Chemical Principles in Regulating Nanofluidic Memristors
Abstract
1. Introduction
2. Basic Concepts of Memristors
3. Fundamental Chemical Concepts in Nanofluidic Memristors
3.1. Electric Double Layer (EDL) Theory
3.1.1. Structure of the EDL
3.1.2. Influence of EDL on Memristive Behaviors
3.2. Ion Diffusion, Electrophoresis, and Electroosmosis
3.3. Physicochemical Mechanisms Underlying Memristive Effects in Nanofluidics
4. Chemical Design Strategies of Nanofluidic Memristors
4.1. pH-Responsive Coatings
4.2. Polyelectrolyte Layers
4.3. Biomimetic Coatings
5. Practical Implementation of Chemical Design in Nanofluidic Memristors
5.1. Ionic Synapse Mimicry
5.2. Integration into Next-Generation Computing Systems
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hou, Y.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629. [Google Scholar] [CrossRef]
- Xie, B.; Xiong, T.; Li, W.; Gao, T.; Zong, J.; Liu, Y.; Yu, P. Perspective on nanofluidic memristors: From mechanism to application. Chem. Asian J. 2022, 17, e202200682. [Google Scholar] [CrossRef]
- Hou, Y.; Ling, Y.; Wang, Y.; Wang, M.; Chen, Y.; Li, X.; Hou, X. Learning from the brain: Bioinspired nanofluidics. J. Phys. Chem. Lett. 2023, 14, 2891–2900. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Sun, M.; Lu, J.; Shi, D.; Xie, Y. Resistance-restorable nanofluidic memristor and neuromorphic chip. Nano Lett. 2025, 25, 6530–6538. [Google Scholar] [CrossRef] [PubMed]
- Emmerich, T.; Teng, Y.; Ronceray, N.; Lopriore, E.; Chiesa, R.; Chernev, A.; Artemov, V.; Di Ventra, M.; Kis, A.; Radenovic, A. Nanofluidic logic with mechano-ionic memristive switches. Nat. Electron. 2024, 7, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 2013, 4, 1771. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Lu, W. Nanoscale resistive switching devices: Mechanisms and modeling. Nanoscale 2013, 5, 10076–10092. [Google Scholar] [CrossRef]
- Chen, K.X.; Tsutsui, M.; Zhuge, F.W.; Zhou, Y.; Fu, Y.Y.; He, Y.H.; Miao, X.S. Nanochannel-based interfacial memristor: Electrokinetic analysis of the frequency characteristics. Adv. Electron. Mater. 2021, 7, e202000848. [Google Scholar] [CrossRef]
- Subramanian, Y.; Rajagopal, R.; Senthilkumar, B.; Park, Y.J.; Kang, S.; Jung, Y.J.; Ryu, K.S. Tuning of Li-argyrodites ionic conductivity through silicon substitution (Li6+xP1−xSixS5Cl0.5Br0.5) and their electrochemical performance in lithium solid state batteries. Electrochim. Acta 2021, 400, 139431. [Google Scholar] [CrossRef]
- Portillo, S.; Manzanares, J.A.; Ramirez, P.; Bisquert, J.; Mafe, S.; Cervera, J. pH-dependent effects in nanofluidic memristors. J. Phys. Chem. Lett. 2024, 15, 7793–7798. [Google Scholar] [CrossRef]
- Al-Shaeli, M.; Benkhaya, S.; Al-Juboori, R.A.; Koyuncu, I.; Vatanpour, V. pH-responsive membranes: Mechanisms, fabrications, and applications. Sci. Total Environ. 2024, 946, 173865. [Google Scholar] [CrossRef]
- Weng, X.D.; Bao, X.J.; Jiang, H.D.; Chen, L.; Ji, Y.L.; An, Q.F.; Gao, C.J. pH-responsive nanofiltration membranes containing carboxybetaine with tunable ion selectivity for charge-based separations. J. Membr. Sci. 2016, 520, 294–302. [Google Scholar] [CrossRef]
- Cheng, C.; Yaroshchuk, A.; Bruening, M.L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir 2013, 29, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Mulyati, S.; Takagi, R.; Fujii, A.; Ohmukai, Y.; Matsuyama, H. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition. J. Membr. Sci. 2013, 431, 113–120. [Google Scholar] [CrossRef]
- Ramirez, P.; Gómez, V.; Cervera, J.; Mafe, S.; Bisquert, J. Synaptical tunability of multipore nanofluidic memristors. J. Phys. Chem. Lett. 2023, 14, 10930–10934. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Shi, J.; Shi, J.; Zhang, L.; Cao, S.K. PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles. Mater. Sci. Eng. C 2013, 33, 3745–3752. [Google Scholar] [CrossRef]
- Wu, B.; Wang, X.W.; Yang, J.; Hua, Z.; Tian, K.Z.; Kou, R.; Zhang, J.; Ye, S.J.; Luo, Y.; Craig, V.S.J.; et al. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. Sci. Adv. 2016, 2, e201600579. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yaakob, S.M.; Rabat, N.E.; Shamsuddin, M.R.; Man, Z. Release kinetics study and anti-corrosion behaviour of a pH-responsive ionic liquid-loaded halloysite nanotube-doped epoxy coating. RSC Adv. 2020, 10, 13174–13184. [Google Scholar]
- Bulut, E. Design and optimization of pH-responsive chitosan-coated Zn-carboxymethyl cellulose hydrogel bead carriers for amoxicillin trihydrate delivery. Chemistryselect 2022, 7, e202200471. [Google Scholar] [CrossRef]
- Xiong, T.; Li, C.; He, X.; Xie, B.; Zong, J.; Jiang, Y.; Ma, W.; Wu, F.; Fei, J.; Yu, P.; et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161. [Google Scholar] [CrossRef]
- Ramirez, P.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. Memristive switching of nanofluidic diodes by ionic concentration gradients. Colloids Surf. A 2024, 698, 134525. [Google Scholar] [CrossRef]
- Noh, Y.; Smolyanitsky, A. Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport. Sci. Adv. 2024, 10, eadr1531. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Qian, Y.; Chen, W.; Wen, L.; Jiang, L. Engineering smart nanofluidic systems for artificial ion channels and ion pumps: From single-pore to multichannel membranes. Adv. Mater. 2020, 32, e201904351. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Biolek, D.; Biolek, Z. About fingerprints of Chua’s memristors. IEEE Circuits and Systems Magazine, 31 May 2018; pp. 35–47. [Google Scholar]
- Adhikari, S.P.; Sah, M.P.; Kim, H.; Chua, L.O. Three fingerprints of memristor. IEEE Trans. Circuit Syst. I 2013, 60, 3008–3021. [Google Scholar] [CrossRef]
- Yoon, S.M.; Yang, S.; Jung, S.W.; Byun, C.W.; Ryu, M.K.; Cheong, W.S.; Kim, B.; Oh, H.; Park, S.K.; Hwang, C.S.; et al. Polymeric ferroelectric and oxide semiconductor-based fully transparent memristor cell. Appl. Phys. A Mater. Sci. Process. 2011, 102, 983–990. [Google Scholar] [CrossRef]
- Sah, M.P.; Yang, C.; Kim, H.; Chua, L.O. Memristor circuit for artificial synaptic weighting of pulse inputs. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’12), Seoul, Republic of Korea, 20–23 May 2012; pp. 1604–1607. [Google Scholar]
- Sah, M.P.; Yang, C.; Kim, H.; Roska, T.; Chua, L. Memristor bridge circuit for neural synaptic weighting. In Proceedings of the 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Turin, Italy, 29–31 August 2012; pp. 1–5. [Google Scholar]
- Bu, Y.; Ahmed, Z.; Yobas, L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019, 144, 7168–7172. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Brown, W.; Li, Y.; Kvetny, M.; Liu, J.; Wang, G. Hysteresis charges in the dynamic enrichment and depletion of ions in single conical nanopores. ChemElectroChem 2018, 5, 3089–3095. [Google Scholar] [CrossRef]
- Gongadze, E.; Van Rienen, U.; Iglic, A. Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cell. Mol. Biol. Lett. 2011, 16, 576–594. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.L.; Wei, D. Scavenging energy and information through dynamically regulating the electrical double layer. Adv. Funct. Mater. 2024, 34, 2405520. [Google Scholar] [CrossRef]
- Ramirez, P.; Portillo, S.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. Neuromorphic responses of nanofluidic memristors in symmetric and asymmetric ionic solutions. J. Chem. Phys. 2024, 160, 044701. [Google Scholar] [CrossRef] [PubMed]
- Mercer, S.M.; Banks, J.M.; Leaist, D.G. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system. Phys. Chem. Chem. Phys. 2007, 9, 5457–5468. [Google Scholar] [CrossRef]
- Kazoe, Y.; Iseki, K.; Mawatari, K.; Kitamori, T. Evanescent wave-based particle tracking velocimetry for nanochannel flows. Anal. Chem. 2013, 85, 10780–10786. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Gopmandal, P.P. Effects of electroosmosis and counterion penetration on electrophoresis of a positively charged spherical permeable particle. Soft Matter 2013, 9, 1871–1884. [Google Scholar] [CrossRef]
- Bahga, S.S.; Moza, R.; Khichar, M. Theory of multi-species electrophoresis in the presence of surface conduction. Proc. R. Soc. A 2016, 472, 20150661. [Google Scholar] [CrossRef]
- Gopmandal, P.P.; Bhattacharyya, S. Electrokinetics of a charged permeable porous aggregate in an aqueous medium. Colloids Surf. A 2013, 433, 64–76. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bernal, E.E.L.; Yaroshchuk, A.; Bruening, M.L. Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes. Langmuir 2013, 29, 10287–10296. [Google Scholar] [CrossRef]
- Zhao, C.L.; Yang, C. Ion transport and selection through DCGC-based electroosmosis in a conducting nanofluidic channel. Microfluid. Nanofluid. 2015, 18, 785–794. [Google Scholar] [CrossRef]
- Keh, H.J. Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr. Opin. Colloid Interface Sci. 2016, 24, 13–22. [Google Scholar] [CrossRef]
- Shi, D.; Wang, W.; Liang, Y.; Duan, L.; Du, G.; Xie, Y. Ultralow energy consumption angstrom-fluidic memristor. Nano Lett. 2023, 23, 11662–11668. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabbagh, B.; Chen, Y.; Yossifon, G. Geometrically scalable iontronic memristors: Employing bipolar polyelectrolyte gels for neuromorphic systems. ACS Nano 2024, 18, 15025–15034. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, M.; Di Muccio, G.; Sauciuc, A.; Morozzo della Rocca, B.; Viola, F.; Balme, S.; Bonini, A.; Maglia, G.; Chinappi, M. Controlling electroosmosis in nanopores without altering the nanopore sensing region. Adv. Mater. 2024, 36, 2401761. [Google Scholar] [CrossRef] [PubMed]
- Marbach, S.; Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 2019, 48, 3102–3144. [Google Scholar] [CrossRef] [PubMed]
- Cervera, J.; Portillo, S.; Ramirez, P.; Mafe, S. Modeling of memory effects in nanofluidic diodes. Phys. Fluids 2024, 36, 047129. [Google Scholar] [CrossRef]
- Zhang, P.; Xia, M.; Zhuge, F.; Zhou, Y.; Wang, Z.; Dong, B.; Fu, Y.; Yang, K.; Li, Y.; He, Y.; et al. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 2019, 19, 4279–4286. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Wang, L.; Li, S.; Liu, H.; Zhu, X.; Chen, Y.; Xu, G.; Zhang, Q.; Liu, Q.; et al. Bio-inspired retina by regulating ion-confined transport in hydrogels. Adv. Mater. 2025, 37, 2500809. [Google Scholar] [CrossRef]
- Robin, P.; Emmerich, T.; Ismail, A.; Niguès, A.; You, Y.; Nam, G.H.; Keerthi, A.; Siria, A.; Geim, A.K.; Radha, B.; et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167. [Google Scholar] [CrossRef]
- Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, W.; Gao, C.; Jin, J.; Siraj, M.; Yan, P.; Sun, F.; Zhang, X.; Wang, Q.; Huang, W.; et al. Neural functions enabled by a polarity-switchable nanofluidic memristor. Nano Lett. 2024, 24, 12515–12521. [Google Scholar] [CrossRef]
- Paulo, G.; Sun, K.; Di Muccio, G.; Gubbiotti, A.; Morozzo della Rocca, B.; Geng, J.; Maglia, G.; Chinappi, M.; Giacomello, A. Hydrophobically gated memristive nanopores for neuromorphic applications. Nat. Commun. 2023, 14, 8390. [Google Scholar] [CrossRef]
- Ahn, E.; Gaiji, H.; Kim, T.; Abderrabba, M.; Lee, H.W.; Kim, B.S. Graphene oxide nanosheet as a two-dimensional polyelectrolyte: pH-responsive behavior of a multilayered nanomembrane. J. Membr. Sci. 2019, 585, 191–198. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, L.; Li, Z. Nanofluidic systems for ion transport with tunable surface charges: Fabrications, characterizations, and applications. Front. Lab Chip Technol. 2024, 3, 1356800. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Xu, Y. pH-responsive coating for ion-selective nanofluidic memristors. Adv. Funct. Mater. 2020, 30, 1909572. [Google Scholar]
- Liu, J.X.; Zhao, M.Z.; Deng, Y.; Tie, C.; Chen, H.X.; Zhou, Y.L.; Zhang, X.X. The coating of smart pH-responsive polyelectrolyte brushes in capillary and its application in CE. Electrophoresis 2013, 34, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.G.; Jiang, M.Y.; Zhao, J.; Cai, Y.J.; Li, X.Z.; Yang, X.; Jiang, H.; Sun, Y.X.; Wei, N.J.; Liu, Y.; et al. Polyelectrolyte-based antifouling and pH-responsive multilayer coatings for reverse osmosis membrane. Colloids Surf. A 2023, 679, 132642. [Google Scholar] [CrossRef]
- Fang, X.; Duan, S.; Wang, L. Memristive Hodgkin-Huxley spiking neuron model for reproducing neuron behaviors. Front. Neurosci. 2021, 15, 730566. [Google Scholar] [CrossRef]
- Emmerich, T.; Ronceray, N.; Agrawal, K.V.; Garaj, S.; Kumar, M.; Noy, A.; Radenovic, A. Nanofluidics. Nat. Rev. Methods Primers 2024, 4, 69. [Google Scholar] [CrossRef]
- Sheng, Q.; Xie, Y.; Li, J.; Wang, X.; Xue, J. Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor. Chem. Commun. 2017, 53, 6125–6127. [Google Scholar] [CrossRef]
- Wang, W.; Liang, Y.; Ma, Y.; Shi, D.; Xie, Y. Memristive characteristics in an asymmetrically charged nanochannel. J. Phys. Chem. Lett. 2024, 15, 6852–6858. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P.; Kong, X.Y.; Xie, G.; Qian, Y.; Wang, Z.; Tian, Y.; Wen, L.; Jiang, L. Bioinspired heterogeneous ion pump membranes: Unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. J. Am. Chem. Soc. 2018, 140, 1083–1090. [Google Scholar] [CrossRef]
- Faria-Pereira, A.; Morais, V.A. Synapses: The brain’s energy-demanding sites. Int. J. Mol. Sci. 2022, 23, 3627. [Google Scholar] [CrossRef]
- Magee, J.C.; Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 2020, 43, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Yu, L.; Guo, Z.; Bian, F.; Wang, Y.; Wang, X.; Hou, Y.; Hou, X. Single-pore nanofluidic logic memristor with reconfigurable synaptic functions and designable combinations. J. Am. Chem. Soc. 2024, 146, 14558–14565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jian, B.; Ling, Y.; Pan, Z.; Liu, F.; Hou, Y.; Huo, F.; Hou, X. Bioinspired nanofluidic circuits with integrating excitatory and inhibitory synapses. Nano Lett. 2025, 25, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Bisquert, J. Hysteresis, rectification, and relaxation times of nanofluidic pores for neuromorphic circuit applications. Adv. Phys. Res. 2024, 4, 202400029. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, X.; Liu, S.; Chen, Q.; Liu, G. Organic memristor with synaptic plasticity for neuromorphic computing applications. Nanomaterials 2023, 13, 803. [Google Scholar] [CrossRef]
- Yang, S.; Kim, T.; Kim, S.; Chung, D.; Kim, T.H.; Lee, J.K.; Kim, S.; Ismail, M.; Mahata, C.; Kim, S.; et al. Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems. Nanoscale 2023, 15, 13239–13251. [Google Scholar] [CrossRef]
- Qin, J.K.; Sun, H.L.; Huang, P.Y.; Li, Y.; Zhen, L.; Xu, C.Y. Synaptic plasticity realized by selective oxidation of TiS3 nanosheet for neuromorphic devices. RSC Adv. 2023, 13, 14849–14854. [Google Scholar] [CrossRef]
- Li, Y.; Su, K.; Chen, H.; Zou, X.; Wang, C.; Man, H.; Liu, K.; Xi, X.; Li, T. Research progress of neural synapses based on memristors. Electronics 2023, 12, 3298. [Google Scholar] [CrossRef]
- Mehonic, A.; Sebastian, A.; Rajendran, B.; Simeone, O.; Vasilaki, E.; Kenyon, A.J. Memristors-from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Adv. Intell. Syst. 2020, 2, 2000085. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, T.; Tappertzhofen, S.; Yang, Y.; Valov, I. Electrochemical-memristor-based artificial neurons and synapses—Fundamentals, applications, and challenges. Adv. Mater. 2023, 35, 2301924. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Jing, P.; Luo, Z.; Liu, K.; Zhao, X.; Lao, Y.; Yao, Q.; Zhong, C.; Fu, Q.; Zhu, J.; et al. Constructing a supercapacitor-memristor through non-linear ion transport in MOF nanochannels. Natl. Sci. Rev. 2024, 11, nwae322. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kaskel, S. Non-linear ion transport in nanopores for the design of ultracapacitive ionic memristors. Natl. Sci. Rev. 2025, 12, nwae437. [Google Scholar] [CrossRef] [PubMed]
- Boahen, E.K.; Kweon, H.; Oh, H.; Kim, J.H.; Lim, H.; Kim, D.H. Bio-inspired neuromorphic sensory systems from intelligent perception to nervetronics. Adv. Sci. 2025, 12, 2409568. [Google Scholar] [CrossRef]
- Kim, G.W.; Lee, M.; Bae, J.; Han, J.; Park, S.; Shim, W. Li-ion transport in two-dimensional nanofluidic membranes. Nano Converg. 2024, 11, 54. [Google Scholar] [CrossRef]
- Davis, S.J.; Macha, M.; Chernev, A.; Huang, D.M.; Radenovic, A.; Marion, S. Pressure-induced enlargement and ionic current rectification in symmetric nanopores. Nano Lett. 2020, 20, 8089–8095. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, B.; Alazzam, A.; Eissa, S.; Mohammad, B. Brain inspired iontronic fluidic memristive and memcapacitive device for self-powered electronics. Microsyst. Nanoeng. 2025, 11, 37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, H.; Hou, Y. Chemical Principles in Regulating Nanofluidic Memristors. Chemistry 2025, 7, 133. https://doi.org/10.3390/chemistry7040133
Zhou J, Li H, Hou Y. Chemical Principles in Regulating Nanofluidic Memristors. Chemistry. 2025; 7(4):133. https://doi.org/10.3390/chemistry7040133
Chicago/Turabian StyleZhou, Jiahui, Haotong Li, and Yaqi Hou. 2025. "Chemical Principles in Regulating Nanofluidic Memristors" Chemistry 7, no. 4: 133. https://doi.org/10.3390/chemistry7040133
APA StyleZhou, J., Li, H., & Hou, Y. (2025). Chemical Principles in Regulating Nanofluidic Memristors. Chemistry, 7(4), 133. https://doi.org/10.3390/chemistry7040133