1) | 0.00 (0/1) | 100.00 (1/1) | |||
ecpRAB | <0.0001 | 0.0035 | 0.0116 | |||
Positive | 17.57 (9/51) | 7.84 (4/51) | 70.59 (36/51) | |||
Negative | 55.10 (54/98) | 28.57 (28/98) | 48.98 (48/98) | |||
ecpA | 0.0399 | <0.0001 | 0.8473 | |||
Positive | 44.85 (61/136) | 15.44 (21/136) | 56.62 (77/136) | |||
Negative | 15.38 (2/13) | 84.62 (11/13) | 53.85 (7/13) | |||
csgD | 0.6978 | 0.3414 | 1.00 | |||
Positive | 41.96 (60/143) | 22.38 (32/143) | 56.64 (81/143) | |||
Negative | 50.00 (3/6) | 0.00 (0/6) | 50.00 (3/6) | |||
elfA | N/A | N/A | N/A | |||
Positive | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
Negative | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
hcpA | 0.0182 | 0.1196 | 0.1040 | |||
Positive | 80.00 (8/10) | 0.00 (0/10) | 30.00 (3/10) | |||
Negative | 39.57 (55/139) | 23.02 (32/139) | 58.27 (81/139) |
Material | Polystyrene | Stainless Steel | Silicone | |||
---|---|---|---|---|---|---|
Genes | Biofilm Production % (N) | p-Value | Biofilm Production % (N) | p-Value | Biofilm Production % (N) | p-Value |
sfaDE | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
fimH | N/A | N/A | N/A | |||
Positive | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
Negative | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
iha | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
papA | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
papC | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
afaBC | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
hlyA | 0.2835 | 0.2024 | 0.0010 | |||
Positive | 62.50 (5/8) | 0.00 (0/8) | 0.00 (0/8) | |||
Negative | 41.13 (58/141) | 22.70 (32/141) | 59.57 (84/141) | |||
sat | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
vat | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
ehxa | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
cnf | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
cdt | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
iroN | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
irp2 | 0,1379 | 1.00 | 1.00 | |||
Positive | 0.00 (0/4) | 25.00 (1/4) | 50.00 (2/4) | |||
Negative | 43.35 (63/145) | 21.38 (31/145) | 56.55 (82/145) | |||
iucD | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
ireA | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
sitA | 0.005 | 0.0236 | 0.0002 | |||
Positive | 75.00 (12/16) | 0.00(0/16) | 12.50 (2/16) | |||
Negative | 38.35 (51/133) | 24.06 (32/133) | 61.65 (82/133) | |||
ibe | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) | |||
ompT | 0.0651 | 0.4305 | 0.0006 | |||
Positive | 50.77 (33/65) | 18.46 (12/65) | 72.31 (47/65) | |||
Negative | 35.71 (30/84) | 23.81 (20/84) | 44.05 (37/84) | |||
traT | 0.2629 | 0.0092 | 0.2572 | |||
Positive | 43.15 (63/146) | 19.86 (29/146) | 55.48 (81/146) | |||
Negative | 0.00 (0/3) | 100.00 (3/3) | 100.00 (3/3) | |||
kpsMTII | N/A | N/A | N/A | |||
Positive | 0.00 (0/0) | 0.00 (0/0) | 0.00 (0/0) | |||
Negative | 42.28 (63/149) | 21.48 (32/149) | 56.38 (84/149) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, S.J.A.; Guimarães, F.d.F.; Rossi, G.A.M.; Guerra, S.T.; Dalanezi, F.M.; Lopes, B.C.; Ribeiro Mioni, M.d.S.; Yamakawa, A.C.; da Silva, E.C.; de Moraes, G.N.; et al. Virulence Potential, Biofilm Formation, and Disinfectants Control of Escherichia coli from Raw Milk Bulk Tanks in the Southeast of Brazil. Dairy 2023, 4, 541-553. https://doi.org/10.3390/dairy4040037
Soares SJA, Guimarães FdF, Rossi GAM, Guerra ST, Dalanezi FM, Lopes BC, Ribeiro Mioni MdS, Yamakawa AC, da Silva EC, de Moraes GN, et al. Virulence Potential, Biofilm Formation, and Disinfectants Control of Escherichia coli from Raw Milk Bulk Tanks in the Southeast of Brazil. Dairy. 2023; 4(4):541-553. https://doi.org/10.3390/dairy4040037
Chicago/Turabian StyleSoares, Sâmea Joaquim Aguiar, Felipe de Freitas Guimarães, Gabriel Augusto Marques Rossi, Simony Trevizan Guerra, Felipe Morales Dalanezi, Bruna Churocof Lopes, Mateus de Souza Ribeiro Mioni, Ana Carolina Yamakawa, Evelyn Cristine da Silva, Gustavo Nunes de Moraes, and et al. 2023. "Virulence Potential, Biofilm Formation, and Disinfectants Control of Escherichia coli from Raw Milk Bulk Tanks in the Southeast of Brazil" Dairy 4, no. 4: 541-553. https://doi.org/10.3390/dairy4040037