Tuberculosis (TB), caused by
Mycobacterium tuberculosis, continues to be a leading cause of death from a single infectious agent worldwide. Conventional antibiotic therapies face significant limitations, including multidrug resistance, poor treatment adherence, limited penetration into granulomas, and systemic toxicity. Recent advances in
[...] Read more.
Tuberculosis (TB), caused by
Mycobacterium tuberculosis, continues to be a leading cause of death from a single infectious agent worldwide. Conventional antibiotic therapies face significant limitations, including multidrug resistance, poor treatment adherence, limited penetration into granulomas, and systemic toxicity. Recent advances in nanomedicine have paved the way for nanotheranostic approaches that integrate therapeutic, diagnostic, and preventive functions into a single platform. Nanotheranostic systems enable targeted drug delivery to infected macrophages and granulomatous lesions, real-time imaging for disease monitoring, and controlled, stimuli-responsive release of antitubercular agents. These platforms can be engineered to modulate host immune responses through host-directed therapies (HDTs), including the induction of autophagy, regulation of apoptosis, and macrophage polarization toward the bactericidal M1 phenotype. Additionally, nanocarriers can co-deliver antibiotics, immunomodulators, or photosensitizers to enhance intracellular bacterial clearance while minimizing off-target toxicity. The review also discusses the potential of nanotechnology to improve TB prevention by enhancing vaccine efficacy, stability, and targeted delivery of immunogens such as BCG and novel subunit vaccines. Key nanoplatforms, including polymeric, lipid-based, metallic, and hybrid nanoparticles, are highlighted, along with design principles for optimizing biocompatibility, multifunctionality, and clinical translatability. Collectively, nanotheranostic strategies represent a transformative approach to TB management, bridging diagnosis, therapy, and prevention in a single, adaptable platform to address the unmet needs of this global health challenge.
Full article