Production Responses of Holstein Dairy Cows to a Sodium Propionate Supplement Fed Postpartum to Prevent Hyperketonemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Animals, Housing and Care
2.3. TMR Sample Analyses
2.4. Blood Measurements and Health Event Recording
2.5. Milk Data
2.6. Statistical Analyses
3. Results and Discussion
3.1. Nutrient, TMR and DMI Analysis
3.2. Impact of SP Supplementation on Milk and Milk Components in Multiparous and Primiparous Cows
3.3. Impact of SP Supplementation on Hyperketonemia and Health Issues
3.4. Impact of SP Supplementation on Blood Metabolites by Parity
3.5. Association of Blood Glucose and BHB Levels
3.6. Response of Low Glucose Multiparous and Primiparous Cows to SP Supplementation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef] [PubMed]
- Chapinal, N.; Carson, M.E.; Leblanc, S.J.; Leslie, K.E.; Godden, S.; Capel, M.; Santos, J.E.; Overton, M.W.; Duffield, T.F. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J. Dairy Sci. 2012, 95, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.B.; Walton, J.S.; Kelton, D.F.; LeBlanc, S.J.; Leslie, K.E.; Duffield, T.F. The Effect of Subclinical Ketosis in Early Lactation Performance of Postpartum Dairy Cows. J. Dairy Sci. 2007, 90, 2788–2796. [Google Scholar] [CrossRef]
- Leblanc, S.J. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Ingvartsen, K.L. Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim. Feed Sci. Technol. 2004, 115, 191–213. [Google Scholar] [CrossRef]
- Dorn, K.; Leiber, F.; Sundrum, A.; Holinger, M.; Mayer, P. A field trial on the effects of pure sodium propionate and a combination with herbal extracts on short term development of subclinical ketosis. J. Livestock Sci. 2016, 187, 87–95. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 2003, 86, 1201–1217. [Google Scholar] [CrossRef] [PubMed]
- DeFrain, J.M.; Hippen, A.R.; Kalscheur, K.F.; Patton, R.S. Effects of Feeding Propionate and Calcium Salts of Long-Chain Fatty Acids on Transition Dairy Cow Performance. J. Dairy Sci. 2005, 88, 983–993. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Yang, W.Z.; Guo, G.; Yang, X.M.; He, D.C.; Dong, K.H.; Huang, Y.X. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J. Anim. Physiol. Anim. Nut. 2010, 94, 605–614. [Google Scholar] [CrossRef]
- Mitchell, K.E.; Rossow, H.A. Effects of a Glucose Precursor Supplement Fed to Holstein and Jersey Cows during the Transition Period on Ketosis Prevalence and Milk Production. EC Vet. Sci. 2020, 5, 1–13. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Robinson, P.H. Total mixed ration (TMR) sampling protocol. Univ. Calif. Ag. Nat. Resour. 2010, 8413, 1–5. [Google Scholar]
- AOAC International. Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2020. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Wu, Z.; Bernard, J.K.; Taylor, J.S. Effect of feeding calcareous marine algae to Holstein cows prepartum or postpartum on serum metabolites and performance. J. Dairy Sci. 2015, 98, 4629–4639. [Google Scholar] [CrossRef]
- Bach, K.D.; Heuwieser, W.; McArt, J.A.A. Technical note: Comparison of 4 electronic handheld meters for diagnosing hyperketonemia in dairy cows. J. Dairy Sci. 2016, 99, 9136–9142. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Mena, F.X.; Hu, W.; Dennis, T.S.; Hill, T.M.; Schlotterbeck, R.L. β-Hydroxybutyrate (BHB) and glucose concentrations in the blood of dairy calves as influenced by age, vaccination stress, weaning, and starter intake including evaluation of BHB and glucose markers of starter intake. J. Dairy Sci. 2017, 100, 2614–2624. [Google Scholar] [CrossRef]
- Lopes, R.B.; Validecabres, A.; Silva-del-Rio, N. Technical note: Glucose concentration in dairy cows measured using 6 handheld meters designed for human use. J. Dairy Sci. 2019, 102, 9401–9408. [Google Scholar] [CrossRef]
- Iwersen, M.; Falkenberg, U.; Voigtsberger, R.; Forderung, D.; Heuwieser, W. Evaluation of an electronic cow-side test to detect subclinical ketosis in dairy cows. J. Dairy Sci. 2009, 92, 2618–2624. [Google Scholar] [CrossRef]
- Voyvoda, H.; Erdogan, H. Use of a hand held meter for detecting subclinical ketosis in dairy cows. Res. Vet. Sci. 2010, 89, 344–351. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Stocks, S.E.; Allen, M.S. Hypophagic effects of propionate increase with elevated hepatic acetyl coenzyme A concentration for cows in the early postpartum period. J. Dairy Sci. 2012, 95, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, S.; Pate, J.L.; Palmquist, D.L. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. Anim. Reprod. Sci. 2001, 68, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Patton, R.S.; Sorenson, C.E.; Hippen, A.R. Effects of dietary glucogenic precursors and fat on feed intake and carbohydrate status of transition dairy cows. J. Dairy Sci. 2004, 87, 2122–2129. [Google Scholar] [CrossRef]
- Shepard, A.C.; Combs, D.K. Long-term effects of acetate and propionate on voluntary feed intake by midlactation cows. J. Dairy Sci. 1998, 81, S0022–S0302. [Google Scholar] [CrossRef] [PubMed]
- Baird, G.D.; Hibbitt, K.G.; Hunter, G.D.; Lund, P.; Stubbs, M.; Krebs, H.A. Biochemical aspects of bovine ketosis. Biochem. J. 1968, 107, 683–689. [Google Scholar] [CrossRef]
- Duffield, T.F. Subclinical ketosis in lactating dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 231–253. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Ospina, P.A.; Oetzel, G.A. A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. J. Dairy Sci. 2011, 94, 6011–6020. [Google Scholar] [CrossRef]
- Duffield, T.F.; Kelton, D.F.; Leslie, K.E.; Lissemore, K.D.; Lumsden, J.H. Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 1997, 38, 713–718. [Google Scholar]
- Huzzey, J.M.; Veria, D.M.; Weary, D.M.; von Keyserlingk, M.A.G. Prepartum behavior and DMI identify dairy cows at risk for metritis. J Dairy Sci. 2007, 90, 3220–3233. [Google Scholar] [CrossRef]
- Bendixen, P.H.; Vilson, B.; Ekesbo, B.I.; Åstrand, D.B. Disease frequencies in dairy cows in Sweden: IV. Ketosis Prev. Vet. Med. 1987, 5, 99–109. [Google Scholar] [CrossRef]
- Mandebvu, P.; Ballard, C.S.; Sniffen, C.J.; Tsang, C.S.; Valdez, F.; Miyoshi, S.; Schlatter, L. Effect of feeding an energy supplement prepartum and postpartum on milk yield and composition, and incidence of ketosis in dairy cows. Anim. Feed Sci. Tech. 2003, 105, 81–93. [Google Scholar] [CrossRef]
- Xu, C.; Liu, G.W.; Li, X.B.; Xia, C.; Zhang, H.Y.; Wang, Z. Decreased complete oxidation capacity of fatty acid in the liver of ketotic cows. Asian-Aust. J. Anim. Sci. 2010, 23, 312–317. [Google Scholar] [CrossRef]
- Asl, A.N.; Naxifi, S.; Ghasrodashti, A.R.; Olyaee, A. Prevalence of subclinical ketosis in dairy cattle in the Southwestern Iran and detection of cutoff point for NEFA and glucose concentrations for diagnosis of subclinical ketosis. Prev. Vet. Med. 2011, 100, 38–43. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, Z.; Xu, C.; Zhang, H.Y. Concentrations of plasma metabolites, hormones, and mRNA abundance of adipose leptin and hormone-sensitive lipase in ketotic and nonketotic dairy cows. J. Vet. Intern. Med. 2012, 26, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Sauer, F.D.; Erfle, J.D.; Fisher, L.J. Propylene glycol and glycerol as a feed additive for lactating dairy cows: An evaluation of blood metabolite parameters. Can. J. Anim. Sci. 1973, 53, 265–271. [Google Scholar] [CrossRef]
- Baird, D.G. Primary ketosis in the high-producing dairy cow: Clinical and subclinical disorders, treatment, prevention and outlook. J. Dairy Sci. 1982, 65, 1–10. [Google Scholar] [CrossRef]
- Fukao, T.; Lopaschuk, G.D.; Mitchell, G.A. Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 243–251. [Google Scholar] [CrossRef]
- Linzell, J.L. The effect of infusions of glucose, acetate and amino acids in hourly milk yield in fed, fasted and insulin-treated goats. J. Physiol. 1967, 190, 347–357. [Google Scholar] [CrossRef]
- Fisher, L.J.; Erfle, J.D.; Lodge, G.A.; Sauer, F.D. Effects of propylene glycol or glycerol supplementation of the diet of dairy cows on feed intake, milk yield and composition, and incidence of ketosis. Can. J. Anim. Sci. 1973, 53, 289–296. [Google Scholar] [CrossRef]
- DeFrain, J.M.; Hippen, A.R.; Kalscheur, K.F.; Jardon, P.W. Feeding Glycerol to Transition Dairy Cows: Effects on Blood Metabolites and Lactation Performance. J. Dairy Sci. 2004, 87, 4195–4206. [Google Scholar] [CrossRef] [PubMed]
- Pickett, M.M.; Piepenbrink, M.S.; Overton, T.R. Effects of propylene glycol or fat drench on plasma metabolites, liver composition, and production of dairy cows during the periparturient period. J. Dairy Sci. 2003, 86, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.O.; Grummer, R.R.; Rasmussen, F.E.; Bertics, S.J. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J. Dairy Sci. 1997, 80, 563–568. [Google Scholar] [CrossRef] [PubMed]
Postpartum 1 TMR | Follow-Up 2 TMR | ||||
---|---|---|---|---|---|
Item, % DM | C 3 | SP 4 | SD | Multiparous 5 | Primiparous |
Nutrient | |||||
DM | 54.5 | 54.2 | 0.64 | 60.6 | 62.5 |
CP | 18.0 | 17.9 | 0.23 | 20.2 | 20.1 |
ADF | 20.9 | 21.2 | 0.34 | 19.6 | 19.7 |
NDF | 33.7 | 34.1 | 0.44 | 28.9 | 29.4 |
Lignin | 4.0 | 4.0 | 0.06 | 5.1 | 4.9 |
Starch | 20.3 | 19.8 | 0.56 | 28.5 | 28.6 |
Ash | 7.6 | 7.6 | 0.13 | 5.1 | 5.1 |
Calculated energy, MJ/kg 6 | |||||
NEl | 7.8 | 7.7 | 0.4 | 13.8 | 13.8 |
NEm | 8.3 | 8.3 | 0.4 | 14.7 | 14.7 |
NEg | 5.2 | 5.1 | 0.4 | 9.6 | 9.6 |
Ingredients | |||||
Wheat straw | 2.6 | 2.6 | |||
Almond hulls | 6.1 | 4.5 | |||
Alfalfa hay | 20.7 | 20.7 | 12.4 | 12.7 | |
Wet distillers grain | 3.4 | 3.3 | 5.3 | 5.9 | |
Corn silage | 22.3 | 21.6 | 18.4 | 21.1 | |
Rolled corn | 21.5 | 21.0 | 26.3 | 25.2 | |
Cottonseed | 6.1 | 6.1 | 6.3 | 6.1 | |
Canola | 13.3 | 13.3 | 13.9 | 13.3 | |
Corn gluten | 4.5 | 4.5 | 5.5 | 5.3 | |
Milk cow mineral 7 | 2.8 | 2.8 | 2.9 | 2.8 | |
Salt | 0.3 | 0.3 | 0.4 | 0.4 | |
Megalac-R 8 | 0.6 | 0.6 | |||
Megalac 9 | 0.6 | 0.6 | 1.3 | 1.5 | |
Molasses 10 | 1.3 | 2.6 | 1.2 | 1.2 |
Postpartum 1 | Follow-Up | ||||||
---|---|---|---|---|---|---|---|
C 2 | SP | SEM | p Value | C | SP | SEM | |
DMI, kg/d 3 | 19.3 | 18.9 | 0.9 | 0.5 | |||
Multiparous cows 4 | 383 | 351 | |||||
Blood glucose, mg/dL | 41.7 | 42.4 | 1.0 | 0.6 | |||
Blood BHB, mmol/L | 0.46 | 0.50 | 0.04 | 0.4 | |||
Milk, kg/d | 39.3 | 40.5 | 0.6 | 0.06 | 44.8 | 44.8 | 0.40 |
FCM, kg/d 5 | 43.8 | 46.9 | 0.8 | <0.01 | |||
ECM, kg/d 6 | 42.9 | 45.5 | 0.8 | <0.01 | |||
Fat, kg/d | 1.71 | 1.86 | 0.04 | <0.01 | |||
Fat, % | 4.72 | 5.00 | 0.08 | <0.01 | |||
Protein, kg/d | 1.18 | 2.20 | 0.02 | 0.4 | |||
Protein, % | 3.27 | 3.23 | 0.03 | 0.3 | |||
Lactose, kg/d | 1.70 | 1.75 | 0.03 | 0.09 | |||
Lactose, % | 4.62 | 4.64 | 0.02 | 0.3 | |||
Previous lactation yield, kg/cow 7 | 10,522 | 10,370 | 110 | 0.2 | |||
Primiparous cows | 170 | 175 | |||||
Blood glucose, mg/dL | 45.6 | 43.8 | 2.0 | 0.3 | |||
Blood BHB, mmol/L | 0.59 | 0.60 | 0.06 | 0.9 | |||
Milk, kg/d | 30.2 | 30.6 | 0.6 | 0.5 | 34.6 | 34.8 | 0.47 |
FCM, kg/d | 32.9 | 34.4 | 0.9 | 0.1 | |||
ECM, kg/d | 32.1 | 33.2 | 0.8 | 0.1 | |||
Fat, kg/d | 1.18 | 1.27 | 0.04 | 0.02 | |||
Fat, % | 4.25 | 4.49 | 0.09 | 0.02 | |||
Protein, kg/d | 0.89 | 0.90 | 0.02 | 0.6 | |||
Protein, % | 3.13 | 3.13 | 0.04 | 0.9 | |||
Lactose, kg/d | 1.41 | 1.43 | 0.03 | 0.6 | |||
Lactose, % | 4.89 | 4.88 | 0.03 | 0.6 |
Multiparous 2 | Primiparous | |||
---|---|---|---|---|
Health Event 1, % | C | SP | C | SP |
Total events | 38.5 | 34.5 | 35.6 | 35.8 |
Hyperketonemia 3 | 8.2 | 6.1 | 28.2 | 30.6 |
Metritis | 10.6 | 7.5 | 19.8 | 18.9 |
Retained placenta | 2.7 | 1.5 | 6.9 | 0.9 |
Mastitis | 14.2 | 14.0 | 5.0 | 8.5 |
Lameness | 5.8 | 5.0 | 2.0 | 0.9 |
Displaced abomasum | 0 | 1.0 | 0 | 1.9 |
Ill 4 | 4.0 | 4.0 | 1.0 | 4.7 |
Pneumonia | 1.3 | 1.5 | 1.0 | 0 |
Culled or died 5 | 4.9 | 3.5 | 4.0 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wukadinovich, M.; Rossow, H.A. Production Responses of Holstein Dairy Cows to a Sodium Propionate Supplement Fed Postpartum to Prevent Hyperketonemia. Dairy 2023, 4, 527-540. https://doi.org/10.3390/dairy4040036
Wukadinovich M, Rossow HA. Production Responses of Holstein Dairy Cows to a Sodium Propionate Supplement Fed Postpartum to Prevent Hyperketonemia. Dairy. 2023; 4(4):527-540. https://doi.org/10.3390/dairy4040036
Chicago/Turabian StyleWukadinovich, Morgan, and Heidi A. Rossow. 2023. "Production Responses of Holstein Dairy Cows to a Sodium Propionate Supplement Fed Postpartum to Prevent Hyperketonemia" Dairy 4, no. 4: 527-540. https://doi.org/10.3390/dairy4040036
APA StyleWukadinovich, M., & Rossow, H. A. (2023). Production Responses of Holstein Dairy Cows to a Sodium Propionate Supplement Fed Postpartum to Prevent Hyperketonemia. Dairy, 4(4), 527-540. https://doi.org/10.3390/dairy4040036