Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrument Parameters
2.3. Preparation of Catalysts
2.3.1. Preparation of g-C3N4
2.3.2. Acid Treatment of g-C3N4
2.3.3. Alkaline Treatment of g-C3N4
2.3.4. Preparation of Ordered Mesoporous g-C3N4
2.3.5. Photocatalytic Degradation of Dyes
3. Results
3.1. Structural Analysis of g-C3N4 and Its Modified Materials
3.2. Morphological Structure
3.3. Thermal Stability
3.4. X-Ray Photoelectron Spectroscopy
3.5. Photocatalytic Studies
4. Discussion
4.1. Photophysical and Electrochemical Properties
4.2. Study on Photocatalytic Degradation of Dyes
4.3. Mechanism Study
4.4. Solar-Powered Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
g-C3N4: Graphitic carbon nitride |
RhB: Rhodamine B |
PXRD: Powder X-ray diffraction |
FT-IR: Fourier transform infrared spectrometer |
BET: Brunauer–Emmett–Teller specific surface area analysis |
SEM: Scanning electron microscope |
TEM: Transmission electron microscope |
References
- Downing, A.L. Research on Water Pollution. Nature 1964, 204, 817–818. [Google Scholar] [CrossRef]
- Ran, W.; Zhao, H.; Zhang, X.; Li, S.; Sun, J.-F.; Liu, J.; Liu, R.; Jiang, G. Critical Review of Pd-Catalyzed Reduction Process for Treatment of Waterborne Pollutants. Environ. Sci. Technol. 2024, 58, 3079–3097. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-W.; Yu, H.-Q.; Rittmann, B.E. Chemistry: Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.L.; Nine, M.J.; Hassan, K.; Tung, T.T.; Tran, D.N.H.; Losic, D. Graphene-Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress. Adv. Funct. Mater. 2021, 31, 2007356. [Google Scholar] [CrossRef]
- Khanam, S.; Rout, S.K. A Photocatalytic Hydrolysis and Degradation of Toxic Dyes by Using Plasmonic Metal–Semiconductor Heterostructures: A Review. Chemistry 2022, 4, 454–479. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, Z.; Qin, L.; Huang, D.; Yi, H.; Liu, X.; Liu, S.; Zhang, M.; Li, B.; Li, L.; et al. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. J. Hazard. Mater. 2022, 422, 126950. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Laishram, D.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Advancements in Biochar as a Sustainable Adsorbent for Water Pollution Mitigation. Adv. Sci. 2025, 12, 2410383. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, L.-Q.; Jiang, W. Biodegrading plastics with a synthetic non-biodegradable enzyme. Chem 2023, 9, 363–376. [Google Scholar] [CrossRef]
- Araujo, M.S.; Costa-Silva, D.; Izidoro, J.C.; Fungaro, D.A.; Castanho, S.M. Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater. Chemistry 2024, 7, 3. [Google Scholar] [CrossRef]
- Saafie, N.; Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry 2022, 4, 1576–1608. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Guo, Y.; Wang, Y.; Guan, T.; Bai, J.; Hu, D.; Li, H.; Du, J. Preparation of ultra-thin porous carbon nitride and its photocatalytic H2O2 production and photodegradation of RhB. Appl. Surf. Sci. 2022, 598, 153866. [Google Scholar] [CrossRef]
- Khanam, S.; Rout, S.K. Enhanced Photocatalytic Oxidation of RhB and MB Using Plasmonic Performance of Ag Deposited on Bi2WO6. Chemistry 2022, 4, 272–296. [Google Scholar] [CrossRef]
- Ashu Abey, S.; Reis, N.M.; Emanuelsson, E.A.C.; Expósito, A.J. Harnessing visible light: Advanced photocatalytic strategies for sustainable environmental reactions. Chem. Eng. J. 2025, 519, 164951. [Google Scholar] [CrossRef]
- Zheng, Z.; Tian, S.; Feng, Y.; Zhao, S.; Li, X.; Wang, S.; He, Z. Recent advances of photocatalytic coupling technologies for wastewater treatment. Chin. J. Catal. 2023, 54, 88–136. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Liu, B.; Zhang, Y.; Zhao, Y.; Wang, S. Directional Regulation of Reactive Oxygen Species in Titanium Dioxide Boosting the Photocatalytic Degradation Performance of Azo Dyes. J. Colloid Interface Sci. 2024, 673, 275–283. [Google Scholar] [CrossRef]
- Dong, F.; Pang, Z.; Yang, S.; Lin, Q.; Song, S.; Li, C.; Ma, X.; Nie, S. Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS Nano 2022, 16, 3449–3475. [Google Scholar] [CrossRef]
- Zhang, P.; He, M.; Teng, W.; Li, F.; Qiu, X.; Li, K.; Wang, H. Ordered mesoporous materials for water pollution treatment: Adsorption and catalysis. Green Energy Environ. 2024, 9, 1239–1256. [Google Scholar] [CrossRef]
- Song, Y.; Phipps, J.; Zhu, C.; Ma, S. Porous Materials for Water Purification. Angew. Chem. Int. Ed. 2023, 62, e202216724. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Khan, M.A.; Mutahir, S.; Shaheen, I.; Qunhui, Y.; Bououdina, M.; Humayun, M. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord. Chem. Rev. 2025, 522, 216227. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, H. Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chem. Eng. J. 2023, 453, 139755. [Google Scholar] [CrossRef]
- Wang, J.; Hao, D.; Ye, J.; Umezawa, N. Determination of Crystal Structure of Graphitic Carbon Nitride: Ab Initio Evolutionary Search and Experimental Validation. Chem. Mater. 2017, 29, 2694–2707. [Google Scholar] [CrossRef]
- Cai, W.; Cui, J.; Li, K.; Zhang, Z.; Xie, H.; Zhong, Q.; Qu, H. Insight into the surface property modification-enhanced C3N4 performance of photocatalytic nitrogen fixation. Chem. Commun. 2022, 58, 6502–6505. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, W.; Sun, C.; Han, L.; Qin, C.; Chen, M.; Wang, X.; Wang, E.; Su, Z. Oxidative Polyoxometalates Modified Graphitic Carbon Nitride for Visible-Light CO2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689–11695. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Liu, Y.; Peng, W.; Fu, X.; Zhou, J.; Han, L.; Hua, Y.; Zhou, Z.-Y. A multi-centre metal-free COF@g-C3N4 catalyst assembled with covalent bonds for photocatalytic CO2 reduction. Dalton Trans. 2025, 54, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wang, W.; Liu, G.; Chen, Z.; Lv, K.; Zhu, J. Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: Effect of preparation conditions. Appl. Surf. Sci. 2015, 358, 313–318. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, C.; Zhang, Q.; Zhang, Z.; Fang, X. Molecular engineering of supramolecular precursor to modulate g-C3N4 for boosting photocatalytic hydrogen evolution. Carbon 2020, 164, 337–348. [Google Scholar] [CrossRef]
- Ma, S.; Wang, S.; Wang, X.; Wang, S. Recent Progress on the Surface and Bulk Modification of Carbon Nitrides for Photocatalytic Carbon Dioxide Reduction. Energy Technol. 2024, 13, 2400136. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, X.; Zi, G.; Zhou, C.; Liu, B.; Liu, G.; Wang, L.; Huang, W. One-step Supramolecular Preorganization Constructed Crinkly Graphitic Carbon Nitride Nanosheets with Enhanced Photocatalytic Activity. J. Mater. Sci. Technol. 2022, 104, 155–162. [Google Scholar] [CrossRef]
- Hong, Z.; Shen, B.; Chen, Y.; Lin, B.; Gao, B. Enhancement of photocatalytic H2 evolution over nitrogen-deficient graphitic carbon nitride. J. Mater. Chem. A 2013, 1, 11754–11761. [Google Scholar] [CrossRef]
- Niu, P.; Yin, L.-C.; Yang, Y.-Q.; Liu, G.; Cheng, H.-M. Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self-Modification with Nitrogen Vacancies. Adv. Mater. 2014, 26, 8046–8052. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, K.; Zu, S.-Z.; Han, B.-H.; Wei, Z. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano 2010, 4, 5019–5026. [Google Scholar] [CrossRef]
- Sun, B.-w.; Yu, H.-y.; Yang, Y.-j.; Li, H.-j.; Zhai, C.-y.; Qian, D.-J.; Chen, M. New complete assignment of X-ray powder diffraction patterns in graphitic carbon nitride using discrete Fourier transform and direct experimental evidence. Phys. Chem. Chem. Phys. 2017, 19, 26072–26084. [Google Scholar] [CrossRef]
- Zuo, S.; Chen, J.; Liu, W.; Yao, C.; Mao, H.; Li, Y.; Fu, Y.; Liu, X. Photocatalytic activity of flower-like carbon/Ag3PO4 composite microspheres for pollutant degradation. Mater. Lett. 2017, 190, 134–137. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Xiao, K.; Ma, T.; Zhang, Y.; Huang, H. Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production. ACS Sustain. Chem. Eng. 2018, 6, 16219–16227. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Y.; Zong, Z.; Zhou, S.; Cui, H.; Tan, H. In situ growth of an ultrathin Cu/g-C3N4 coating over SBA-15 for catalytic wet air oxidation of pollutants under extremely mild conditions. Green Chem. 2024, 26, 6601–6615. [Google Scholar] [CrossRef]
- Huang, Z.; Li, F.; Chen, B.; Lu, T.; Yuan, Y.; Yuan, G. Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl. Catal. B Environ. 2013, 136–137, 269–277. [Google Scholar] [CrossRef]
- Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. J. Phys. Chem. C 2012, 116, 13708–13714. [Google Scholar] [CrossRef]
- Miao, X.; Yue, X.; Ji, Z.; Shen, X.; Zhou, H.; Liu, M.; Xu, K.; Zhu, J.; Zhu, G.; Kong, L.; et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight. Appl. Catal. B Environ. 2018, 227, 459–469. [Google Scholar] [CrossRef]
- Irran, E.; Jürgens, B.; Schnick, W. Synthesis, crystal structure determination from X-ray powder diffractometry and vibrational spectroscopy of the tricyanomelaminate monohydrates M3[C6N9]·H2O (M = K, Rb). Solid State Sci. 2002, 4, 1305–1311. [Google Scholar] [CrossRef]
- Lei, W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron Carbon Nitride Nanostructures from Salt Melts: Tunable Water-Soluble Phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis. Angew. Chem. Int. Ed. 2012, 51, 11814–11818. [Google Scholar] [CrossRef]
- Song, X.; Hu, Y.; Zheng, M.; Wei, C. Solvent-free in situ synthesis of g-C3N4 /{0 0 1}TiO2 composite with enhanced UV-and visible-light photocatalytic activity for NO oxidation. Appl. Catal. B 2016, 182, 587–597. [Google Scholar] [CrossRef]
- Han, H.; Wang, B.; Tang, Q.; Jia, S.; Liu, J.; Li, H.; Wang, C.; Xu, H.; Hua, Y. Non-metallic Nitrogen-Doped Graphene Quantum Dots Coupled with G-C3N4 Achieve Efficient Photocatalytic Performance. Appl. Surf. Sci. 2023, 649, 159171. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, M.; Sun, Y.; Shan, G.G.; Sun, C.Y.; You, S.Q.; Wang, X.L.; Kang, Z.H.; Su, Z.M. Dynamic Interface with Enhanced Visible-Light Absorption and Electron Transfer for Direct Photoreduction of Flue Gas to Syngas. ACS Appl. Mater. Interfaces 2022, 14, 6476–6483. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y.; Liu, J.; Li, S.-L.; Lan, Y.-Q. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 2022, 13, 4681. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, C.-X.; Zhou, J.; Hua, Y.; Zhou, Z.-Y.; Su, Z.-M. A covalent organic framework integrating photocatalytic center and electron reservoir for photocatalytic CO2 reduction to HCOOH. Sep. Purif. Technol. 2024, 346, 127466. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Wang, X.-H.; Guo, C.; Li, R.-H.; Zhuang, H.; Feng, W.; Hua, Y.; Lan, Y.-Q. In situ Construction of Single-Atom Electronic Bridge on COF to Enhance Photocatalytic H2 Production. Angew. Chem. Int. Ed. 2024, 63, e202411721. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Khan, I.; Yamani, Z.H.; Qurashi, A. Sonochemical Assisted Solvothermal Synthesis of Gallium Oxynitride Nanosheets and their Solar-Driven Photoelectrochemical Water-Splitting Applications. Sci. Rep. 2016, 6, 32319. [Google Scholar] [CrossRef]
- Kumar, D.P.; Hong, S.; Reddy, D.A.; Kim, T.K. Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2017, 212, 7–14. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, H.; Wang, X.; Feng, W. Photocatalytic, Fenton and Photo-Fenton Degradation of RhB over Z-scheme g-C3N4/LaFeO3 Heterojunction Photocatalysts. Mater. Sci. Semicon. Proc. 2018, 82, 14–24. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Seifzadeh, D. Novel Ternary g-C3N4 /Fe3O4/MnWO4 Nanocomposites: Synthesis, Characterization, and Visible-Light Photocatalytic Performance for Environmental Purposes. J. Mater. Sci. Technol. 2018, 34, 1638–1651. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Cesare, K.D.; Dumontel, B.; Garino, N.; Canavese, G.; Hernandez, S.; Cauda, V. Sonophotocatalytic Degradation Mechanisms of Rhodamine B Dye Via Radicals Generation by Micro- and Nano-Particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Hong, W.H.; Antonietti, M.; Thomas, A. Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites. Adv. Mater. 2009, 21, 4270–4274. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Wang, D.; Zhang, Q.; Zeng, J.; Zhang, R. Facile synthesis of nitrogen-defective g-C3N4 for superior photocatalytic degradation of rhodamine B. RSC Adv. 2021, 11, 30503–30509. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, C.; Wan, W.; Qian, K.; Xie, J. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 2016, 4, 1806–1818. [Google Scholar] [CrossRef]
- Qiu, L.; Zhou, Z.; Ma, M.; Li, P.; Lu, J.; Hou, Y.; Chen, X.; Duo, S. Enhanced Visible-Light Photocatalytic Performance of SAPO-5-Based g-C3N4 Composite for Rhodamine B (RhB) Degradation. Materials 2019, 12, 3948. [Google Scholar] [CrossRef]
- Kolesnyk, I.; Kujawa, J.; Bubela, H.; Konovalova, V.; Burban, A.; Cyganiuk, A.; Kujawski, W. Photocatalytic properties of PVDF membranes modified with g-C3N4 in the process of Rhodamines decomposition. Sep. Purif. Technol. 2020, 250, 117231. [Google Scholar] [CrossRef]
- Janardhana, D.; Jayaramu, S.N.; Coetsee, E.; Motaung, D.E.; Swart, H.C. Nanosheet g-C3N4 decorated α-Bi2O3:Eu3+ needles for efficient photocatalytic degradation of rhodamine B dye. Mat. Sci. Semicon. Proc. 2024, 184, 108789. [Google Scholar] [CrossRef]
- Zhao, F.; Khaing, K.K.; Yin, D.; Liu, B.; Chen, T.; Wu, C.; Huang, K.; Deng, L.; Li, L. Large enhanced photocatalytic activity of g-C3N4 by fabrication of a nanocomposite with introducing upconversion nanocrystal and Ag nanoparticles. RSC Adv. 2018, 8, 42308–42321. [Google Scholar] [CrossRef]
- Nisha, V.; Sasi, S.C.; Krishnan, R.; Paravannoor, A.; Palantavida, S.; Hinder, S.J.; Pillai, S.C.; Kizhakkekilikoodayil Vijayan, B. S-doped g-C3N4 for fluorescence sensing of Fe3+ and photocatalytic dye degradation under solar light. Next Mater. 2024, 2, 100082. [Google Scholar] [CrossRef]
Cat. | T/°C | k/min−1 | R2 of k | Ea/(kJ·mol−1) | R2 of Ea |
---|---|---|---|---|---|
g-C3N4-HS | 30 | 0.0231 | 0.981 | 28.9 | 0.964 |
35 | 0.0288 | 0.980 | |||
40 | 0.0354 | 0.984 | |||
45 | 0.0404 | 0.993 | |||
50 | 0.0451 | 0.990 | |||
g-C3N4-OH | 30 | 0.0220 | 0.995 | 23.7 | 0.987 |
35 | 0.0271 | 0.994 | |||
40 | 0.0305 | 0.989 | |||
45 | 0.0343 | 0.976 | |||
50 | 0.0404 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Liu, G.; Wang, X.; Liu, S.; Wang, J.; Cui, J.; Zhou, J.; Zhou, Z. Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications. Chemistry 2025, 7, 168. https://doi.org/10.3390/chemistry7050168
Pang H, Liu G, Wang X, Liu S, Wang J, Cui J, Zhou J, Zhou Z. Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications. Chemistry. 2025; 7(5):168. https://doi.org/10.3390/chemistry7050168
Chicago/Turabian StylePang, Hongwei, Guangyao Liu, Xinming Wang, Shuhe Liu, Juan Wang, Jinxian Cui, Jie Zhou, and Ziyan Zhou. 2025. "Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications" Chemistry 7, no. 5: 168. https://doi.org/10.3390/chemistry7050168
APA StylePang, H., Liu, G., Wang, X., Liu, S., Wang, J., Cui, J., Zhou, J., & Zhou, Z. (2025). Alkali-Melting-Induced g-C3N4 Nitrogen Defect Construction and Band Structure Regulation: Efficient Photocatalytic Dye Degradation and Solar-Driven Applications. Chemistry, 7(5), 168. https://doi.org/10.3390/chemistry7050168