Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers
Abstract
1. Introduction
2. Results
2.1. Structural Design
2.2. Synthesis
2.3. NMR Spectroscopic Binding Studies
2.4. Mass Spectrometric Binding Studies
2.5. UV-Vis and C.d. Spectroscopic Binding Studies
2.6. Fluorescence Spectroscopic Binding Studies
2.7. Calorimetric Binding Studies
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C.d. | Circular dichroism |
DFT | Density functional theory |
ITC | Isothermal titration calorimetry |
ESI | Electrospray ionization |
NMR | Nuclear magnetic resonance |
MS | Mass spectrometry |
ROESY | Rotating-frame nuclear Overhauser effect correlation spectroscopy |
TBTU | N,N,N′,N′-tetramethyluronium tetrafluoroborate |
References
- Ariga, K.; Hill, J.P.; Lee, M.V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 9, 014109. [Google Scholar] [CrossRef]
- Hartlieb, M.; Mansfield, E.D.H.; Perrier, S. A guide to supramolecular polymerizations. Polym. Chem. 2020, 11, 1083–1110. [Google Scholar] [CrossRef]
- Hutskalov, I.; Linden, A.; Čorić, I. Directional ionic bonds. J. Am. Chem. Soc. 2023, 145, 8291–8298. [Google Scholar] [CrossRef]
- Sijbesma, R.P.; Meijer, E.W. Self-assembly of well-defined structures by hydrogen bonding. Curr. Opin. Colloid Interface Sci. 1999, 4, 24–32. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y.; Li, Z.-T.; Huang, F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem. Soc. Rev. 2024, 53, 1592–1623. [Google Scholar] [CrossRef]
- Pizzi, A.; Dhaka, A.; Beccaria, R.; Resnati, G. Anion⋅⋅⋅anion self-assembly under the control of σ- and π-hole bonds. Chem. Soc. Rev. 2024, 53, 6654–6674. [Google Scholar] [CrossRef]
- Sun, W.-Y.; Yoshizawa, M.; Kusukawa, T.; Fujita, M. Multicomponent metal-ligand self-assembly. Curr. Opin. Chem. Biol. 2002, 6, 757–764. [Google Scholar] [CrossRef] [PubMed]
- McTernan, C.T.; Davies, J.A.; Nitschke, J.R. Beyond platonic: How to build metal-organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev. 2022, 122, 10393–10437. [Google Scholar] [CrossRef] [PubMed]
- Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 2002, 41, 898–952. [Google Scholar] [CrossRef]
- Pegu, O.A.; Moral, R.; Das, G. Anion coordination chemistry: An expedition towards designing of functional materials. Chem. Asian J. 2025, 20, e202401236. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, W.; Yang, X.-J.; Wu, B. Anion-coordination-driven assembly. Acc. Chem. Res. 2022, 55, 3218–3229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, Y.; Li, B.; Yang, D.; Hou, L.; Zhao, W.; Yang, X.-J.; Wu, B. Acid-tolerant sulfate tetrahedral cages from anion coordination-driven assembly. Chem. Eur. J. 2022, 28, e202103671. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Yang, Y.; Jia, C. Less is more: From inorganic-phosphate to organophosphate directed anionocages. Mat. Chem. Front. 2023, 7, 5041–5045. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Shao, J.-Y.; Gong, Z.-L.; Liang, T.; Hao, X.; Yao, J.; Zhong, Y.-W. Self-healing 2D anion-organic frameworks for low-temperature water release. Angew. Chem. Int. Ed. 2025, 64, e202419096. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Zhang, H.; Lv, R.; Yu, L.; Marchesan, S.; Yang, D. Hierarchically self-assembled anion-coordination-driven gels for guest segregation and electrical sensing. Angew. Chem. Int. Ed. 2025, 64, e202504207. [Google Scholar] [CrossRef]
- Lv, X.; Deng, X.; Zuo, W.; Wang, Y.; Fan, C.; Jia, C. Double-helical chain directed by sulfate and phosphate tetramers. Cryst. Growth Des. 2025, 25, 680–686. [Google Scholar] [CrossRef]
- Lankshear, M.D.; Beer, P.D. Interweaving anion templation. Acc. Chem. Res. 2007, 40, 657–668. [Google Scholar] [CrossRef]
- Mullen, K.M.; Beer, P.D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. Chem. Soc. Rev. 2009, 38, 1701–1713. [Google Scholar] [CrossRef]
- Wilmore, J.T.; Beer, P.D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. 2024, 36, 2309098. [Google Scholar] [CrossRef] [PubMed]
- Bąk, K.M.; Trzaskowski, B.; Chmielewski, M.J. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem. Sci. 2024, 15, 1796–1809. [Google Scholar] [CrossRef]
- Hossain, M.A.; Llinares, J.M.; Powell, D.; Bowman-James, K. Multiple hydrogen bond stabilization of a sandwich complex of sulfate between two macrocyclic tetraamides. Inorg. Chem. 2001, 40, 2936–2937. [Google Scholar] [CrossRef]
- Choi, K.; Hamilton, A.D. Rigid macrocyclic triamides as anion receptors: Anion-dependent binding stoichiometries and 1H chemical shift changes. J. Am. Chem. Soc. 2003, 125, 10241–10249. [Google Scholar] [CrossRef]
- Lee, S.; Chen, C.-H.; Flood, A.H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 2013, 5, 704–710. [Google Scholar] [CrossRef]
- Fatila, E.M.; Twum, E.B.; Karty, J.A.; Flood, A.H. Ion pairing and co-facial stacking drive high-fidelity bisulfate assembly with cyanostar macrocyclic hosts. Chem. Eur. J. 2017, 23, 10652–10662. [Google Scholar] [CrossRef]
- Kubik, S. Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc. Chem. Res. 2017, 50, 2870–2878. [Google Scholar] [CrossRef]
- Sommer, F.; Marcus, Y.; Kubik, S. Effects of solvent properties on the anion binding of neutral water-soluble bis(cyclopeptides) in water and aqueous solvent mixtures. ACS Omega 2017, 2, 3669–3680. [Google Scholar] [CrossRef]
- Mommer, S.; Wyrwol, B.; Bos, J.E.; Kubik, S.; Wezenberg, S.J. Light and protonation-controlled complex formation between sulfate ions and a stiff-stilbene based bis(cyclopeptide). Chem. Sci. 2025, 16, 7822–7828. [Google Scholar] [CrossRef]
- Rodriguez-Docampo, Z.; Pascu, S.I.; Kubik, S.; Otto, S. Noncovalent interactions within a synthetic receptor can reinforce guest binding. J. Am. Chem. Soc. 2006, 128, 11206–11210. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2676–2890. [Google Scholar] [CrossRef] [PubMed]
- Mendicuti, F.; Patel, B.; Mattice, W.L. Intramolecular excimer formation in model compounds for polyesters prepared from 2,6-naphthalene dicarboxylic acid and eight different glycols. Polymer 1990, 31, 453–457. [Google Scholar] [CrossRef]
- Hübler, C. SupraFit—An open source Qt based fitting application to determine stability constants from titration experiments. Chem. Methods 2022, 2, e202200006. [Google Scholar] [CrossRef]
- Kubik, S.; Goddard, R. Conformation and anion binding properties of cyclic hexapeptides containing L-4-hydroxyproline and 6-aminopicolinic acid subunits. Proc. Natl. Acad. Sci. USA. 2002, 99, 5127–5132. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaitatzi, E.; Fritsche, L.; Kubik, S. Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers. Chemistry 2025, 7, 129. https://doi.org/10.3390/chemistry7040129
Kaitatzi E, Fritsche L, Kubik S. Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers. Chemistry. 2025; 7(4):129. https://doi.org/10.3390/chemistry7040129
Chicago/Turabian StyleKaitatzi, Elisavet, Linda Fritsche, and Stefan Kubik. 2025. "Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers" Chemistry 7, no. 4: 129. https://doi.org/10.3390/chemistry7040129
APA StyleKaitatzi, E., Fritsche, L., & Kubik, S. (2025). Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers. Chemistry, 7(4), 129. https://doi.org/10.3390/chemistry7040129