Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Ligand 1
2.2. UV–Vis and Fluorescent Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NMR | Nuclear magnetic resonance |
TMS | Tetramethylsilane |
PET | Photo-induced electron transfer |
RIR | Restricts intramolecular rotations |
CHEF | Chelation-enhanced fluorescence |
ESIPT | Excited-state intramolecular proton transfer |
IR | Infrared spectra |
References
- Chan, W.C.; Ng, M.P.; Ang, C.W.; Sim, K.S.; Tan, K.W. From Lab to Life: Safe and Efficient Optical Based Dual-Mode Chemosensor for the Detection of Aluminium (III) and Copper (II) Ions. Inorganica Chim. Acta 2023, 557, 121703. [Google Scholar] [CrossRef]
- Sultana, T.; Mahato, M.; Tohora, N.; Ahamed, S.; Das, S.K. An Azine-Based Chromogenic, Fluorogenic Probe for Specific Cascade Detection of Al3+ and PO43− Ions. J. Photochem. Photobiol. A Chem. 2023, 444, 114951. [Google Scholar] [CrossRef]
- Hwang, G.W.; Jeon, J.; Neupane, L.N.; Lee, K.-H. Sensitive Ratiometric Detection of Al(III) Ions in a 100% Aqueous Buffered Solution Using a Fluorescent Probe Based on a Peptide Receptor. New J. Chem. 2018, 42, 1437–1445. [Google Scholar] [CrossRef]
- Flaten, T.P. Aluminium as a Risk Factor in Alzheimer’s Disease, with Emphasis on Drinking Water. Brain Res. Bull. 2001, 55, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Inan-Eroglu, E.; Ayaz, A. Is Aluminum Exposure a Risk Factor for Neurological Disorders? J. Res. Med. Sci. 2018, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- Bortoli, P.M.; Alves, C.; Costa, E.; Vanin, A.P.; Sofiatti, J.R.; Siqueira, D.P.; Dallago, R.M.; Treichel, H.; Vargas, G.D.L.P.; Kaizer, R.R. Ilex Paraguariensis: Potential Antioxidant on Aluminium Toxicity, in an Experimental Model of Alzheimer’s Disease. J. Inorg. Biochem. 2018, 181, 104–110. [Google Scholar] [CrossRef]
- Roszak, J.; Domeradzka-Gajda, K.; Smok-Pieniążek, A.; Kozajda, A.; Spryszyńska, S.; Grobelny, J.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Cieślak, M.; Puchowicz, D.; et al. Genotoxic Effects in Transformed and Non-Transformed Human Breast Cell Lines after Exposure to Silver Nanoparticles in Combination with Aluminium Chloride, Butylparaben or Di-n-Butylphthalate. Toxicol. Vitr. 2017, 45, 181–193. [Google Scholar] [CrossRef]
- Perl, D.P.; Brody, A.R. Alzheimer’s Disease: X-Ray Spectrometric Evidence of Aluminum Accumulation in Neurofibrillary Tangle-Bearing Neurons. Science 1980, 208, 297–299. [Google Scholar] [CrossRef]
- World Health Organization. Evaluation of Certain Food Additives and Contaminants. In WHO Technical Report Series; WHO Press: Geneve, Switzerland, 2011; Volume 966, pp. 7–18. [Google Scholar]
- Raju, L.; Deviga, G.; Mariappan, M.; Rajkumar, E. Zinc in Industry. In Zinc; Sukumar, E., Vinothkumar, K., Manickavasagan, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024; p. 18. [Google Scholar]
- Patil, R.; Sontakke, T.; Biradar, A.; Nalage, D. Zinc: An Essential Trace Element for Human Health and Beyond. Food Health 2023, 5, 13. [Google Scholar] [CrossRef]
- Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. [Google Scholar] [CrossRef]
- Aydin, D. A Novel Turn on Fluorescent Probe for the Determination of Al3+ and Zn2+ Ions and Its Cells Applications. Talanta 2020, 210, 120615. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.C.; Lo, M.N.; Palmer, A.E. Techniques for Measuring Cellular Zinc. Arch. Biochem. Biophys. 2016, 611, 20–29. [Google Scholar] [CrossRef]
- Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J.; Chattopadhyay, P. A Water Soluble Al3+ Selective Colorimetric and Fluorescent Turn-on Chemosensor and Its Application in Living Cell Imaging. Analyst 2012, 137, 3975. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, J.; Wang, H.; Ran, C.; Su, Y.; Zhao, L. A Highly Selective Turn-on Fluorescent Probe for the Detection of Aluminum and Its Application to Bio-Imaging. Sensors 2019, 19, 2423. [Google Scholar] [CrossRef]
- Balamurugan, G.; Velmathi, S.; Thirumalaivasan, N.; Wu, S.P. New Phenazine Based AIE Probes for Selective Detection of Aluminium(III) Ions in Presence of Other Trivalent Metal Ions in Living Cells. Analyst 2017, 142, 4721–4726. [Google Scholar] [CrossRef] [PubMed]
- Leuci, R.; Brunetti, L.; Laghezza, A.; Loiodice, F.; Tortorella, P.; Piemontese, L. Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. Appl. Sci. 2020, 10, 4118. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Boron Dipyrromethene Fluorophore Based Fluorescence Sensor for the Selective Imaging of Zn(II) in Living Cells. Org. Biomol. Chem. 2005, 3, 1387. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, H.; Fang, Y.; Liu, C.; Li, X.; Zhang, X.; Ma, L.; Wang, K.; Yu, M.; Sheng, W.; et al. An Ultra-Sensitive Fluorescent Probe for Recognition of Aluminum Ions and Its Application in Environment, Food, and Living Organisms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 307, 123578. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, W.; Xue, Y.; Zhang, J. Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. Chemosensors 2023, 11, 226. [Google Scholar] [CrossRef]
- Roy, N.; Pramanik, H.A.R.; Paul, P.C.; Singh, T.S. A Highly Sensitive and Selective Fluorescent Chemosensor for Detection of Zn2+ Based on a Schiff Base. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 140, 150–155. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Xing, Z.; Huang, Y.; Ling, L.; Mo, X. A Novel Dual-Function Probe for Fluorescent Turn-on Recognition and Differentiation of Al3+ and Ga3+ and Its Application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 287, 122076. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sun, J.; Yin, B. A Dual-Response Fluorescent Probe for Zn2+ and Al3+ Detection in Aqueous Media: PH-Dependent Selectivity and Practical Application. Anal. Chim. Acta 2016, 942, 104–111. [Google Scholar] [CrossRef]
- Wen, J.; Hua, Q.; Ding, S.; Sun, A.; Xia, Y. Recent Advances in Fluorescent Probes for Zinc Ions Based on Various Response Mechanisms. Crit. Rev. Anal. Chem. 2024, 54, 3313–3344. [Google Scholar] [CrossRef]
- Chhikara, A.; Tomar, D.; Bartwal, G.; Chaurasia, M.; Sharma, A.; Gopal, S.; Chandra, S. Thiadiazole Functionalized Salicylaldehyde-Schiff Base as a PH-Responsive and Chemo-Reversible “Turn-Off” Fluorescent Probe for Selective Cu (II) Detection: Logic Gate Behaviour and Molecular Docking Studies. J. Fluoresc. 2023, 33, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Aktara, M.N.; Das, S.; Nayim, S.; Sahoo, N.K.; Beg, M.; Jana, G.C.; Maji, A.; Jha, P.K.; Hossain, M. A Sensorial Colorimetric Detection Method for Hg2+ and Cu2+ Ions Using Single Probe Sensor Based on 5-Methyl-1,3,4-Thiadiazole-2-Thiol Stabilized Gold Nanoparticles and Its Application in Real Water Sample Analysis. Microchem. J. 2019, 147, 1163–1172. [Google Scholar] [CrossRef]
- Manna, A.K.; Chowdhury, S.; Patra, G.K. Combined Experimental and Theoretical Studies on a Phenyl Thiadiazole-Based Novel Turn-on Fluorescent Colorimetric Schiff Base Chemosensor for the Selective and Sensitive Detection of Al3+. New J. Chem. 2020, 44, 10819–10832. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, S.; Mahajan, A.; Singh, K. Highly Selective Colorimetric Sensor for Zn2+ Based on Hetarylazo Derivative. Inorg. Chem. Commun. 2008, 11, 626–629. [Google Scholar] [CrossRef]
- Mullick, P.; Khan, S.A.; Verma, S.; Alam, O. Thiadiazole Derivatives as Potential Anticonvulsant Agents. Bull. Korean Chem. Soc. 2011, 32, 1011–1016. [Google Scholar] [CrossRef]
- Muglu, H.; Vurdu, C.D.; Sayiner, G.; Cavus, M.S.; Kandemirli, F.; Ahmedzade, M. Synthesis and Theoretical Study of 5-Phenyl-1,3,4-Thiadiazole Derivatives. J. Mater. Environ. Sci. 2015, 6, 184–190. [Google Scholar]
- Zhang, Z.; Liu, C.; Lu, Y.; Zhao, W.; Zhu, Q.; He, H.; Chen, Z.; Wu, W. In Vivo Fluorescence Imaging of Nanocarriers in Near-Infrared Window II Based on Aggregation-Caused Quenching. J. Nanobiotechnol. 2024, 22, 488. [Google Scholar] [CrossRef]
- Leng, X.; Xu, W.; Qiao, C.; Jia, X.; Long, Y.; Yang, B. New Rhodamine B-Based Chromo-Fluorogenic Probes for Highly Selective Detection of Aluminium(III) Ions and Their Application in Living Cell Imaging. RSC Adv. 2019, 9, 6027–6034. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Jin, X.; Wang, J.; Han, S.; Wu, W.; Xu, J.; Liu, W.; Yao, X.; Tang, Y. A Bimodal Multianalyte Simple Molecule Chemosensor for Mg2+, Zn2+, and Co2+. Dalt. Trans. 2014, 43, 1881–1887. [Google Scholar] [CrossRef]
- Sing Lai, C.; Tiekink, E.R.T. Crystallographic Report: (2,9-Dimethyl-1,10-phenanthroline)Bis-(N,N-pyrrolidinedithiocarbamato)Zinc(II) Chloroform Hemihydrate. Appl. Organomet. Chem. 2003, 17, 255–256. [Google Scholar] [CrossRef]
- Caruso, U.; Panunzi, B.; Roviello, A.; Tingoli, M.; Tuzi, A. Two Aminobenzothiazole Derivatives for Pd(II) and Zn(II) Coordination. Inorg. Chem. Commun. 2011, 14, 46–48. [Google Scholar] [CrossRef]
- Ayers, P.W.; Parr, R.G.; Pearson, R.G. Elucidating the Hard/Soft Acid/Base Principle: A Perspective Based on Half-Reactions. J. Chem. Phys. 2006, 124, 194107. [Google Scholar] [CrossRef]
- Damu, K.V.; Shaikjee, M.S.; Michael, J.P.; Howard, A.S.; Hancock, R.D. Control of Metal Ion Selectivity in Ligands Containing Neutral Oxygen and Pyridyl Groups. Inorg. Chem. 1986, 25, 3879–3883. [Google Scholar] [CrossRef]
- Liu, C.; An, X.; Cui, Y.; Xie, K.; Dong, W. Novel Structurally Characterized Hetero-bimetallic [Zn(II) 2 M(II)] (M = Ca and Sr) Bis (Salamo)-type Complexes: DFT Calculation, Hirshfeld Analyses, Antimicrobial and Fluorescent Properties. Appl. Organomet. Chem. 2020, 34, e5272. [Google Scholar] [CrossRef]
- Majumder, I.; Chakraborty, P.; Álvarez, R.; Gonzalez-Diaz, M.; Peláez, R.; Ellahioui, Y.; Bauza, A.; Frontera, A.; Zangrando, E.; Gómez-Ruiz, S.; et al. Bioactive Heterometallic Cu II –Zn II Complexes with Potential Biomedical Applications. ACS Omega 2018, 3, 13343–13353. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Q.; Yang, S.-H.; Li, Y.; Ye, W.-X.; Liao, Z.-Y.; Lu, J.-Q.; Wang, Z.-Y. Schiff Base Compounds Derived from 5-Methyl Salicylaldehyde as Turn-On Fluorescent Probes for Al3+ Detection: Experimental and DFT Calculations. Molecules 2025, 30, 1128. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Y.; Li, L.; Sang, W.; Feng, S.; Wang, Y.; Zhang, C.; Yang, S.; Xu, L.; Lu, W. A Benzothiazole-Modified Quinoline Schiff Base Fluorescent Probe for Selective Detection of Zn2+ Ions, DFT Studies and Its Application in Live Cell Imaging. New J. Chem. 2025, 49, 2192–2200. [Google Scholar] [CrossRef]
- Musikavanhu, B.; Liang, Y.; Xue, Z.; Feng, L.; Zhao, L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023, 28, 6960. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda, 4th ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredia-Moya, J.; Fiallos-Ayala, A.; Cevallos-Vallejo, A. Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions. Chemistry 2025, 7, 128. https://doi.org/10.3390/chemistry7040128
Heredia-Moya J, Fiallos-Ayala A, Cevallos-Vallejo A. Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions. Chemistry. 2025; 7(4):128. https://doi.org/10.3390/chemistry7040128
Chicago/Turabian StyleHeredia-Moya, Jorge, Ariana Fiallos-Ayala, and Amanda Cevallos-Vallejo. 2025. "Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions" Chemistry 7, no. 4: 128. https://doi.org/10.3390/chemistry7040128
APA StyleHeredia-Moya, J., Fiallos-Ayala, A., & Cevallos-Vallejo, A. (2025). Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions. Chemistry, 7(4), 128. https://doi.org/10.3390/chemistry7040128