Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis of Coconut Mesocarp Fibers
2.3. Carbonization Process
2.4. Chemical Activation Procedure
2.5. Physicochemical Characterization of AC
2.6. Statistical Analysis
3. Results
3.1. Proximal Analysis of CMF
3.2. Characterization of AC
3.2.1. Yield of Carbon from the Carbonization Process
3.2.2. Structural Characterization
3.2.3. Thermal Characterization
3.2.4. Surface Properties
3.2.5. Morphological Characterization and Elemental Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wall, J.D.; Hardwood, C.S.; Demain, A.L. Bioenergy; ASM-Press: Washington, DC, USA, 2008; pp. 3–472. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Xu, Y.; Sheng, H.; Kong, X.; Xu, H. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J. Clean. Prod. 2019, 210, 366–375. [Google Scholar] [CrossRef]
- Rethinam, P. International scenario of coconut sector. In The Coconut Palm (Cocos nucifera L.)-Research and Development Perspectives, 1st ed.; Nampoothiri, K.U.K., Krishnakumar, V., Thampan, P.K., Achuthan Nair, M., Eds.; Springer Nature: Singapore, 2018; pp. 21–56. [Google Scholar] [CrossRef]
- Zizumbo-Villarreal, D.; Fernández-Barrera, M.; Torres-Hernández, N.; Colunga-García, P. Morphological variation of fruit in mexican populations of Cocos nucifera L. (Arecaceae) under in situ and ex situ conditions. Genet. Resour. Crop Evol. 2005, 52, 421–434. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, P.; Fan, H.; Baudouin, L.; Xia, W.; Bocs, S.; Xu, J.; Li, Q.; Guo, A.; Zhou, L.; et al. The genome draft of coconut (Cocos nucifera). GigaScience 2017, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, K.; Blanco, A.; Taquechel, A. Fibra de coco. Una alternativa ecológica como sustrato agrícola. Agric. Org. 2008, 8, 30–31. [Google Scholar]
- Faridul Hasan, K.M.; György Horváth, P.; Bak, M.; Alpár, T. A state-of-art review on coir fiber-reinforced biocomposites. RCS Adv. 2021, 11, 10548–10571. [Google Scholar] [CrossRef]
- Yahya, A.; Safie, H.; Kahar, S. Properties of coco peat-based growing media and their effects on two annual ornamentals. J. Trop. Agric. Food Sci. 1997, 25, 151–157. [Google Scholar]
- Gupta, M.; Kumar, M. Effect of nanosilica and coir fiber on compressive strength and abrasion resistance on concrete. Constr. Build. Mater. 2019, 226, 44–50. [Google Scholar] [CrossRef]
- Abraham, D.P.R.; Josephc, A.; Jasheelad, A.; Sarma, J. Development of coir-fibre cement composite roofing titles. Procedia Technol. 2016, 24, 169–178. [Google Scholar] [CrossRef]
- Anirudhan, T.; Unnithan, M. Arsenic (V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere 2007, 61, 60–66. [Google Scholar] [CrossRef]
- Carlile, W.R.; Raviv, M.; Prasad, M. Organic soilless media components. In Soilless Culture. Theory and Practice, 2nd ed.; Raviv, M., Lieth, H., Bar-Tal, A., Eds.; Academic Press: New York, NY, USA, 2019; pp. 303–378. [Google Scholar] [CrossRef]
- Das, D.; Samal, D.P.; Meikap, B.C. Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Proc. Technol. 2015, 6, 248. [Google Scholar] [CrossRef]
- Aljeboree, A.M.; Alkaim, A.F.; Al-Dujaili, A.H. Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalin. Water Treat. 2015, 53, 3656–3667. [Google Scholar] [CrossRef]
- Palisoc, S.T.; Estioko, L.C.D.; Natividad, M.T. Voltametric determination of lead and cadmium in vegetables by graphene paste electrode modified with activated carbon from coconut husk. Mater. Res. Express. 2018, 5, 085035. [Google Scholar] [CrossRef]
- Taer, E.; Naipospos, V.M.; Taslim, R.; Agustino, A. Activated carbon monolith derived from coconut husk fiber as electrode material for supercapacitor energy storage. J. Phys. Conf. Ser. 2020, 1655, 012164. [Google Scholar] [CrossRef]
- Momodu, D.; Okafor, C.; Manyala, N.; Bello, A.; Gaetan, M.; Kana, Z.; Ntsoenzok, E. Transformation of plant biomass waste into resourceful activated carbon nanostructures for mixed-assembly type electrochemical capacitors. Waste Biomass Valori. 2019, 10, 1741–1753. [Google Scholar] [CrossRef]
- Húmpola, P.; Odetti, H.; Moderno-Pirajan, J.C.; Giraldo, L. Activated carbons obtained from agro-industrial waste: Textural analysis and adsorption environmental pollutants. Adsorption 2016, 21, 23–31. [Google Scholar] [CrossRef]
- Transparency Market Research. Coconut Activated Carbon Market-Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2019–2027. Albany NY, USA. Available online: https://www.transparencymarketresearch.com/coconut-activated-carbon-market.html (accessed on 21 May 2025).
- Budinova, T.; Ekinci, E.; Yardim, F.; Grimm, A.; Björnbom, E.; Minkova, V. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol. 2016, 87, 899–905. [Google Scholar] [CrossRef]
- Vidal, M.V.; Rodriguez Suarez, A.; Martinez Barrios, K.; Ocampo Perez, J.; Barrios Lara, W. Potential of agroindustrial waste for the synthesis of activated carbon: A review. Sci. Tech. 2018, 23, 411–419. [Google Scholar] [CrossRef]
- Tay, T.; Ucar, S.; Karagöz, S. Preparation and characterization of inactivated carbon from waste biomass. J. Hazard. Mater. 2009, 165, 481–485. [Google Scholar] [CrossRef]
- Thiex, N.J.; Manson, H.; Anderson, S.; Persson, J.A. Determination of crude protein in animal feed, forage, grain and oilseeds by using block digestion with copper catalyst and steam distillation into boric acids: Collaborative study. J. AOAC Int. 2002, 85, 309–317. [Google Scholar] [CrossRef]
- Rincón, J.F.; Rincón, P.G.; Torres, E.; Mondragón, A.G.; Sánchez, M.E.; Arana, A.; Ortiz, A.; Jiménez, E. Caracterización fisicoquímica y funcional de la fibra de coco de mesocarpio de coco (Cocos nucifera L.). Investig. Desarro. Cienc. Tecnol. Aliment. 2016, 1, 279–284. [Google Scholar]
- Ram Patel, M.; Lal Panwar, N. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recyc. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Alvez-Tovar, B.; Scalize, P.S.; Angiolillo-Rodríguez, G.; Albuquerque, A.; Ebang, M.N.; de Oliveira, T.F. Agro-industrial waste upcycling into activated carbons: A sustainable approach for dye removal and wastewater treatment. Sustainability. 2025, 17, 2036. [Google Scholar] [CrossRef]
- McDougall, G.J. The physical nature and manufacture of activated carbon. J. S. Afr. Inst. Min. Metall. 1991, 91, 109–120. [Google Scholar]
- Satheesh, M.; Pugazhvadivu, M.; Prabu, B.; Gunasegaran, V.; Manikandan, A. Synthesis and characterization of coconut shell ash. J. Nanosci. Nanotechnol. 2019, 19, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Shamim, H.M.; Hussain, S.; Al-Mahin, A. Solid-state Fermentation of coconut coir by Pleurotus sajor-caju increases the anti-oxidant properties and nutritional value. Biotechnology 2016, 15, 141–147. [Google Scholar] [CrossRef]
- Carre, B.; Hebrant, M.; Brosse, N.; Latif, N.H.A.; Hussin, M.H. Effect of different prehydrolysis processes on lignin extractability coconut husk fibers. J. Phys. Sci. 2019, 30, 207–209. [Google Scholar] [CrossRef]
- González-García, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of properties of activated carbons produced in one-stage and two-stages process. J. Carbon Res. 2018, 4, 41–50. [Google Scholar] [CrossRef]
- Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.-A.; Sirinuntawittaya, N.; Dutta, A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource Technol. 2008, 99, 4887–4895. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Li, W.; Peng, J.; Xia, H.; Zhang, L.; Guo, S.; Cheng, G. Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid. Bioresources 2013, 8, 6187–6195. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. J. Chem.-N. Y. 2014, 2014, 491912. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, 1st ed.; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 1–23. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Martínez-Alonso, A.; Suárez-García, F.; Tascón, J.M.D. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 2002, 40, 1493–1505. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.-Y.; Chen, Q.; Li, C.-H.; Wang, Z.-H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sust. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Environ. 2020, 746, 141094. [Google Scholar] [CrossRef]
- Dastgheib, S.A.; Rockstraw, D.A. Pecan shell activated carbon: Synthesis, characterization, and application for the removal of copper from aqueous solutions. Carbon 2001, 39, 1849–1855. [Google Scholar] [CrossRef]
- Guo, Y.; Rockstraw, D.A. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresource Technol. 2007, 98, 1513–1521. [Google Scholar] [CrossRef]
- Gonzalez-Serrano, E.; Cordero, T.; Rodriguez-Mirasol, J.; Cotoruelo, L.; Rodriguez, J.J. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from Kraft blank liquors. Water Res. 2004, 38, 3043–3050. [Google Scholar] [CrossRef] [PubMed]
- Archari, V.S.; Rajalashmi, A.S.; Jayasree, S.; Lopez, R.M. Surface area and porosity development on granular activated carbon by zirconium: Adsorption isotherm studies. J. Appl. Res. Technol. 2018, 16, 211–218. [Google Scholar] [CrossRef]
- Branton, P.; Brodley, R.H. Effects of active carbon pore size distributions on adsorption of toxic organic compounds. Adsorption 2011, 17, 293–301. [Google Scholar] [CrossRef]
- Laine, J.; Calafat, A.; Labady, M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon 1989, 24, 191–195. [Google Scholar] [CrossRef]
- Yakout, S.M.; El-Deen, G.S. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab. J. Chem. 2016, 9, S1155–S1162. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Vijaya, J.J.; Kayalvizhi, K.; Sekaran, G. Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chem. Eng. J. 2007, 132, 279–287. [Google Scholar] [CrossRef]
Analysis | Values (d.b.) * |
---|---|
Moisture (%) | 8.67 ± 0.59 |
Volatile matter (%) | 77.54 ± 0.44 |
Ash (%) | 5.12 ± 0.24 |
Extractables (%) | 0.93 ± 0.06 |
Crude proteins (%) | 4.13 ± 0.26 |
Yield (%) | 49.38 ± 5.53 |
Functional Group | Non-Activated Carbon (cm−1) | Activated Carbon (cm−1) |
---|---|---|
O-H stretching | 3450–3150 | ND |
-CH | 2950–2800 | ND |
-C=C (aromatic) | 1635 | 1630 |
C-H bending | 1545–1560 | 1550 |
C=C | 1655 | 1650 |
C=O | 1590 | 1605 |
C-O | 1210–1160 | 1190 |
C-O-C | ND | 1380 |
P=O P-O-C stretch | ND | 1230 |
Sample | As,BET (m2/g) | VT,pore (cm3/g) | ϕpore (nm) |
---|---|---|---|
Non-activated carbon | 4.45 | 0.009 | 8.18 |
AC with sol. 20% H3PO4 | 200.98 | 0.168 | 3.31 |
AC with sol. 40% H3PO4 | 680.75 | 0.409. | 2.40 |
AC with sol. 60% H3PO4 | 1580.52 | 0.871 | 2.20 |
AC with sol. 80% H3PO4 | 850.06 | 0.401 | 2.31 |
Element | Carbon from CMF | |
---|---|---|
Non-Activated (wt. %) | AC with Sol. 60% H3PO4 (wt. %) | |
C | 54.85 | 63.89 |
O | 41.90 | 30.89 |
Others | 3.25 | 5.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montfort, G.R.C.; Azamar-Barrios, J.A.; Quintana-Owen, P.; Rejón-Moo, V.; González-Gómez, W.S.; Madera-Santana, T.J. Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico. Chemistry 2025, 7, 88. https://doi.org/10.3390/chemistry7030088
Montfort GRC, Azamar-Barrios JA, Quintana-Owen P, Rejón-Moo V, González-Gómez WS, Madera-Santana TJ. Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico. Chemistry. 2025; 7(3):88. https://doi.org/10.3390/chemistry7030088
Chicago/Turabian StyleMontfort, Gabriela Ramos Clamont, José A. Azamar-Barrios, Patricia Quintana-Owen, Víctor Rejón-Moo, William S. González-Gómez, and Tomás J. Madera-Santana. 2025. "Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico" Chemistry 7, no. 3: 88. https://doi.org/10.3390/chemistry7030088
APA StyleMontfort, G. R. C., Azamar-Barrios, J. A., Quintana-Owen, P., Rejón-Moo, V., González-Gómez, W. S., & Madera-Santana, T. J. (2025). Production and Physicochemical Characterization of Activated Carbon from the Mesocarp of the Coconut (Cocos nucifera L.) Variety Alto del Pacifico. Chemistry, 7(3), 88. https://doi.org/10.3390/chemistry7030088