Aromaticity and Antiaromaticity: How to Define Them
Abstract
1. Introduction
2. Many Types of Aromaticity but Only One Effect
3. Aromaticity and Energy
Evaluation of Aromatic Stabilization Energy
4. Aromaticity and Electron Delocalization
Measures of Electron Delocalization
5. Aromaticity and Molecular Geometry
6. Aromaticity and Molecular Response to an External Magnetic Field
7. Antiaromaticity
8. Aromaticity and Antiaromaticity in Excited States: Baird’s Rule
9. Is (Anti)aromaticity Characteristic of Small Rings?
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Phil. Trans. R. Soc. Lond. 1825, 115, 440–466. [Google Scholar] [CrossRef]
- Mitscherlich, E. Ueber das Benzol und die Säuren der Oel- und Talgarten. Ann. Pharm. 1834, 9, 39–48. [Google Scholar] [CrossRef]
- Hofmann, A.W. On Insolinic Acid. Proc. R. Soc. 1856, 8, 1–3. [Google Scholar] [CrossRef]
- Kekulé, A. Sur la constitution des substances aromatiques. Bull. Soc. Chim. Fr. 1865, 3, 98–111. Available online: https://lib.ugent.be/fulltxt/RUG01/001/282/677/RUG01-001282677_2009_0001_AC.pdf (accessed on 8 July 2025).
- Kekulé, A. Untersuchungen über aromatische Verbindungen. Ann. Chem. Pharm. 1866, 137, 129–196. [Google Scholar] [CrossRef]
- Kekulé, A. Ueber einige Condensationsproducte des Aldehyds. Ann. Chem. Pharm. 1872, 162, 77–124. [Google Scholar] [CrossRef]
- Gero, A. Kekulé’s theory of aromaticity. J. Chem. Edu. 1954, 31, 201–202. [Google Scholar] [CrossRef]
- Wentrup, C. Kekulé’s Oscillating D3h Cyclohexatriene Structure of Benzene. Eur. J. Org. Chem. 2023, 26, e202201308. [Google Scholar] [CrossRef]
- Lonsdale, K. The Structure of the Benzene Ring in C6(CH3)6. Proc. R. Soc. Lond. Ser. A 1929, 123, 494–515. [Google Scholar] [CrossRef]
- Slater, J.C. Directed valenve in polyatomic molecules. Phys. Rev. 1931, 37, 481–489. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornel Univeristy Press: New York, NY, USA, 1960; Available online: https://dn790000.ca.archive.org/0/items/natureofthechemicalbondpauling/Nature-Of-The-Chemical-Bond-Pauling.pdf (accessed on 8 July 2025).
- Pauling, L.; Wheland, G.W. The Nature of the Chemical Bond. V. The Quantum-Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals. J. Chem. Phys. 1933, 1, 362–374. [Google Scholar] [CrossRef]
- Hückel, E. Quantentheoretische Beitrgge zum Benzolproblem. I. Die Elekfronenkonfigurafion des Benzols und verwandfer Verbindungen. Z. Physik 1931, 70, 204–286. [Google Scholar] [CrossRef]
- Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polarifiiten. Z. Physik 1931, 72, 310–337. [Google Scholar] [CrossRef]
- Hückel, E. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Z. Physik 1932, 76, 628–648. [Google Scholar] [CrossRef]
- Hückel, E. Die freien Radikale der organischen Chemie. Quantentheoretische Beiträge zum Problem der aromatischen und ungesäittigten Verbindungen. IV. Z. Physik 1933, 83, 632–668. [Google Scholar] [CrossRef]
- Stanger, A. What is... aromaticity: A critique of the concept of aromaticity—Can it really be defined? Chem. Commun. 2009, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. [Google Scholar] [CrossRef]
- Randić, M. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chem. Rev. 2003, 103, 3449–3605. [Google Scholar] [CrossRef]
- von Ragué Schleyer, P. Introduction: Aromaticity. Chem. Rev. 2001, 101, 1115–1117. [Google Scholar] [CrossRef]
- Nyulászi, L. Aromaticity of Phosphorus Heterocycles. Chem. Rev. 2001, 101, 1229–1246. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Slanina, T.; Bergman, J.; Ottosson, H. Photochemistry Driven by Excited-State Aromaticity Gain or Antiaromaticity Relief. Chem. Eur. J. 2023, 29, e202203748. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Osuka, A.; Kim, D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem. Soc. Rev. 2022, 51, 268–292. [Google Scholar] [CrossRef]
- El Baqouri, O.; Smith, J.R.; Ottosson, H. Strategies for Design of Potential Singlet Fission Chromophores Utilizing a Combination of Ground-State and Excited-StateAromaticity Rules. J. Am. Chem. Soc. 2020, 142, 5602–5617. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Sung, Y.M.; Hong, Y.; Kim, D. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal. Acc. Chem. Res. 2018, 51, 1349–1358. [Google Scholar] [CrossRef]
- Papadakis, R.; Ottosson, H. The excited state antiaromatic benzene ring: A molecular Mr Hyde? Chem. Soc. Rev. 2015, 44, 6472–6493. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Dahlstrand, C.; Kilså, K.; Ottosson, H. Excited State Aromaticity and Antiaromaticity: Opportunities for Photophysical and Photochemical Rationalizations. Chem. Rev. 2014, 114, 5379–5425. [Google Scholar] [CrossRef] [PubMed]
- Ottosson, H. Exciting excited-state aromaticity. Nat. Chem. 2012, 4, 969–971. [Google Scholar] [CrossRef]
- Chen, Z.; King, R.B. Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. Chem. Rev. 2005, 105, 3613–3642. [Google Scholar] [CrossRef] [PubMed]
- Bühl, M.; Hirsch, A. Spherical Aromaticity of Fullerenes. Chem. Rev. 2001, 101, 1153–1183. [Google Scholar] [CrossRef]
- El Bakouri, O.; Szczepanik, D.W.; Jorner, K.; Ayub, R.; Bultinck, P.; Solà, M.; Ottosson, H. Three-Dimensional Fully π-Conjugated Macrocycles: When 3DAromatic and When 2D-Aromatic-in-3D? J. Am. Chem. Soc. 2022, 144, 8560–8575. [Google Scholar] [CrossRef]
- King, R.B. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chem. Rev. 2001, 101, 1119–1152. [Google Scholar] [CrossRef]
- Williams, R.V. Homoaromaticity. Chem. Rev. 2001, 101, 1185–1204. [Google Scholar] [CrossRef]
- Jorner, K.; Jahn, B.O.; Bultinck, P.; Ottosson, H. Triplet state homoaromaticity: Concept, computational validation and experimental relevance. Chem. Sci. 2018, 9, 3165–3176. [Google Scholar] [CrossRef]
- Rzepa, H.S. Möbius Aromaticity and Delocalization. Chem. Rev. 2005, 105, 3697–3715. [Google Scholar] [CrossRef]
- Mercero, J.M.; Boldyrev, A.I.; Merino, G.; Ugalde, J.M. Recent developments and future prospects of all-metal aromatic compounds. Chem. Soc. Rev. 2015, 44, 6519–6534. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.I.; Wang, L.-S. All-Metal Aromaticity and Antiaromaticity. Chem. Rev. 2005, 105, 3716–3757. [Google Scholar] [CrossRef]
- Chen, D.; Szczepanik, D.W.; Zhu, J.; Solà, M. All-metal Baird aromaticity. Chem. Commun. 2020, 56, 12522–12525. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Y.; Ma, J.; Zhu, J.; Xie, J.; Solà, M.; Zhu, C.; Zhu, Q. Neutral All-Metal σ-Aromaticity in a Rhombic Cluster. J. Am. Chem. Soc. 2025, 147, 14769–14776. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-S.; Xu, H.-L.; Tian, W.-J.; Li, Z.-S.; Escayola, S.; Solà, M.; Muñoz-Castro, A.; Sun, Z.-M. [Co3@Ge6Sn18]5−: A Giant σ-Aromatic Cluster Analogous to H3+ and Li3+. J. Am. Chem. Soc. 2025, 147, 9407–9414. [Google Scholar] [CrossRef]
- Tkachenko, N.V.; Boldyrev, A.I. Multiple local σ-aromaticity of nonagermanide clusters. Chem. Sci. 2019, 10, 5761–5765. [Google Scholar] [CrossRef]
- Popov, A.I.; Starikova, A.A.; Steglenko, D.V.; Boldyrev, A.I. Usefulness of the σ-Aromaticity and σ-Antiaromaticity Concepts for Clusters and Solid-State Compounds. Chem. Eur. J. 2018, 24, 292–305. [Google Scholar] [CrossRef]
- Cocq, K.; Lepetit, C.; Maraval, V.; Chauvin, R. “Carbo-aromaticity” and novel carbo-aromatic compounds. Chem. Soc. Rev. 2015, 44, 6535–6559. [Google Scholar] [CrossRef]
- Song, Y.; Pan, S.; Zhu, J. NO-induced adaptive aromaticity in furan, thiophene and selenophene. New J. Chem. 2025, 49, 6038–6045. [Google Scholar] [CrossRef]
- Ye, Q.; Fang, Y.; Zhu, J. Adaptive Aromaticity in 18e Metallapentalenes. Inorg. Chem. 2023, 62, 14764–14772. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Su, J.; Zhu, J. Probing the mechanism of adaptive aromaticity in metallapyridiniums. Inorg. Chem. Front. 2023, 10, 934–941. [Google Scholar] [CrossRef]
- Đorđević, S.; Poater, J.; Solà, M.; Radenković, S. Oxidation-induced double aromaticity in periodopolycyclic hydrocarbons. Chem. Sci. 2025, 16, 9920–9933. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, M.; Kanatomi, Y.; Minoura, M.; Hatanaka, M.; Morokuma, K.; Ishimura, K.; Saito, M. Double aromaticity arising from σ-and π-rings. Commun. Chem. 2018, 1, 60. [Google Scholar] [CrossRef]
- Kozáková, S.; Alharzali, N.; Černušák, I. Cyclo[n]carbons and catenanes from different perspectives: Disentangling the molecular thread. Phys. Chem. Chem. Phys. 2023, 25, 29386–29403. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.L.; Patrick, C.W.; Scriven, L.M.; Woltering, S.L. A Short History of Cyclocarbons. Bull. Chem. Soc. Jpn. 2021, 94, 798–811. [Google Scholar] [CrossRef]
- Wodrich, M.D.; Corminboeuf, C.; Park, S.S.; Schleyer, P.v. Double Aromaticity in Monocyclic Carbon, Boron, and Borocarbon Rings Based on Magnetic Criteria. Chem. Eur. J. 2007, 13, 4582–4593. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, K.; Guha, A.K. Quest for Double Möbius Aromaticity. Chem. Eur. J. 2024, 30, e202400395. [Google Scholar] [CrossRef]
- Hajialiakbari, N.; Saeidian, H.; Mirjafary, Z.; Mokhtari, J. Schleyer hyperconjugative aromaticity in indene scaffolds. Comput. Theor. Chem. 2024, 1241, 114881. [Google Scholar] [CrossRef]
- Su, J.; Jiang, Y.; Zhu, J. Predicting the Hyperconjugative Aromaticity in Cyclopentadiene Containing Group 8 Transition Metal Substituents. Organometallics 2024, 43, 2221–2231. [Google Scholar] [CrossRef]
- Xiao, K.; Zhao, Y.; Zhu, J.; Zhao, L. Hyperconjugative aromaticity and protodeauration reactivity of polyaurated indoliums. Nat. Commun. 2019, 10, 5639. [Google Scholar] [CrossRef] [PubMed]
- Solà, M.; Bickelhaut, F.M. Particle on a Ring Model for Teaching the Origin of the Aromatic Stabilization Energy and the Hückel and Baird Rules. J. Chem. Educ. 2022, 99, 3497–3501. [Google Scholar] [CrossRef]
- Ottosson, H. A focus on aromaticity: Fuzzier than ever before? Chem. Sci. 2023, 14, 5542–5544. [Google Scholar] [CrossRef]
- Merino, G.; Solà, M.; Fernández, I.; Foroutan-Nejad, C.; Lazzeretti, P.; Frenking, G.; Anderson, H.L.; Sundholm, D.; Cossío, F.P.; Petrukhina, M.A.; et al. Aromaticity: Quo Vadis. Chem. Sci. 2023, 14, 5569–5576. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://goldbook.iupac.org/terms/view/A00442 (accessed on 20 June 2025).
- Available online: https://goldbook.iupac.org/terms/view/R05333 (accessed on 20 June 2025).
- Wheland, G.W. The Theory of Resonance; John Wiley and Sons, Inc.: New York, NY, USA, 1944. [Google Scholar]
- Baranac-Stojanović, M.; Stojanović, M. Does aromaticity account for an enhanced thermodynamic stability? The case of monosubstituted azaborines and the stereoelectronic chameleonism of the NH2 group. Phys. Chem. Chem. Phys. 2019, 21, 9465–9476. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, M.; Baranac-Stojanović, M. Mono BN-substituted analogues of naphthalene: A theoretical analysis of the effect of BN position on stability, aromaticity and frontier orbital energies. New J. Chem. 2018, 42, 12968–12976. [Google Scholar] [CrossRef]
- Stasyuk, O.A.; Szatylowicz, H.; Krygowksi, T.M. Tautomerisation of thymine acts against the Hückel 4N + 2 rule. The effect of metal ions and H-bond complexations on the electronic structure of thymine. Org. Biomol. Chem. 2014, 12, 6476–6483. [Google Scholar] [CrossRef] [PubMed]
- Baranac-Stojanović, M. Aromaticity and Stability of Azaborines. Chem. Eur. J. 2014, 20, 16558–16565. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.I.-C.; Li, Q.; Schleyer, P.v. Aromaticity and Relative Stabilities of Azines. Org. Lett. 2010, 12, 4824–4827. [Google Scholar] [CrossRef]
- Mandado, M.; Otero, N.; Mosquera, R.A. Local aromaticity study of heterocycles using n-center delocalization indices: The role of aromaticity on the relative stability of position isomers. Tetrahedron 2006, 62, 12204–12210. [Google Scholar] [CrossRef]
- Baranac-Stojanović, M. (Anti)aromaticity of Cyclo[2n] Carbons (n = 3-12). Chem. Asian J. 2025, 20, e202500295. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y. The Resonance Energy of Benzene: A Revisit. J. Phys. Chem. A 2009, 113, 5163–5169. [Google Scholar] [CrossRef]
- Mo, Y.; Schleyer, P.v. An Energetic Measure of Aromaticity and Antiaromaticity Basedon the Pauling–Wheland Resonance Energies. Chem. Eur. J. 2006, 12, 2009–2020. [Google Scholar] [CrossRef]
- Shaik, S.; Shurki, A.; Danovich, D.; Hiberty, P.C. A Different Story of π-Delocalizations-The Distortivity of π-Electrons and Its Chemical Manifestations. Chem. Rev. 2001, 101, 1501–1539. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.S.; Hiberty, P.C.; Lefour, J.-M.; Ohanessian, G. Is Delocalization a Driving Force in Chemistry? Benzene, Allyl Radical, Cyclobutadiene, and Their Isoelectronic Species. J. Am. Chem. Soc. 1987, 109, 363–374. [Google Scholar] [CrossRef]
- Pierrefixe, S.C.A.H.; Bickelhaupt, F.M. Aromaticity: Molecular-Orbital Picture of an Intuitive Concept. Chem. Eur. J. 2007, 13, 6321–6328. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Zilberg, S.; Haas, Y. A Kekulé-Crossing Model for the “Anomalous” Behavior of the b2u Modes of Aromatic Hydrocarbons in the Lowest Excited 1B2u State. Acc. Chem. Res. 1996, 29, 211–218. [Google Scholar] [CrossRef]
- Shaik, S.; Shurki, A.; Danovich, D.; Hiberty, P.C. Origins of the Exalted b2u Frequency in the First Excited State of Benzene. J. Am. Chem. Soc. 1996, 118, 666–671. [Google Scholar] [CrossRef]
- Cyrański, M.K. Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chem. Rev. 2005, 105, 3773–3811. [Google Scholar] [CrossRef]
- Slayden, S.W.; Liebman, J.F. The Energetics of Aromatic Hydrocarbons: An Experimental Thermochemical Perspective. Chem. Rev. 2001, 101, 1541–1566. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y. The Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding. In The Chemical Bond:Fundamental Aspects of Chemical Bonding; Frenking, B., Shaik, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Mo, Y.; Song, L.; Lin, Y. Block-Localized Wavefunction (BLW) Method at the Density Functional Theory (DFT) Level. J. Phys. Chem. A 2007, 111, 8291–8301. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Chen, Z.; Ying, F.; Song, J.; Chen, X.; Su, P.; Mo, Y.; Zhang, Q.; Wu, W. Xiamen Valence Bond. An ab initio Non-Orthogonal Valence Bond Program. J. Comput. Chem. 2005, 26, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Hiatt, D.M.; Weinhold, F. Natural Bond Orbital Analysis of Chemical Structure, Spectroscopy, and Reactivity: How it Works. Compr. Comput. Chem. 2024, 2, 406–421. [Google Scholar] [CrossRef]
- Weinhold, F. Natural Bond Orbital Analysis: A Critical Overview ofRelationships to Alternative Bonding Perspectives. J. Comput. Chem. 2012, 33, 2363–2379. [Google Scholar] [CrossRef]
- Parmar, K.; Gravel, M. Quantifying Vertical Resonance Energy in Aromatic Systems with Natural Bond Orbitals. Eur. J. Org. Chem. 2023, 26, e202201008. [Google Scholar] [CrossRef]
- Coulson, C.A.; Altman, S.L. Compressional Energy and Resonance Energy. Trans. Faraday Soc. 1952, 48, 293–302. [Google Scholar] [CrossRef]
- Baranac-Stojanović, M.; Stojanović, M. Substituent effects on cyclic electron delocalization in symmetric B- and N-trisubstituted borazine derivatives. RSC Adv. 2013, 3, 24108–24117. [Google Scholar] [CrossRef]
- Mo, Y.; Gao, J. Theoretical Analysis of the Rotational Barrier of Ethane. Acc. Chem. Res. 2007, 40, 113–119. [Google Scholar] [CrossRef]
- Su, P.; Tang, Z.; Wu, W. Generalized Kohn-Sham energy decomposition analysis and its applications. WIREs Comput. Mol. Sci. 2020, 10, e1460. [Google Scholar] [CrossRef]
- Zhao, L.; Von Hopffgarten, M.; Andrada, D.M.; Frenking, G. Energy decomposition analysis. WIREs Comput. Mol. Sci. 2018, 8, e1345. [Google Scholar] [CrossRef]
- Sproviero, E.M. Intramolecular Natural Energy Decomposition Analysis: Applications to the Rational Design of Foldamers. J. Comput. Chem. 2018, 39, 1367–1386. [Google Scholar] [CrossRef]
- Phipps, M.J.S.; Fox, T.; Tautermann, C.S.; Skylaris, C.-K. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem. Soc. Rev. 2015, 44, 3177–3211. [Google Scholar] [CrossRef] [PubMed]
- Frenking, G.; Bickelhaupt, F.M. The EDA Perspective of Chemical Bonding. The Chemical Bond: Fundamental Aspects of Chemical Bonding; Frenking, G., Shaik, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 121–157. [Google Scholar] [CrossRef]
- Mo, Y.; Bao, P.; Gao, J. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys. Chem. Chem. Phys. 2011, 13, 6760–6775. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D. Natural Energy Decomposition Analysis: Extension to Density Functional Methods andAnalysis of Cooperative Effects in Water Clusters. J. Phys. Chem. A 2005, 109, 11936–11940. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Frenking, G. Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discuss. 2007, 135, 403–421. [Google Scholar] [CrossRef]
- Suresh, C.H.; Koga, N. An isodesmic reaction based approach to aromaticity of a large spectrum of molecules. Chem. Phys. Lett. 2006, 419, 550–556. [Google Scholar] [CrossRef]
- Suresh, C.H.; Koga, N. Accurate Calculation of Aromaticity of Benzene and Antiaromaticity of Cyclobutadiene: New Homodesmotic Reactions. J. Org. Chem. 2002, 67, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Glukhovtsev, M.N.; Bach, R.D.; Laiter, S. Isodesmic and homodesmotic stabilization energies of [n]annulenes and their relevance to aromaticity and antiaromaticity: Is absolute antiaromaticity possible? J. Mol. Struct. 1997, 417, 123–129. [Google Scholar] [CrossRef]
- Schleyer, P.v.; Puhlhofer, F. Recommendations for the Evaluation of Aromatic Stabilization Energies. Org. Lett. 2002, 4, 2873–2876. [Google Scholar] [CrossRef]
- Wannere, C.S.; Moran, D.; Allinger, N.L.; Hess, B.A., Jr.; Schaad, L.J.; Schleyer, P.v. On the Stability of Large [4n]Annulenes. Org. Lett. 2003, 5, 2983–2986. [Google Scholar] [CrossRef]
- Zhu, J.; An, K.; Schleyer, P.v. Evaluation of Triplet Aromaticity by the Isomerization Stabilization Energy. Org. Lett. 2013, 10, 2442–2445. [Google Scholar] [CrossRef]
- An, K.; Zhu, J. Evaluation of Triplet Aromaticity by the Indene–Isoindene Isomerization Stabilization Energy Method. Eur. J. Org. Chem. 2014, 2014, 2764–2769. [Google Scholar] [CrossRef]
- Aihara, J.-I. A New Definition of Dewar-Type Resonance Energies. J. Am. Chem. Soc. 1976, 98, 2750–2758. [Google Scholar] [CrossRef]
- Gutman, I.; Milun, M.; Trinajstić, N. Graph Theory and Molecular Orbitals. 19. Nonparametric Resonance Energies of Arbitrary Conjugated Systems. J. Am. Chem. Soc. 1977, 99, 1692–1704. [Google Scholar] [CrossRef]
- Ilić, P.; Sinković, B.; Trinajstić, N. Topological Resonance Energies of Conjugated Structures. Isr. J. Chem. 1980, 20, 258–269. [Google Scholar] [CrossRef]
- Aihara, J.-I. Graph Theory of Aromatic Stabilization. Bull. Chem. Soc. Jpn. 2016, 89, 1425–1454. [Google Scholar] [CrossRef]
- Feixas, F.; Matito, E.; Poater, J.; Solà, M. Quantifying aromaticity with electron delocalisation measures. Chem. Soc. Rev. 2015, 44, 6434–6451. [Google Scholar] [CrossRef]
- Poater, J.; Fradera, X.; Duran, M.; Solà, M. The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chem. Eur. J. 2003, 9, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Matito, E.; Salvador, P.; Duran, M.; Solà, M. Aromaticity Measures from Fuzzy-Atom Bond Orders (FBO). The Aromatic Fluctuation (FLU) and the para-Delocalization (PDI) Indexes. J. Phys. Chem. A 2006, 110, 5108–5113. [Google Scholar] [CrossRef]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Matito, E.; Duran, M.; Solà, M. The aromatic fluctuation index (FLU).: A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005, 122, 014109. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wave function Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Szczepanik, D.W.; Andrzejak, M.; Dyduch, K.; Żak, E.; Makowski, M.; Mazur, G.; Mrozek, J. A Uniform Approach to the Description of Multicenter Bonding. Phys. Chem. Chem. Phys. 2014, 16, 20514–20523. [Google Scholar] [CrossRef]
- Szczepanik, D.W.; Andrzejak, M.; Dominikowska, J.; Pawełek, B.; Krygowski, T.M.; Szatylowicz, H.; Solà, M. The Electron Density of Delocalized Bonds (EDDB) Applied for Quantifying Aromaticity. Phys. Chem. Chem. Phys. 2017, 19, 28970–28981. [Google Scholar] [CrossRef] [PubMed]
- Szczepanik, D.W. Available online: http://www.eddb.pl/runeddb/ (accessed on 24 June 2024).
- Baranac-Stojanović, M.; Stojanović, M.; Aleksić, J. A theoretical study on application of BN/CC isosterism to modify topology of coronene aromaticity and HOMO–LUMO energy gaps. New J. Chem. 2024, 48, 14277–14291. [Google Scholar] [CrossRef]
- Kenouche, S.; Bachir, N.; Bouchal, W.; Martínez-Araya, J.I. Aromaticity of six-membered nitro energetic compounds through molecular electrostatic potential, magnetic, electronic delocalization and reactivity-based indices. J. Mol. Graph. Model. 2024, 129, 108728. [Google Scholar] [CrossRef]
- Dai, C.; Chen, D.; Zhu, J. Achieving Adaptive Aromaticity in Cyclo[10]carbon by Screening Cyclo[n]carbon (n = 8-24). Chem. Asian J. 2020, 15, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Charistos, N.D.; Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: Analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 2020, 22, 9240–9249. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity. Carbon 2020, 165, 468–475. [Google Scholar] [CrossRef]
- Baryshnikov, G.V.; Valiev, R.R.; Kuklin, A.V.; Sundholm, D.; Ågren, H. Cyclo[18]carbon: Insight into Electronic Structure, Aromaticity, and Surface Coupling. J. Phys. Chem. Lett. 2019, 10, 6701–6705. [Google Scholar] [CrossRef]
- Solà, M.; Szczepanik, D.W. Molecular aromaticity: A quantum phenomenon. Pure Appl. Chem. 2025. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Cyrański, M.K. Structural Aspects of Aromaticity. Chem. Rev. 2001, 101, 1385–1419. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Szatylowicz, H.; Stasyuk, O.A.; Dominikowska, J.; Palusiak, M. Aromaticity from the Viewpoint of Molecular Geometry: Application to Planar Systems. Chem. Rev. 2014, 114, 6383–6422. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T. Definition of Aromaticity Basing on the Harmonic Oscillator Model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of x-Electron Systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
- Arpa, E.M.; Stafström, S.; Durbeej, B. HOMAc: A Parameterization of the Harmonic Oscillator Model of Aromaticity (HOMA) That Includes Antiaromaticity. J. Org. Chem. 2025, 90, 1297–1308. [Google Scholar] [CrossRef]
- Arpa, E.M.; Durbeej, B. HOMER: A reparameterization of the harmonic oscillator model of aromaticity (HOMA) for excited states. Phys. Chem. Chem. Phys. 2023, 25, 16763–16771. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.; Kinjo, R. Aromatic nature of neutral and dianionic 1,4-diaza-2,3,5,6-tetraborinine derivatives. RSC Adv. 2021, 11, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Misra, N. Introducing ‘‘carborazine’’ as a novel heterocyclic aromatic species. New J. Chem. 2015, 39, 2483–2488. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, X.; Liu, Z.; Lu, T.; Zhao, M.; Xu, J.; Wang, J. Aromaticity in Isoelectronic Analogues of Benzene, Carborazine and Borazine, from Electronic Structure and Magnetic Property. Chem. Eur. J. 2024, 30, e202403369. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Z.; Orozco-Ic, M.; Xu, J.; Yan, X.; Wang, J.; Wang, X. Exploring the Aromaticity Differences of Isoelectronic Species of Cyclo[18]carbon (C18), B6C6N6, and B9N9: The Role of Carbon Atoms as Connecting Bridges. Inorg. Chem. 2023, 62, 19986–19996. [Google Scholar] [CrossRef]
- Engelberts, J.J.; Havenith, R.W.A.; Van. Lenthe, J.H.; Jenneskens, L.W.; Fowler, P.W. The Electronic Structure of Inorganic Benzenes: Valence Bond and Ring-Current Descriptions. Inorg. Chem. 2005, 44, 5266–5272. [Google Scholar] [CrossRef]
- Abersfelder, K.; White, A.J.P.; Rzepa, H.S.; Scheschkewitz, D. A Tricyclic Aromatic Isomer of Hexasilabenzene. Science 2010, 327, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.J.F.; Rzepa, H.S.; Scheschkewitz, D. Ring Currents in the Dismutational Aromatic Si6R6. Angew. Chem. Int. Ed. 2010, 49, 10006–10009. [Google Scholar] [CrossRef]
- Nakamura, T.; Kudo, T. The Planarity of Heteroatom Analogues of Benzene: Energy Component Analysis and the Planarization of Hexasilabenzene. J. Comput. Chem. 2019, 40, 581–590. [Google Scholar] [CrossRef]
- Friebolin, H. Basic One-and Two-Dimensional NMR Spectroscopy; Wiley-VCH Verlag, GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Lambert, J.B.; Mazzola, E.P. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Breitmaier, E. Structure Elucidation by NMR in Organic Chemistry, a Practical Guide; John Wiley and Sons Ltd.: West Sussex, UK, 2002. [Google Scholar] [CrossRef]
- Pople, J.A. Proton Magnetic Resonance in Hydrocarbons. J. Chem. Phys. 1956, 24, 1111. [Google Scholar] [CrossRef]
- Mitchell, R.H. Measuring Aromaticity by NMR. Chem. Rev. 2001, 101, 1301–1315. [Google Scholar] [CrossRef]
- Lazzeretti, P. Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 26, 1–88. [Google Scholar] [CrossRef]
- Gomes, J.A.N.F.; Mallion, R.B. Aromaticity and Ring Currents. Chem. Rev. 2001, 101, 1349–1383. [Google Scholar] [CrossRef]
- Dickens, T.K.; Mallion, R.B. Topological Ring-Currents in Conjugated Systems. MATCH Commun. Math. Comput. Chem. 2016, 76, 297–356. [Google Scholar]
- Sundholm, D.; Fliegl, H.; Berger, R.J.F. Calculations of magnetically induced current densities: Theory and applications. WIREs Comput. Mol. Sci. 2016, 6, 639–678. [Google Scholar] [CrossRef]
- Steiner, E.; Fowler, P.W.; Soncini, A.; Jenneskens, L.W. Current-density maps as probes of aromaticity: Global and Clar p ring currents in totally resonant polycyclic aromatic hydrocarbons. Faraday Discuss. 2007, 135, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Fowler, P.W.; Gibson, C.M.; Bean, D.E. Writing with ring currents:selectively hydrogenated polycyclic aromatics as finitemodels of graphene andgraphane. Proc. R. Soc. A 2014, 470, 20130617. [Google Scholar] [CrossRef]
- Fowler, P.W. Molecular Currents and Aromaticity. AIP Conf. Proc. 2007, 963, 47–53. [Google Scholar] [CrossRef]
- Herges, R.; Geuenich, D. Delocalization of Electrons in Molecules. J. Phys. Chem. A 2001, 105, 3214–3220. [Google Scholar] [CrossRef]
- Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J.R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.V.R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef] [PubMed]
- Fallah-Bagher-Shaidaei, H.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.v. Which NICS Aromaticity Index for Planar π Rings Is Best? Org. Lett. 2006, 8, 863–866. [Google Scholar] [CrossRef]
- Stanger, A. Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity. J. Org. Chem. 2006, 71, 883–893. [Google Scholar] [CrossRef]
- Torres-Vega, J.J.; Vásquez-Espinal, A.; Caballero, J.; Valenzuela, M.L.; Alvarez-Thon, L.; Osorio, E.; Tiznado, W. Minimizing the Risk of Reporting False Aromaticity and Antiaromaticity in Inorganic Heterocycles Following Magnetic Criteria. Inorg. Chem. 2014, 53, 3579–3585. [Google Scholar] [CrossRef]
- Noorizadeh, S.; Dardab, M. A new NICS-based aromaticity index; NICS-rate. Chem. Phys. Lett. 2010, 493, 376–380. [Google Scholar] [CrossRef]
- Gershoni-Poranne, R.; Stanger, A. The NICS-XY-Scan: Identification of Local and Global Ring Currents in Multi-Ring Systems. Chem. Eur. J. 2014, 20, 5673–5688. [Google Scholar] [CrossRef] [PubMed]
- Stanger, A.; Monaco, G.; Zanasi, R. NICS-XY-Scan Predictions of Local, Semi-Global, and Global Ring Currents in Annulated Pentalene and s-Indacene Cores Compared to First-Principles Current Density Maps. Chem. Phys. Chem. 2020, 21, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Klod, S.; Kleinpeter, E. Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes-application in conformational and configurational analysis. J. Chem. Soc. Perkin Trans. 2001, 2, 1893–1898. [Google Scholar] [CrossRef]
- Baranac-Stojanović, M.; Koch, A.; Kleinpeter, E. Density Functional Calculations of the Anisotropic Effects of Borazine and 1,3,2,4-Diazadiboretidine. Chem. Phys. Chem. 2012, 13, 3803–3811. [Google Scholar] [CrossRef]
- Karadakov, P.B.; Horner, K.E. Magnetic Shielding in and around Benzene and Cyclobutadiene: A Source of Information about Aromaticity, Antiaromaticity, and Chemical Bonding. J. Phys. Chem. A 2013, 117, 518–523. [Google Scholar] [CrossRef]
- Lampkin, B.J.; Karadakov, P.B.; VanVeller, B. Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding. Angew. Chem. Int. Ed. 2020, 59, 19275–19281. [Google Scholar] [CrossRef]
- Al-Yassiri, M.A.H. Tubular Magnetic Shielding Scan (TMSS): A New Technique for Molecular Space Exploration. (i) The Case of Aromaticity of Benzene and [n]Paracyclophanes. J. Phys. Chem. A 2023, 127, 6614–6627. [Google Scholar] [CrossRef]
- Islas, R.; Heine, T.; Merino, G. The Induced Magnetic Field. Acc. Chem. Res. 2012, 45, 215–228. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Muñoz-Castro, A. A bridge between silicon and gold structures. Resemblance between W@Si16 2+ and W@Au12 clusters. Chem. Phys. Lett. 2025, 869, 142042. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Muñoz-Castro, A. Three-fold aromatic boranes: Spherical aromaticity in borane ortho-carboranes as useful trimer nodes for cluster-based architectures. Phys. Chem. Chem. Phys. 2025, 27, 11112–11118. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Castro, A. Beyond The Sphere. Au20(PR3)8 as a Spherical Aromatic Cuboctahedron Cluster. Chem. Asian J. 2024, 19, e202400670. [Google Scholar] [CrossRef] [PubMed]
- Stanger, A. NICS–Past and Present. Eur. J. Org. Chem. 2020, 2020, 3120–3127. [Google Scholar] [CrossRef]
- Gershoni-Poranne, R.; Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 2015, 44, 6597–6615. [Google Scholar] [CrossRef]
- Lazzeretti, P. Assessment of aromaticity via molecular response properties. Phys. Chem. Chem. Phys. 2004, 6, 217–223. [Google Scholar] [CrossRef]
- Foroutan-Nejad, C. Magnetic Antiaromaticity–Paratropicity-Does Not Necessarily Imply Instability. J. Org. Chem. 2023, 88, 14831–14835. [Google Scholar] [CrossRef] [PubMed]
- Steiner, E.; Fowler, P.W. Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions. J. Phys. Chem. A 2001, 105, 9553–9562. [Google Scholar] [CrossRef]
- Steiner, E.; Fowler, P.W. Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic π systems. Chem. Commun. 2001, 2220–2221. [Google Scholar] [CrossRef]
- Kumar, A.; Duran, M.; Solà, M. Is Coronene Better Described by Clar’s Aromatic π-Sextet Model or by the AdNDP Representation? J. Comput. Chem. 2017, 38, 1606–1611. [Google Scholar] [CrossRef] [PubMed]
- Rončević, I.; Leslie, F.J.; Rossmannek, M.; Tavernelli, I.; Gross, L.; Anderson, H.L. Aromaticity Reversal Induced by Vibrations in Cyclo[16]carbon. J. Am. Chem. Soc. 2023, 145, 26962–26972. [Google Scholar] [CrossRef] [PubMed]
- Breslow, R.; Brown, J.; Gajewski, J.J. Antiaromaticity of Cyclopropenyl Anions. J. Am. Chem. Soc. 1967, 89, 4383–4390. [Google Scholar] [CrossRef]
- Available online: https://goldbook.iupac.org/terms/view/AT06987 (accessed on 20 June 2025).
- Hong, C.; Baltazar, J.; Tovar, J.D. Manifestations of Antiaromaticity in Organic Materials: Case Studies of Cyclobutadiene, Borole, and Pentalene. Eur. J. Org. Chem. 2022, 2022, e202101343. [Google Scholar] [CrossRef]
- Wu, J.I.; Mo, Y.; Evangelista, F.A.; von Ragué Schleyer, P. Is cyclobutadiene really highly destabilized by antiaromaticity? Chem. Commun. 2012, 48, 8437–8439. [Google Scholar] [CrossRef]
- Klaus, K.H.; Krüger, C. Structure of Cyclooctatetraene at 129 K. Acta Cryst. 1988, C44, 1632–1634. [Google Scholar] [CrossRef]
- Bastiansen, O.; Hedberg, L.; Hedberg, K. Reinvestigation of the Molecular Structure of 1,3,5,7-Cyc1ooctatetraene by Electron Diffraction. J. Chem. Phys. 1957, 27, 1311–1317. [Google Scholar] [CrossRef]
- Wu, J.I.; Fernández, I.; Mo, Y.; Schleyer, P.v.R. Why Cyclooctatetraene Is Highly Stabilized: The Importance of “Two-Way” (Double) Hyperconjugation. J. Chem. Theory Comput. 2012, 8, 1280–1287. [Google Scholar] [CrossRef]
- Baryshnikov, G.V.; Valiev, R.R.; Nasibullin, R.T.; Sundholm, D.; Kurten, T.; Ågren, H. Aromaticity of Even-Number Cyclo[n]carbons (n = 6−100). J. Phys. Chem. A 2020, 124, 10849–10855. [Google Scholar] [CrossRef] [PubMed]
- Baranac-Stojanović, M. Orbital contributions to the magnetic shielding of cyclo[2n]carbons (n = 3–12). Phys. Chem. Chem. Phys. 2025, 27, 4756–4765. [Google Scholar] [CrossRef]
- Gao, Y.; Albrecht, F.; Rončević, I.; Ettedgui, I.; Kumar, P.; Scriven, L.M.; Christensen, K.E.; Mishra, S.; Righetti, L.; Rossmannek, M.; et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope. Nature 2023, 623, 977–981. [Google Scholar] [CrossRef]
- Baird, N.C. Quantum Organic Photochemistry. II. Resonance and Aromaticity in the Lowest 3ππ* State of Cyclic Hydrocarbons. J. Am. Chem. Soc. 1972, 94, 4941–4948. [Google Scholar] [CrossRef]
- Gogonea, V.; von Ragué Schleyer, P.; Schreiner, P.R. Consequences of Triplet Aromaticity in 4nπ-Electron Annulenes: Calculation of Magnetic Shieldings for Open-Shell Species. Angew. Chem. Int. Ed. 1998, 37, 1945–1948. [Google Scholar] [CrossRef]
- Baranac-Stojanović, M. Triplet-State Structures, Energies, and Antiaromaticity of BN Analogues of Benzene and Their Benzo-Fused Derivatives. J. Org. Chem. 2019, 84, 13582–13594. [Google Scholar] [CrossRef] [PubMed]
- Feixas, F.; Matito, E.; Solà, M.; Poater, J. Patterns of π-electron delocalization in aromatic and antiaromatic organic compounds in the light of Huckel’s 4n + 2 rule. Phys. Chem. Chem. Phys. 2010, 12, 7126–7137. [Google Scholar] [CrossRef]
- SVillaume; Fogarty, H.A.; Ottosson, H. Triplet-State Aromaticity of 4nπ-Electron Monocycles:Analysis of Bifurcation in the π Contribution to the Electron Localization Function. Chem. Phys. Chem. 2008, 9, 257–264. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Cyrański, M.K. Two Sources of the Decrease of Aromaticity: Bond Length Alternation and Bond Elongation. Part II. An Analysis Based on Geometry of the Singlet and Triplet States of 4nπ Annulenes: C4H4, C5H5+, C6H62+, C7H7−, C8H8, C9H9+. Tetrahedron 1999, 55, 11143–11148. [Google Scholar] [CrossRef]
- Fowler, P.W.; Steiner, E.; Jenneskens, L.W. Ring-current aromaticity in triplet states of 4n π electron monocycles. Chem. Phys. Lett. 2003, 371, 719–723. [Google Scholar] [CrossRef]
- Karadakov, P.B. Ground- and Excited-State Aromaticity and Antiaromaticity in Benzene and Cyclobutadiene. J. Phys. Chem. A 2008, 112, 7303–7309. [Google Scholar] [CrossRef]
- Karadakov, P.B. Aromaticity and Antiaromaticity in the Low-Lying Electronic States of Cyclooctatetraene. J. Phys. Chem. A 2008, 112, 12707–12713. [Google Scholar] [CrossRef]
- Karadakov, P.B.; Hearnshaw, P.; Horner, K.E. Magnetic Shielding, Aromaticity, Antiaromaticity, and Bonding in the Low-Lying Electronic States of Benzene and Cyclobutadiene. J. Org. Chem. 2016, 81, 11346–11352. [Google Scholar] [CrossRef]
- Ueda, M.; Jorner, K.; Sung, Y.M.; Mori, T.; Xiao, Q.; Kim, D.; Ottosson, H.; Aida, T.; Itoh, Y. Energetics of Baird aromaticity supported by inversion of photoexcited chiral [4n]annulene derivatives. Nat. Commun. 2017, 8, 346. [Google Scholar] [CrossRef]
- Papadakis, R.; Li, H.; Bergman, J.; Lundstedt, A.; Jorner, K.; Ayub, R.; Haldar, S.; Jahn, B.O.; Denisova, A.; Zietz, B.; et al. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene. Nat. Commun. 2016, 7, 12962. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Karas, L.J.; Ottosson, H.; Wu, J.I.-C. Excited-state proton transfer relieves antiaromaticityin molecules. Proc. Natl. Acad. Sci. USA 2019, 116, 20303–20308. [Google Scholar] [CrossRef] [PubMed]
- Draženović, J.; Laconsay, C.J.; Došlić, N.; Wu, J.I.-C.; Basarić, N. Excited-state antiaromaticity relief drives facile photoprotonation of carbons in aminobiphenyls. Chem. Sci. 2024, 15, 5225–5237. [Google Scholar] [CrossRef] [PubMed]
- Karas, L.J.; Wu, C.-H.; Ottosson, H.; Wu, J.I. Electron-driven proton transfer relieves excited state antiaromaticity in photoexcited DNA base pairs. Chem. Sci. 2020, 11, 10071–10077. [Google Scholar] [CrossRef] [PubMed]
- Oruganti, B.; Wang, J.; Durbeej, B. Excited-State Aromaticity Improves Molecular Motors: A Computational Analysis. Org. Lett. 2017, 19, 4818–4821. [Google Scholar] [CrossRef]
- Wang, J.; Oruganti, B.; Durbeej, B. A Straightforward Route to Aromatic Excited States inMolecular Motors that Improves Photochemical Efficiency. ChemPhotoChem 2019, 3, 450–460. [Google Scholar] [CrossRef]
- Santos, N.R.D.; Wu, J.I.; Alabugin, I. Photocyclization of Alkenes and Arenes: Penetrating Through Aromatic Armor with the Help of Excited State Antiaromaticity. Chemistry 2025, 7, 79. [Google Scholar] [CrossRef]
- Casademont-Reig, I.; Ramos-Cordoba, E.; Torrent-Sucarrat, M.; Matito, E. How do the Hückel and Baird Rules Fade away in Annulenes? Molecules 2020, 25, 711. [Google Scholar] [CrossRef] [PubMed]
- Van Nyvel, L.; Alonso, M.; Solà, M. Effect of size, charge, and spin state on Hückel and Baird aromaticity in [N]annulenes. Chem. Sci. 2025, 16, 5613–5622. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, M.; Aleksić, J.; Baranac-Stojanović, M. Singlet/Triplet State Anti/Aromaticity of Cyclopentadienyl Cation: Sensitivity to Substituent Effect. Chemistry 2021, 3, 765–782. [Google Scholar] [CrossRef]
- Ayub, R.; El Baqouri, O.; Smith, J.R.; Jorner, K.; Ottosson, H. Triplet State Baird Aromaticity in Macrocycles: Scope, Limitations, and Complications. J. Phys. Chem. A 2021, 125, 570–584. [Google Scholar] [CrossRef]
- Jirásek, M.; Rickhaus, M.; Tejerina, L.; Anderson, H.L. Experimental and Theoretical Evidence for Aromatic Stabilization Energy in Large Macrocycles. J. Am. Chem. Soc. 2021, 143, 2403–2412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranac-Stojanović, M. Aromaticity and Antiaromaticity: How to Define Them. Chemistry 2025, 7, 127. https://doi.org/10.3390/chemistry7040127
Baranac-Stojanović M. Aromaticity and Antiaromaticity: How to Define Them. Chemistry. 2025; 7(4):127. https://doi.org/10.3390/chemistry7040127
Chicago/Turabian StyleBaranac-Stojanović, Marija. 2025. "Aromaticity and Antiaromaticity: How to Define Them" Chemistry 7, no. 4: 127. https://doi.org/10.3390/chemistry7040127
APA StyleBaranac-Stojanović, M. (2025). Aromaticity and Antiaromaticity: How to Define Them. Chemistry, 7(4), 127. https://doi.org/10.3390/chemistry7040127