Advances in Cancer Treatment Through Nanotheranostics and Emerging Therapies
Abstract
1. Introduction
1.1. Overview of Cancer Treatment Challenges
1.2. Nanotheranostics as a Promising Approach
2. Nanotechnology-Driven Cancer Solutions
2.1. Significance of Nanotheranostics
2.2. Role of Nanoparticles in Enhancing Treatment Efficacy
3. Nanotechnology-Enabled Detection of Circulating Tumor Cells and Cancer Biomarkers
3.1. Nanoscale Strategies for CTC Isolation and Monitoring
3.2. Nanotechnology in Cancer Biomarker-Driven Therapy
4. Integration of Cancer Treatment with Conventional Therapies
- Nanocarrier-Assisted Drug Delivery in Immunotherapy: presented programmable nanocarriers that synergize with checkpoint blockades, improving selective tumor targeting and reducing systemic toxicity [136].
- Bioresponsive Platforms for Oral Peptide Delivery: introduced pH-sensitive nanoarchitectures that protect therapeutic peptides during gastrointestinal transit, offering a non-invasive alternative to injectable regimens and complementing traditional modalities [137].
4.1. Enhancement of Radiotherapy Through Nanotechnology
4.2. Synergistic Effects of Nanoparticles with Chemotherapeutic Agents
4.3. Role of Nanoparticles in Improving Photodynamic Therapy (PDT) Outcomes
4.3.1. Improved Solubility and Bioavailability
4.3.2. Targeted Delivery
4.3.3. Enhanced Tumor Penetration
4.3.4. Overcoming Hypoxia
4.3.5. Controlled Release and Activation
4.3.6. Combination Therapies
4.4. Application of Chromophore-Assisted Light Inactivation (CALI) in Targeted Cancer Cell Therapy
4.4.1. Therapeutic Advantages of CALI
4.4.2. Limitations and Prospects
5. Emerging Therapies in Cancer Treatment
5.1. Immunotherapy
- Delivering immunomodulatory agents directly to immune cells.
- Enhancing CAR-T cell expansion through cytokine or gene payload delivery.
- Reducing systemic toxicity via tumor-targeted formulations.
5.1.1. Immune Checkpoint Inhibitors
5.1.2. CAR-T Cell Therapy
5.2. Targeted Therapy
- Improving the solubility and bioavailability of hydrophobic drugs.
- Enabling controlled release and tumor-specific accumulation.
- Facilitating combination strategies to overcome resistance.
5.2.1. Tyrosine Kinase Inhibitors (TKIs)
5.2.2. Monoclonal Antibodies
5.2.3. Small-Molecule Inhibitors
5.3. Gene Therapy
- Protecting genetic material from enzymatic degradation.
- Facilitating cellular uptake and nuclear localization.
- Enabling non-viral delivery systems with reduced immunogenicity.
5.3.1. CRISPR-Cas9 Gene Editing
5.3.2. Tumor-Suppressor Gene Restoration
5.3.3. Immunogenomic Determinants of Checkpoint Inhibitor Response
5.4. Epigenetic Therapy
- Targeted delivery of epigenetic drugs.
- Drug stability and bioavailability.
- Synergistic effects through co-delivery platforms.
5.4.1. Histone Deacetylase (HDAC) Inhibitors
5.4.2. DNA Methyltransferase (DNMT) Inhibitors
5.4.3. Modulating the Tumor Microenvironment for Enhanced Immunotherapy
5.5. Oncolytic Virus Therapy
- Improving viral stability and delivery.
- Facilitating deeper tissue penetration.
- Supporting combination therapies with immunomodulators.
5.5.1. Talimogene Laherparepvec (T-VEC)
5.5.2. Mechanisms of Action
5.5.3. Tumor Microenvironment and Oncogenic Barriers to Immunotherapy
5.6. Therapeutic Cancer Vaccines
- Antigen carriers for cytotoxic T cell activation.
- Immune adjuvants to enhance the response durability.
- Platforms for personalized neoantigen delivery.
5.6.1. Mechanisms of Action
5.6.2. Examples of Therapeutic Cancer Vaccines
5.6.3. Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitors
5.7. Stem Cell Therapy
- Stem cell tracking and imaging.
- Directed differentiation.
- Safe and efficient delivery to target tissues.
5.7.1. Applications for Cancer Treatment
5.7.2. Cellular and Metabolic Drivers of Immunotherapy Resistance
6. Immune Evasion and Therapeutic Resistance: Implications for Nanotheranostics
6.1. Current Limitations in Nanotheranostics Applications
- Tumor Heterogeneity: Cancer cells exhibit diverse molecular profiles, complicating the design of universal nanotheranostic platforms. Tailoring nanoparticles to specific tumor subtypes remains a major hurdle [290].
- Biocompatibility and Long-Term Safety: Concerns persist regarding nanoparticle retention, clearance, and unforeseen toxicity. Longitudinal studies are essential to assess the chronic exposure risks and biodistribution [291].
- Manufacturing Scalability: Large-scale nanoparticle production demands standardized protocols to ensure reproducibility and batch-to-batch consistency for clinical applications [292].
- Regulatory Barriers: The approval process for nanomedicine lacks harmonized international guidelines, delaying clinical adoption and complicating global deployment [293].
- Economic Constraints: The high development costs for nanotheranostics, imaging technologies, and drug delivery systems limit accessibility, especially in low-resource settings [294].
6.2. Future Research Opportunities and Potential Breakthroughs
Emerging Research Areas
- Programmable Adaptive Nanoparticles: Moving beyond static multifunctionality, next-generation nanoplatforms are being engineered to respond dynamically to tumor microenvironmental cues, such as pH, enzymatic activity, and hypoxia, to trigger site-specific drug release, imaging contrast enhancement, or immune activation in real time [297]. These platforms utilize modular design principles for customization across cancer types and therapeutic modalities.
- AI-Guided Nanomedicine Engineering: Artificial intelligence is increasingly being used to model nanoparticle–biological interactions, optimize surface functionalization, and simulate pharmacokinetics across diverse patient profiles [298]. Machine learning algorithms enable predictive design of nanocarriers with enhanced tumor penetration, reduced off-target effects, and tailored payload combinations, facilitating precision-guided nanotherapeutic development.
- Nanotheranostics-Enhanced Immunotherapy: Nanoparticles are being developed to deliver checkpoint inhibitors and tumor antigens directly to lymphoid tissues, enabling spatiotemporal control of immune activation [299]. Additionally, nanocarriers can modulate the tumor microenvironment to reverse immunosuppression, enhancing T cell infiltration and therapeutic durability.
- CRISPR-Cas9 and Nanomedicine Synergy: Non-viral nanoparticle carriers are being optimized for CRISPR-Cas9 delivery, enabling targeted genome editing with reduced immunogenicity and improved intracellular transport [300]. This synergy supports precise correction of oncogenic mutations and opens avenues for curative interventions in genetically driven cancers.
- Hybrid Imaging–Therapy Platforms: The integration of photoacoustic imaging with theranostic nanoparticles allows for real-time visualization of drug delivery and tumor response [301]. These dual-function platforms are advancing image-guided precision oncology by combining diagnostic and therapeutic capabilities in a single system.
7. Discussion
8. Regulatory and Manufacturing Considerations in Nanomedicine Development
8.1. Regulatory Frameworks: FDA and EMA Guidance
8.2. Manufacturing Scalability and Batch Consistency
8.3. GMP Requirements and Quality Control Measures
8.4. Nanotoxicity: Mechanistic Insights and Risk Assessment
8.5. Environmental Impact and Lifecycle Assessments
8.6. Post-Market Surveillance and Pharmacovigilance
8.7. Enhanced Manuscript Organization and Terminology Standardization
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X. From quantum dots to cancer nanotheranostics. Nano Lett. 2016, 16, 5054–5063. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef] [PubMed]
- Lankoff, A.M.; Czerwińska, M.; Kruszewski, M. Advances in Nanotheranostic Systems for Concurrent Cancer Imaging and Therapy: An Overview of the Last 5 Years. Molecules 2024, 29, 5985. [Google Scholar] [CrossRef]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Bukhari, S.I.; Imam, S.S.; Ahmad, M.Z.; Vuddanda, P.R.; Alshehri, S.; Mahdi, W.A.; Ahmad, J. Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics 2021, 13, 840. [Google Scholar] [CrossRef]
- Salgueiro, M.J.; Zubillaga, M. Theranostic Nanoplatforms in Nuclear Medicine: Current Advances, Emerging Trends, and Perspectives for Personalized Oncology. J. Nanotheranostics 2025, 6, 27. [Google Scholar] [CrossRef]
- Gupta, D.; Roy, P.; Sharma, R.; Kasana, R.; Rathore, P.; Gupta, T.K. Recent nanotheranostic approaches in cancer research. Clin. Exp. Med. 2024, 24, 8. [Google Scholar] [CrossRef]
- Carrese, B.; Sanità, G.; Lamberti, A. Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers 2022, 14, 4654. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef]
- Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. [Google Scholar] [CrossRef]
- Fallatah, M.M.; Alradwan, I.; Alfayez, N.; Aodah, A.H.; Alkhrayef, M.; Majrashi, M.; Jamous, Y.F. Nanoparticles for Cancer Immunotherapy: Innovations and Challenges. Pharmaceuticals 2025, 18, 1086. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Mirshojaei, S.F.; Ahmadi, A.; Morales-Avila, E.; Ortiz-Reynoso, M.; Reyes-Perez, H. Radiolabelled Nanoparticles: Novel Classification of Radiopharmaceuticals for Molecular Imaging of Cancer. J. Drug Target. 2016, 24, 91–101. [Google Scholar] [CrossRef]
- Najdian, A.; Beiki, D.; Abbasi, M.; Gholamrezanezhad, A.; Ahmadzadehfar, H.; Amani, A.M.; Shafiee Ardestani, M.; Assadi, M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024, 24, 127. [Google Scholar] [CrossRef]
- Bourgeois, A.; Horrill, T.; Mollison, A.; Stringer, E.; Lambert, L.K.; Stajduhar, K. Barriers to cancer treatment for people experiencing socioeconomic disadvantage in high-income countries: A scoping review. BMC Health Serv. Res. 2024, 24, 670. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Wang, C.-Y.; Chang, H.-H.; Chang, P.T.S.; Chang, C.-H.; Chu, T.Y.; Hsu, P.-C.; Kuo, C.-Y. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024, 12, 2659. [Google Scholar] [CrossRef] [PubMed]
- Iragorri, N.; de Oliveira, C.; Fitzgerald, N.; Essue, B. The Out-of-Pocket Cost Burden of Cancer Care—A Systematic Literature Review. Curr. Oncol. 2021, 28, 1216–1248. [Google Scholar] [CrossRef] [PubMed]
- Bhat, G.R.; Sethi, I.; Sadida, H.Q.; Rah, B.; Mir, R.; Algehainy, N.; Albalawi, I.A.; Masoodi, T.; Subbaraj, G.K.; Jamal, F.; et al. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev. 2024, 43, 197–228. [Google Scholar] [CrossRef] [PubMed]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor heterogeneity: Preclinical models, emerging technologies, and future applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar] [CrossRef]
- Ghorbian, S. Cancer cell plasticity and therapeutic resistance: Mechanisms, crosstalk, and translational perspectives. Hereditas 2025, 162, 188. [Google Scholar] [CrossRef]
- Rituraj; Pal, R.S.; Wahlang, J.; Pal, Y.; Chaitanya, M.V.N.L.; Saxena, S. Precision oncology: Transforming cancer care through personalized medicine. Med. Oncol. 2025, 42, 246. [Google Scholar] [CrossRef]
- Wang, X. Highlights the recent important findings in cancer heterogeneity. Holist. Integr. Oncol. 2023, 2, 15. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.V.; Lee, D.Y.; Li, B.; Quinlan, M.P.; Takahashi, F.; Maheswaran, S.; McDermott, U.; Azizian, N.; Zou, L.; Fischbach, M.A.; et al. A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell 2010, 141, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, T.; Tadano, T.; Abe, K.; Sasaki, S.; Hosono, S.; Katayama, T.; Hoshi, K.; Nakayama, T.; Hamashima, C. Single-round performance of colorectal cancer screening programs: A network meta-analysis of randomized clinical trials. BMC Med. 2025, 23, 110. [Google Scholar] [CrossRef]
- Stefan, D.C.; Tang, S. Addressing cancer care in low- to middle-income countries: A call for sustainable innovations and impactful research. BMC Cancer 2023, 23, 756. [Google Scholar] [CrossRef]
- Ige, T.; Lewis, P.; Shelley, C.; Pistenmaa, D.; Coleman, C.N.; Aggarwal, A.; Dosanjh, M.; ICEC Survey Team. Understanding the challenges of delivering radiotherapy in low- and middle-income countries in Africa. J. Cancer Policy 2023, 35, 100372. [Google Scholar] [CrossRef]
- Du, R.; Wang, X.; Ma, L.; Larcher, L.M.; Tang, H.; Zhou, H.; Chen, C.; Wang, T. Adverse reactions of targeted therapy in cancer patients: A retrospective study of hospital medical data in China. BMC Cancer 2021, 21, 206. [Google Scholar] [CrossRef]
- Solanki, S.; Kumar, P.; Mumbrekar, K.D. Cancer therapy-induced cardiotoxicity: Mechanisms and mitigations. Heart Fail. Rev. 2025, 30, 1075–1092. [Google Scholar] [CrossRef]
- Zafar, S.Y.; Peppercorn, J.M.; Schrag, D.; Taylor, D.H., Jr.; Goetzinger, A.M.; Zhong, Y.; Abernethy, A.P. The Financial Toxicity of Cancer Treatment: A Pilot Study Assessing Out-of-Pocket Expenses and the Insured Cancer Patient’s Experience. Oncologist 2013, 18, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Kitaw, T.A.; Tilahun, B.D.; Zemariam, A.B.; Getie, A.; Bizuayehu, M.A.; Haile, R.N. The financial toxicity of cancer: Unveiling global burden and risk factors—A systematic review and meta-analysis. BMJ Glob. Health 2025, 10, e017133. [Google Scholar] [CrossRef] [PubMed]
- Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.-S. Nanotheranostics—Application and Further Development of Nanomedicine Strategies for Advanced Theranostics. Theranostics 2014, 4, 660–677. [Google Scholar] [CrossRef] [PubMed]
- Azimizonuzi, H.; Ghayourvahdat, A.; Ahmed, M.H.; Abdul Kareem, R.; Zrzor, A.J.; Mansoor, A.S.; Athab, Z.H.; Kalavi, S.A. A State-of-the-Art Review of the Recent Advances of Theranostic Liposome-Hybrid Nanoparticles in Cancer Treatment and Diagnosis. Cancer Cell Int. 2025, 25, 26. [Google Scholar] [CrossRef]
- Zhuang, L.; Lian, Y.; Zhu, T. Multifunctional gold nanoparticles: Bridging detection, diagnosis, and targeted therapy in cancer. Mol. Cancer 2025, 24, 228. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef]
- Wu, P.; Ameen, T.; Zhang, H.R.; Wang, J.; Li, X.; Chen, C.; Liu, M.J.; Huang, R. Complementary black phosphorus tunneling field effect transistors. ACS Nano 2019, 13, 377–385. [Google Scholar] [CrossRef]
- Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020, 10, 4557–4588. [Google Scholar] [CrossRef]
- Wu, J.; Du, K.; Bao, Y.; Xiong, M.; Chen, J.; Luo, Z.; Zhang, D.; Shi, Y. Docetaxel-loaded pH/ROS dual-responsive nanoparticles for the targeted treatment of gastric cancer. Cancer Nanotechnol. 2025, 16, 5. [Google Scholar] [CrossRef]
- Kapalatiya, H.; Madav, Y.; Tambe, V.S.; Wairkar, S. Enzyme-Responsive Smart Nanocarriers for Targeted Chemotherapy: An Overview. Drug Deliv. Transl. Res. 2022, 12, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
- Vasylyshyn, T.; Huntošová, V.; Patsula, V.; Olejárová, S.; Slabý, C.; Jurašeková, Z.; Bánó, G.; Kubacková, J.; Šlouf, M.; Shapoval, O.; et al. Surface-engineered core–shell upconversion nanoparticles for effective hypericin delivery and multimodal imaging. Nanoscale 2025, 17, 10548–10562. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, M.; Muñoz-Unceta, N.; Matorras, A.; Jara, P.; Castro, C.; Cacho, D.; Caramelo, B.; Azueta, A.; Durán, I. Outcomes with atezolizumab in metastatic urothelial cancer: Real-world data from a single institution. Clin. Transl. Oncol. 2024, 26, 682–688. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, S.P. Nanoparticles for multimodal imaging and theranostic applications in cancer diagnosis and treatment. J. Pharmacogn. Phytochem. 2024, 13, 236–243. [Google Scholar] [CrossRef]
- Gawne, P.J.; Ferreira, M.; Papaluca, M.; Grimm, J.; Decuzzi, P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat. Rev. Mater. 2023, 8, 1045–1062. [Google Scholar] [CrossRef]
- Miao, D.; Margolis, C.A.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.R.; Bossé, D.; Schadendorf, D.; Shah, S.P.; et al. Genomic Correlates of Response to Immune Checkpoint Blockade in Microsatellite Stable Solid Tumors. Nat. Genet. 2018, 50, 1270–1277. [Google Scholar] [CrossRef]
- Florou, V.; Floudas, C.S.; Maoz, A.; Naqash, A.R.; Norton, C.; Tan, A.C.; Sokol, E.S.; Frampton, G.; Soares, H.P.; Puri, S.; et al. Real-world pan-cancer landscape of frameshift mutations and their role in predicting responses to immune checkpoint inhibitors in cancers with low tumor mutational burden. J. Immunother. Cancer 2023, 11, e007440. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J. Analysis of 100 000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Bleaney, C.W.; Abdelaal, H.; Reardon, M.; Anandadas, C.; Hoskin, P.; Choudhury, A.; Forker, L. Clinical biomarkers of tumour radiosensitivity and predicting benefit from radiotherapy: A systematic review. Cancers 2024, 16, 1942. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef]
- Pio, R.; Ajona, D.; Ortiz-Espinosa, S.; Mantovani, A.; Lambris, J.D. Complementing the Cancer-Immunity Cycle. Front. Immunol. 2019, 10, 774. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Koç, M.M.; Paksu, U.; Yetim, N.K.; Coşkun, B.; Özkan, E.H.; Erkovan, M. Nanoparticles in photothermal therapy-based medical and theranostic applications: An extensive review. Eur. Phys. J. Plus 2025, 140, 514. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Ji, D.-K.; Huang, Y.; Huang, W.; Dong, X.; Yao, D.; Wang, D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J. Nanobiotechnol. 2024, 22, 461. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, R.; Liu, J.; Yang, L.; Zhang, Y.; Wang, Y.; Jiang, Y. Hybrid near-infrared-activated luminescent gold nanoparticle platform for efficient cancer therapy. Adv. Compos. Hybrid Mater. 2025, 8, 173. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, X.; Wu, L.; Wu, M.; James, T.D.; Zhang, R. Bioorthogonally activated probes for precise fluorescence imaging. Chem. Soc. Rev. 2025, 54, 1–36. [Google Scholar] [CrossRef]
- Ow, V.; Lin, Q.; Wong, J.H.M.; Sim, B.; Tan, Y.L.; Leow, Y.; Goh, R.; Loh, X.J. Understanding the interplay between pH and charges for theranostic nanomaterials. Nanoscale 2025, 17, 6960–6980. [Google Scholar] [CrossRef]
- Zhang, S.; Qin, S.; Xiao, Y.; Liu, Z.; Hu, X.; Huang, D.; Ye, X. Near-infrared luminescent materials: A review of their practical applications and prospective advancements. Dalton Trans. 2025, 54, 3538–3562. [Google Scholar] [CrossRef]
- Malla, P.; Wang, Y.-M.; Su, C.-H. New horizons for the therapeutic application of nanozymes in cancer treatment. J. Nanobiotechnol. 2025, 23, 130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Otsuka, A.; Nakamura, N.; Tatsumi, T.; Nakatsui, K.; Tsuzukiishi, T.; Sakanoue, T.; Shimazoe, K.; Ohta, S. 64Cu-chelated InP/ZnSe/ZnS QDs as PET/fluorescence dual-modal probe for tumor imaging. Sci. Technol. Adv. Mater. 2025, 26, 2463317. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.M.; Sharma, G.; Singh, A.P.; Siddiqui, J.A. Nanomedicine in Cancer Therapeutics: Current Perspectives from Bench to Bedside. Mol. Cancer 2025, 24, 169. [Google Scholar] [CrossRef] [PubMed]
- Maksymova, L.; Pilger, Y.A.; Nuhn, L.; Van Ginderachter, J.A. Nanobodies targeting the tumor microenvironment and their formulation as nanomedicines. Mol. Cancer 2025, 24, 65. [Google Scholar] [CrossRef]
- Nizam, I.; Aasaithambi, K.; Srinivasan, A.; Chidambaram, S.B.; Krishnamurthy, P.T.; Madhunapantula, S.R.; Thimmulappa, R.; Kuppusamy, G. Nanotheranostics in cardiovascular diseases: A novel tool. Int. J. Appl. Pharm. 2023, 15, 47521. [Google Scholar] [CrossRef]
- Huang, R.; Hu, Q.; Ko, C.-N.; Tang, F.K.; Xuan, S.; Wong, H.M.; Jin, L.; Li, X.; Leung, K.C.-F. Nano-based theranostic approaches for infection control: Current status and perspectives. Mater. Chem. Front. 2024, 8, 9–40. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, B.; Shen, Y.; Zhao, Y.; Fu, X.; Zhu, Y.; Gu, G.; Liu, C. Screening biomarkers for predicting the efficacy of immunotherapy in patients with PD-L1 overexpression. J. Cancer Res. Clin. Oncol. 2023, 149, 12965–12976. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, Y.; Li, Z.; Guo, L. Nanomedicine in cardiovascular and cerebrovascular diseases: Targeted nanozyme therapies and their clinical potential and current challenges. J. Nanobiotechnol. 2025, 23, 543. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of Nanoparticle Delivery to Tumours. Nat. Rev. Mater. 2016, 1, 16014. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Cosme Pecho, R.D.; Amin, A.H.; Akhavan-Sigari, R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.J.; Kizhuveetil, U.; Johnson, A.; Nagarajan, R.; Muthuvijayan, V. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead. RSC Adv. 2023, 13, 27863–27890. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Dash, P.; Das, P.; Nayak, B. Ligand-targeted polymeric nanoparticles for cancer chemotherapy. In Polymeric Nanoparticles for the Treatment of Solid Tumors; Springer: Cham, Switzerland, 2022; pp. 251–272. [Google Scholar] [CrossRef]
- Cheng, Y.; Morshed, R.A.; Auffinger, B.; Tobias, A.L.; Lesniak, M.S. Multifunctional Nanoparticles for Brain Tumor Imaging and Therapy. Adv. Drug Deliv. Rev. 2014, 66, 42–57. [Google Scholar] [CrossRef]
- Whitesides, G.M. The ‘Right’ Size in Nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165. [Google Scholar] [CrossRef]
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discover Nano 2023, 18, 157. [Google Scholar] [CrossRef]
- Xie, D.; Sun, L.; Wu, M.; Li, Q. From detection to elimination: Iron-based nanomaterials driving tumor imaging and advanced therapies. Front. Oncol. 2025, 15, 1536779. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, M.; Xi, J.; Li, J.; Ma, R.; Ren, L.; Bai, Z.; Qi, K.; Li, X. Gold nanorods-based photothermal therapy: Interactions between biostructure, nanomaterial, and near-infrared irradiation. Nanoscale Res. Lett. 2022, 17, 68. [Google Scholar] [CrossRef]
- Choudhary, S.; Kaur, S.D.; Gandhi, H.; Pemmaraju, D.B.; Kapoor, D.N. An updated review on the potential of gold nanoparticles for cancer treatment and detection. Gold Bull. 2025, 58, 4. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking Down Barriers: Advances in siRNA Delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138. [Google Scholar] [CrossRef]
- Sun, W.; Ji, W.; Hall, J.M.; Hu, Q.; Wang, C.; Beisel, C.L.; Gu, Z. Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9. Angew. Chem. Int. Ed. 2015, 54, 12029–12033. [Google Scholar] [CrossRef]
- Appidi, T.; China, D.; Ștefan, G.-R.; Moreau, M.; Mao, S.; Velarde, E.; Toyang, N.; Lowe, H.; Rengan, A.K.; Ding, K.; et al. Engineered multifunctional nanoparticles for enhanced radiation therapy: Three-in-one approach for cancer treatment. Mol. Cancer 2025, 24, 68. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xia, W. Isolation of circulating tumor cells: Recent progress and future perspectives. Med-X 2024, 2, 28. [Google Scholar] [CrossRef]
- Yun, Y.; Kim, S.; Lee, S.-N.; Cho, H.-Y.; Choi, J.-W. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. Nano Convergence 2024, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Tibbe, A.G.; Uhr, J.W.; Terstappen, L.W.M.M. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but Not in Healthy Subjects or Patients with Benign Diseases. Clin. Cancer Res. 2004, 10, 6897–6904. [Google Scholar] [CrossRef]
- Yang, C.; Liu, C.; Zhang, Y.; Wang, H.; Zhao, J.; Li, X. Clinical applications of circulating tumor cells in metastasis and therapy. J. Hematol. Oncol. 2025, 18, 80. [Google Scholar] [CrossRef]
- Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; et al. Isolation of Rare Circulating Tumor Cells in Cancer Patients by Microchip Technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef]
- Warkiani, M.E.; Guan, G.; Luan, K.B.; Lee, W.C.; Bhagat, A.A.S.; Chaudhuri, P.K.; Tan, D.S.W.; Lim, W.T.; Lee, S.C.; Chen, P.-C.; et al. Slanted Spiral Microfluidics for Ultra-fast, Label-free Isolation of Circulating Tumor Cells. Lab Chip 2014, 14, 128–137. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X.; Guo, C.; Liu, Z.; Guo, X.; Tian, Z.; Wang, Z.; Yang, J.; Huang, X.; Ou, L. Greatly isolated heterogeneous circulating tumor cells using hybrid engineered cell membrane-camouflaged magnetic nanoparticles. J. Nanobiotechnol. 2024, 22, 231. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, J.; Li, Z.; Gou, Y. Microfluidic platform for circulating tumor cells isolation and detection. BIOCELL 2023, 47, 1439–1447. [Google Scholar] [CrossRef]
- Stevens, M.; Mentink, A.; Coumans, F.A.W.; Dathathri, E.; Isebia, K.T.; Kraan, J.; de Wit, R.; Martens, J.W.M.; Terstappen, L.W.M.M. Flow-based immunomagnetic enrichment of circulating tumor cells from diagnostic leukapheresis product. Mol. Oncol. 2023, 17, 13565. [Google Scholar] [CrossRef]
- Ashour, A.A.; Tayeb, F.J.; Felemban, M.F.; Shafie, A. Nanomaterial-based biosensors for cancer diagnosis: Trends and innovations (2022–2025). Microchim. Acta 2025, 192, 404. [Google Scholar] [CrossRef]
- Tan, W.; Zhu, Y.; Chen, S. Innovative approach to the detection of circulating tumor biomarkers: Multi-dimensional application of liposome technology. Lipids Health Dis. 2025, 24, 160. [Google Scholar] [CrossRef]
- Zhang, X.; Su, Y.; Ao, D.; Hong, Y.; Zou, M.; Xie, J.; Zhou, Q.; Wang, Y.; He, W.; Chen, Y. Label-free electrochemical immunosensor based on AuNPs/CCNTs/chitosan nanocomposites for carcinoembryonic antigen detection. J. Appl. Electrochem. 2025, 55, 1557–1569. [Google Scholar] [CrossRef]
- Lajoux, J.; Banguera-Ordoñez, Y.D.; Sena-Torralba, A.; Charbonnière, L.J.; Sy, M.; Goetz, J.; Maquieira, Á.; Morais, S. Breaking the picomolar barrier in lateral flow assays using Bright-Dtech-614 Europium nanoparticles. Microchem. J. 2025, 209, 112864. [Google Scholar] [CrossRef]
- Baruah, A.; Newar, R.; Das, S.; Kalita, N.; Nath, M.; Ghosh, P.; Chinnam, S.; Sarma, H.; Narayan, M. Biomedical applications of graphene-based nanomaterials: Recent progress, challenges, and prospects in highly sensitive biosensors. Discov. Nano 2024, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Waheed, W.; Stiharu, I.; Nerguizian, V.; Destgeer, G.; Abu-Nada, E.; Alazzam, A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discov. Nano 2023, 18, 18. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Z.; Yin, S.; Ma, X. Nanoplasmonic biosensors for precision medicine. Front. Chem. 2023, 11, 1209744. [Google Scholar] [CrossRef]
- Zhang, J.; Jian, X.; Bai, S.; Xu, G.; Du, M.; Guo, C.; Guan, Y. Impact of immunomagnetic nanoparticle size on capture efficiency, bioactivity, and proliferation ability of circulating tumor cells. J. Nanopart. Res. 2023, 25, 217. [Google Scholar] [CrossRef]
- Qi, X.; Lin, S.; Li, M. Atomic force microscopy combined with microfluidics for label-free sorting and automated nanomechanics of circulating tumor cells in liquid biopsy. Nanoscale 2025, 17, 8401–8415. [Google Scholar] [CrossRef]
- Tai, S.S.A.; Loo, H.L.; Bakhtiar, A.; Ho, P.C.-L.; Chuah, L.H. Antibody-conjugated polymer nanoparticles for brain cancer. Drug Deliv. Transl. Res. 2025, 15, 1–18. [Google Scholar] [CrossRef]
- Fabisiewicz, A.; Szostakowska-Rodzos, M.; Grzybowska, E.A. Improving the prognostic and predictive value of circulating tumor cell enumeration: Is longitudinal monitoring the answer? Int. J. Mol. Sci. 2024, 25, 10612. [Google Scholar] [CrossRef]
- Bashir, S.; Zia, M.A.; Shoukat, M.; Kaleem, I.; Bashir, S. Nanoparticles as a Novel Key Driver for the Isolation and Detection of Circulating Tumour Cells. Sci. Rep. 2024, 14, 67221. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.M.; et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, S. Nanomaterials in Tumor Immunotherapy: New Strategies and Challenges. Mol. Cancer 2023, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Stott, S.L.; Hsu, C.-H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Rothenberg, S.M.; Shah, A.M.; Smas, M.E.; Korir, G.K.; et al. Isolation of Circulating Tumor Cells Using a Microvortex-Generating Herringbone-Chip. Proc. Natl. Acad. Sci. USA 2010, 107, 18392–18397. [Google Scholar] [CrossRef]
- Ding, W.; Ye, W.; Liu, H.; Yang, J.; Chu, C.; Zhu, H.; Wang, J.; Zhou, L.; Zhao, M.; Liu, M. High-gradient microstructured hybrid microfluidic chip for rare tumor cell capture. Anal. Bioanal. Chem. 2025, 417, 2361–2374. [Google Scholar] [CrossRef]
- Rao, L.T.; Raz, A.; Patolsky, F. Biomarker analysis from complex biofluids by an on-chip chemically modified light-controlled vertical nanopillar array device. Nat. Protoc. 2024, 19, 1124–1146. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Lu, W.; Gong, T.; Ibáñez, E.; Cifuentes, A.; Lu, W. Microfluidic biosensors for biomarker detection in body fluids: A key approach for early cancer diagnosis. Biomark. Res. 2024, 12, 153. [Google Scholar] [CrossRef]
- Janjua, D.; Chaudhary, A.; Joshi, U.; Tripathi, T.; Kumar Jaggi, V.; Bharti, A.C. Redefining cancer care: Harnessing circulating tumor cells’ potential for improved diagnosis and prognosis. Cancer Cell Int. 2025, 25, 267. [Google Scholar] [CrossRef]
- Bednarz-Knoll, N.; Alix-Panabières, C.; Pantel, K. Plasticity of Disseminating Cancer Cells in Patients with Epithelial Malignancies. Cancer Metastasis Rev. 2011, 30, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Xi, M.; Li, J. Cancer metastasis: Molecular mechanisms and therapeutic interventions. Mol. Biomed. 2025, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Fasogbon, I.V.; Ondari, E.N.; Tusubira, D.; Kabuuka, T.; Abubakar, I.B.; Musyoka, A.M.; Aja, P.M. Advances and future directions of aptamer-functionalized nanoparticles for point-of-care disease diagnosis. Biol. Methods Protoc. 2025, 10, bpaf046. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Poria, R.; Kala, D.; Nagraik, R.; Dhir, Y.; Dhir, S.; Singh, B.; Kaushik, N.K.; Noorani, M.S.; Kumar, D.; et al. Recent advances in ctDNA detection using electrochemical biosensors for cancer. Discov. Oncol. 2024, 15, 517. [Google Scholar] [CrossRef]
- Narwade, M.; Shaikh, A.; Gajbhiye, K.R.; Kesharwani, P.; Gajbhiye, V. Advanced Cancer Targeting Using Aptamer Functionalized Nanocarriers for Site-Specific Cargo Delivery. Biomater. Res. 2023, 27, 42. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, H.; He, Z.; Wang, X. Application of aptamer-functionalized nanomaterials in molecular imaging of tumors. Nanotechnol. Rev. 2023, 12, 107–136. [Google Scholar] [CrossRef]
- Lunawat, A.K.; Mukherjee, D.; Shivgotra, R.; Raikwar, S.; Awasthi, A.; Singh, A.; Singh, S.; Chandel, S.; Jain, S.K.; Thakur, S. Carboplatin Co Loaded 5 Fluorouracil Nanoparticles Conjugated with Trastuzumab for Targeted Therapy in HER2+ Heterogeneity Breast Cancer. AAPS PharmSciTech 2025, 26, 114. [Google Scholar] [CrossRef]
- Knetki-Wróblewska, M.; Dziadziuszko, R.; Jankowski, T.; Krawczyk, P.; Bryl, M.; Stencel, K.; Wrona, A.; Bandura, A.; Smok-Kalwat, J.; Rok-Knapińska, J.; et al. Pembrolizumab-combination therapy for NSCLC: Effectiveness and predictive factors in real-world practice. Front. Oncol. 2024, 14, 1341084. [Google Scholar] [CrossRef]
- Awad, M.M.; Forde, P.M.; Girard, N.; Spicer, J.; Wang, C.; Lu, S.; Mitsudomi, T.; Felip, E.; Broderick, S.R.; Swanson, S.J.; et al. Neoadjuvant nivolumab plus ipilimumab versus chemotherapy in resectable lung cancer: Exploratory analysis from CheckMate 816. J. Clin. Oncol. 2025, 43, 1453–1462. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Zheng, L.; Sun, X.; Zhao, Z.; Zheng, Y.; Tian, J. Efficacy and safety of consolidation durvalumab after chemoradiation therapy for stage III non-small-cell lung cancer: A systematic review and meta-analysis of real-world studies. Front. Pharmacol. 2023, 14, 1103927. [Google Scholar] [CrossRef]
- Liu, W.; Huo, G.; Chen, P. Clinical benefit of pembrolizumab in treatment of first-line non-small cell lung cancer: A systematic review and meta-analysis of clinical characteristics. BMC Cancer 2023, 23, 458. [Google Scholar] [CrossRef]
- Schenker, M.; Burotto, M.; Richardet, M.; Ciuleanu, T.; Gonçalves, A.; Steeghs, N.; Schoffski, P.; Ascierto, P.A.; Maio, M.; Lugowska, I.; et al. Randomized, open-label, phase 2 study of nivolumab plus ipilimumab or nivolumab monotherapy in patients with advanced or metastatic solid tumors of high tumor mutational burden. J. Immunother. Cancer 2024, 12, e008872. [Google Scholar] [CrossRef] [PubMed]
- Rosner, S.; Reuss, J.E.; Zahurak, M.; Zhang, J.; Zeng, Z.; Taube, J.; Anagnostou, V.; Smith, K.N.; Riemer, J.; Illei, P.B.; et al. Five-year clinical outcomes after neoadjuvant nivolumab in resectable non–small cell lung cancer. Clin. Cancer Res. 2023, 29, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Yajima, S.; Masuda, H. Immune checkpoint inhibitors and antibody-drug conjugates in urothelial carcinoma: Current landscape and future directions. Cancers 2025, 17, 1594. [Google Scholar] [CrossRef] [PubMed]
- Lieber, A.; Makai, A.; Orosz, Z.; Kardos, T.; Isaac, S.J.; Tornyi, I.; Bittner, N. The role of immunotherapy in early-stage and metastatic NSCLC. Pathol. Oncol. Res. 2024, 30, 1611713. [Google Scholar] [CrossRef]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajdúch, M.; van ’t Veer, L.J.; Magbanua, M.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef]
- Broche, J.; Kelemen, O.; Sekar, A.; Schütz, L.; Muyas, F.; Forschner, A.; Schroeder, C.; Ossowski, S. GeneBits: Ultra-sensitive tumour-informed ctDNA monitoring of treatment response and relapse in cancer patients. J. Transl. Med. 2025, 23, 964. Available online: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-025-06993-3 (accessed on 2 June 2025). [CrossRef]
- Foster, B.; Pestano, G.; Kulisch, S.; Alexander, B.; Schroeder, C.; Taylor, C.; Kelemen, O.; Broche, J. ctDNA monitoring is providing a smarter way to track and treat cancer. Drug Discovery News. 2025. Available online: https://www.drugdiscoverynews.com/ctdna-monitoring-is-providing-a-smarter-way-to-track-and-treat-cancer-16443 (accessed on 2 June 2025).
- Bartolomucci, A.; Nobrega, M.; Ferrier, T.; Dickinson, K.; Kaorey, N.; Nadeau, A.; Castillo, A.; Burnier, J.V. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis. Oncol. 2025, 9, 876. [Google Scholar] [CrossRef]
- Kachhawaha, K.; Shah, R.; Singh, S.K. Clinical Sample Considerations in Proteomics-Based Biomarker Studies: Advancing Precision Medicine. In Protein Biomarkers: Discovery and Applications in Clinical Diagnostics; Singh, S.K., Chandra, P., Eds.; Springer: Singapore, 2025; pp. 21–43. [Google Scholar] [CrossRef]
- Abbasian, M.H.; Ardekani, A.M.; Sobhani, N.; Roudi, R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers 2022, 14, 5144. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Z.; Zhang, Y.; Zhang, C.; Xue, Q.; Zhang, G.; Tan, F. Recent advances in biomarkers for predicting the efficacy of immunotherapy in non-small cell lung cancer. Front. Immunol. 2025, 16, 1554871. [Google Scholar] [CrossRef]
- Zafar, A.; Khatoon, S.; Khan, M.J.; Abu, J.; Naeem, A. Advancements and Limitations in Traditional Anti-Cancer Therapies: A Comprehensive Review of Surgery, Chemotherapy, Radiation Therapy, and Hormonal Therapy. Discover Oncol. 2025, 16, 607. [Google Scholar] [CrossRef]
- Sulaiman, C.; George, B.P.; Balachandran, I.; Abrahamse, H. Cancer and traditional medicine: An integrative approach. Pharmaceuticals 2025, 18, 644. [Google Scholar] [CrossRef]
- Kiaie, S.H.; Salehi-Shadkami, H.; Sanaei, M.J.; Azizi, M.; Barough, M.S.; Nasr, M.S.; Sheibani, M. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy. J. Nanobiotechnol. 2023, 21, 339. [Google Scholar] [CrossRef]
- Iriarte-Mesa, C.; Kleitz, F. Tailored mesoporous silica nanoparticles for overcoming gastrointestinal barriers: A perspective on advanced strategies for oral delivery. New J. Chem. 2025, 49, 10018–10034. [Google Scholar] [CrossRef]
- Park, H.; Yu, S.; Koo, T. Gene editing in cancer therapy: Overcoming drug resistance and enhancing precision medicine. Cancer Gene Ther. 2025, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, J.; Tang, Y.; Huang, R.; Lu, C.; Qian, K.; Zhou, Q.; Zhang, J.; Yang, X.; Zhou, W.; et al. Advancements and challenges in CAR-T cell therapy for solid tumors: A comprehensive review of antigen targets, strategies, and future directions. Cancer Cell Int. 2025, 25, 313. [Google Scholar] [CrossRef]
- Xie, J.; Mao, Q.; Chen, J.; Shi, H.; Zhan, P.; Wang, H. Efficacy and safety of atezolizumab in the treatment of urothelial carcinoma: A systematic review and meta-analysis. World J. Surg. Oncol. 2025, 23, 133. [Google Scholar] [CrossRef]
- Kaur, R.; Bhardwaj, A.; Gupta, S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023, 50, 9663–9676. [Google Scholar] [CrossRef]
- Matsubara, J.; Mukai, K.; Kondo, T.; Yoshioka, M.; Kage, H.; Oda, K.; Kudo, R.; Ikeda, S.; Ebi, H.; Muro, K.; et al. First-line genomic profiling in previously untreated advanced solid tumors for identification of targeted therapy opportunities. JAMA Netw Open. 2023, 6, e2323336. [Google Scholar] [CrossRef]
- Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37. [Google Scholar] [CrossRef]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Schettini, F.; Sirico, M.; Loddo, M.; Williams, G.H.; Hardisty, K.-M.; Scorer, P.; Thatcher, R.; Rivera, P.; Milani, M.; Strina, C. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: The MOZART prospective observational study. Oncologist 2025, 30, oyae206. [Google Scholar] [CrossRef] [PubMed]
- Al-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 2012, 30, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Zaim, R.; Redekop, W.K.; Uyl-de Groot, C.A. Cost-effectiveness of first-line nivolumab–ipilimumab combination therapy for advanced non-small-cell lung cancer: A systematic review. Front. Health Serv. 2023, 3, 1034256. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer radiotherapy. Br. J. Radiol. 2012, 85, 101–113. [Google Scholar] [CrossRef]
- Song, X.; Sun, Z.; Li, L.; Zhou, L.; Yuan, S.; Yuan, S.; Sun, Z.; Li, L.; Zhou, L.; Yuan, S. Application of Nanomedicine in Radiotherapy Sensitization. Front. Oncol. 2023, 13, 1088878. [Google Scholar] [CrossRef]
- Chithrani, B.D.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R.G.; Hill, R.P.; Jaffray, D.A. Gold nanoparticles as radiation sensitizers for cancer therapy. Radiat. Res. 2010, 173, 719–728. [Google Scholar] [CrossRef]
- Hainfeld, J.F.; Slatkin, D.N.; Fazzari, M.J.; Smilowitz, H.M. Radiotherapy enhancement with gold nanoparticles. Nanomedicine 2008, 3, 703–712. [Google Scholar] [CrossRef]
- Loscertales, E.; López-Méndez, R.; Mateo, J.; Fraile, L.M.; Udías, J.M.; Espinosa, A.; España, S. Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy. Nanoscale Adv. 2025, 7, 1204–1219. [Google Scholar] [CrossRef]
- Wang, J.; Pan, J.; Tang, Y.; Chen, J.; Fei, X.; Xue, W.; Liu, X. Advances of hafnium-based nanomaterials for cancer theranostics. Front. Chem. 2023, 11, 1283924. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Lammers, T.; Aime, S.; Hennink, W.E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Hosny, S.; Mohamed, L.Z.; Ragab, M.S.; Alomoush, Q.K.; Abdalla, E.M.; Aly, S.A. Nanomaterials in biomedical applications: Opportunities and challenges—A review. Chem. Pap. 2025, 79, 2657–2678. [Google Scholar] [CrossRef]
- Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef]
- Pi, F.; Deng, X.; Xue, Q.; Zheng, L.; Liu, H.; Yang, F.; Chen, T. Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy. J. Nanobiotechnol. 2023, 21, 90. [Google Scholar] [CrossRef]
- Mohanto, N.; Mondal, H.; Park, Y.-J.; Jee, J.-P. Therapeutic delivery of oxygen using artificial oxygen carriers demonstrates the possibility of treating a wide range of diseases. J. Nanobiotechnol. 2025, 23, 25. [Google Scholar] [CrossRef]
- Gerken, L.R.H.; Gerdes, M.E.; Pruschy, M.; Herrmann, I.K. Prospects of nanoparticle-based radioenhancement for radiotherapy. Mater. Horiz. 2023, 10, 4059–4082. [Google Scholar] [CrossRef]
- Farina, B.; Ramos Guerra, A.D.; Bermejo-Peláez, D.; Miras, C.P.; Peral, A.A.; Madueño, G.G.; Jaime, G.C.; Vilalta-Lacarra, A.; Pérez, J.R.; Muñoz-Barrutia, A.; et al. Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. J. Transl. Med. 2023, 21, 174. [Google Scholar] [CrossRef]
- Rajbhandary, S.; Dhakal, H.; Shrestha, S. Tumor immune microenvironment (TIME) to enhance antitumor immunity. Eur. J. Med. Res. 2023, 28, 169. [Google Scholar] [CrossRef] [PubMed]
- Ly, P.-D.; Ly, K.-N.; Phan, H.-L.; Nguyen, H.H.T.; Duong, V.-A.; Nguyen, H.V. Recent advances in surface decoration of nanoparticles in drug delivery. Front. Nanotechnol. 2024, 6, 1456939. [Google Scholar] [CrossRef]
- Kumarasamy, R.V.; Natarajan, P.M.; Umapathy, V.R.; Roy, J.R.; Mironescu, M.; Palanisamy, C.P. Clinical applications and therapeutic potentials of advanced nanoparticles: A comprehensive review on completed human clinical trials. Front. Nanotechnol. 2024, 6, 1479993. [Google Scholar] [CrossRef]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy: Hierarchical targeting strategies and translational challenges. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Patel, H.; Li, J.; Bo, L.; Mehta, R.; Ashby, C.R.; Wang, S.; Cai, W.; Chen, Z.-S. Nanotechnology-based delivery systems to overcome drug resistance in cancer. Med. Rev. 2024, 4, 58. [Google Scholar] [CrossRef]
- Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kesharwani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics. Mol. Cancer 2023, 22, 160. [Google Scholar] [CrossRef]
- Ahmad, I.; Kushwaha, P.; Usmani, S.; Tiwari, A. Polymeric micelles: Revolutionizing cancer therapeutics for enhanced efficacy. BioNanoScience 2025, 15, 186. [Google Scholar] [CrossRef]
- Farhoudi, L.; Hosseinikhah, S.M.; Kazemi-Beydokhti, A.; Arabi, L.; Alavizadeh, S.H.; Moosavian, S.A.; Jaafari, M.R. pH-sensitive polymeric micelles enhance the co-delivery of doxorubicin and docetaxel: An emerging modality for treating breast cancer. Cancer Nanotechnol. 2024, 15, 37. [Google Scholar] [CrossRef]
- Wan, X.; Chen, C.; Zhan, J.; Ye, S.; Li, R.; Shen, M. Dendritic polylysine co-delivery of paclitaxel and siAXL enhances the sensitivity of triple-negative breast cancer chemotherapy. Front. Bioeng. Biotechnol. 2024, 12, 1415191. [Google Scholar] [CrossRef]
- Ramayanam, N.R.; Bukke, S.P.N.; Moka, M.K.; Dehingia, H.; Bordoloi, A.; Debbarma, R.; Kudumula, P.R.; Vuyyala, B.; Prasad, P.D.; Catherine, A. Advances in nanoparticle-based doxorubicin delivery: Precision strategies for targeted treatment of triple-negative breast cancer. Discover Nano 2025, 20, 111. [Google Scholar] [CrossRef]
- Hu, J.; Arvejeh, P.M.; Bone, S.; Hett, E.; Marincola, F.M.; Roh, K.-H. Nanocarriers for cutting-edge cancer immunotherapies. J. Transl. Med. 2025, 23, 447. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.; Lan, J.; Wu, Y.; Zhang, T.; Ding, Y. Better together: Nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front. Pharmacol. 2024, 15, 1389922. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193. [Google Scholar] [CrossRef] [PubMed]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 2001, 70, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Controlled Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Wei, X.; Song, M.; Li, W.; Huang, J.; Yang, G.; Wang, Y. Multifunctional Nanoplatforms Co-Delivering Combinatorial Dual-Drug for Eliminating Cancer Multidrug Resistance. Theranostics 2021, 11, 6334–6354. [Google Scholar] [CrossRef]
- Akpe, V.; Vernet, E.; Madu, C.; Obirai, J.C.; Brismar, H. Understanding the photochemical pathway of in vitro target delivery of aluminium phthalocyanine: A mechanistic approach using radical reaction chemistry. ChemPlusChem 2014, 79, 671–679. [Google Scholar] [CrossRef]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Juarranz, A.; Jaen, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 2008, 10, 148–154. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Lovell, J.F.; Jin, C.S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J.L.; Chan, W.C.W.; Cao, W.; Wang, L.V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal imaging and therapeutic agents. Nat. Mater. 2011, 10, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Swain, A.; Jena, S.R.; Samanta, L. Smart nanocarriers for cancer: Harnessing exosomes and lipid systems in photodynamic and immunotherapy. Front. Immunol. 2025, 16, 1687953. [Google Scholar] [CrossRef]
- Thakur, S.; Godela, R.; Mandava, K.; Kolure, R. Advances in nanocarrier technology for drug encapsulation: A comprehensive overview. Discov. Mater. 2025, 5, 124. [Google Scholar] [CrossRef]
- Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents: An update. Nanomedicine 2008, 3, 830–844. [Google Scholar] [CrossRef]
- Fang, J.; Nakamura, H.; Maeda, H. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor microenvironment. Adv. Drug Deliv. Rev. 2011, 63, 136–151. [Google Scholar] [CrossRef]
- Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat. Nanotechnol. 2011, 6, 815–823. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Qin, S.; Xu, Y.; Li, H.; Chen, H.; Yuan, Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater. Sci. 2022, 10, 51–84. [Google Scholar] [CrossRef]
- Murugan, B.; Sagadevan, S.; Fatimah, I.; Oh, W.C.; Hossain, M.A.M.; Johan, M.R. Smart stimuli-responsive nanocarriers for cancer therapy–nanomedicine. Nanotechnol. Rev. 2021, 10, 1–17. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; La, H.; Zhu, R.; El-Banna, G.; Wei, Y.; Han, G. Upconverting NIR Photons for Bioimaging. Nanomaterials 2015, 5, 2148–2168. [Google Scholar] [CrossRef]
- Mousavi-Kiasary, S.M.; Senabreh, A.; Zandi, A.; Peña, R.; Cruz, F.; Adibi, A.; Hooshmand, N. Synergistic cancer therapies enhanced by nanoparticles: Advancing nanomedicine through multimodal strategies. Pharmaceutics 2025, 17, 682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, N.; Sun, H.; Fu, X.; Zhai, S.; Cui, J. Self-adjuvanting Photosensitizer Nanoparticles for Combination Photodynamic Immunotherapy. Biomater. Sci. 2021, 9, 5200–5210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Na, J.; Liu, X.; Wu, P. Chromophore-Assisted Light Inactivation for Protein Degradation and Its Application in Biomedicine. Bioengineering 2024, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y.; Watanabe, W.; Matsunaga, S. Chromophore-assisted laser inactivation–towards a spatiotemporal–functional analysis of proteins, and the ablation of chromatin, organelle, and cell function. J. Cell Sci. 2014, 127, 1621–1629. [Google Scholar] [CrossRef]
- Serebrovskaya, E.O.; Lukyanov, K.A. Chromophore-Assisted Light Inactivation: A Powerful Tool to Study Protein Functions. In Singlet Oxygen: Applications in Biosciences and Nanosciences; Ogilby, P.R., Ed.; Royal Society of Chemistry: Cambridge, UK, 2016; pp. 185–203. [Google Scholar] [CrossRef]
- Shidara, H.; Jitsuki, S.; Takemoto, K. Chromophore-assisted light inactivation of target proteins for singularity biology. Biophys. Physicobiol. 2024, 21, e211009. [Google Scholar] [CrossRef]
- Bulina, M.E.; Chudakov, D.M.; Britanova, O.V.; Yanushevich, Y.G.; Staroverov, D.B.; Chepurnykh, T.V.; Merzlyak, E.M.; Shkrob, M.A.; Lukyanov, S.; Lukyanov, K.A. A genetically encoded photosensitizer. Nat. Biotechnol. 2006, 24, 95–99. [Google Scholar] [CrossRef]
- Du, W.; Shang, W.; Wen, W.; Deng, X.; Xie, D.; Zhang, Y.; Su, H.; Liu, H. Enhancing photodynamic therapy for cancer: A two-photon excited approach with a novel mitochondrial-targeted photosensitizer. Mater. Chem. Front. 2025, 9, 1234–1249. [Google Scholar] [CrossRef]
- Tour, O.; Meijer, R.M.; Zacharias, D.A.; Adams, S.R.; Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation of proteins. Nat. Biotechnol. 2003, 21, 1505–1508. [Google Scholar] [CrossRef]
- Horstkotte, E.; Schröder, T.; Niewöhner, J.; Thiel, E.; Jay, D.G.; Henning, S.W. Toward Understanding the Mechanism of Chromophore-Assisted Laser Inactivation—Evidence for the Primary Photochemical Steps. Photochem. Photobiol. 2007, 83, 822–835. [Google Scholar] [CrossRef]
- Jay, D.G. Chromophore-Assisted Laser Inactivation. In Encyclopedia of Cancer, 2nd ed.; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1040–1044. [Google Scholar] [CrossRef]
- Kan, D.; Ding, R.; Yang, H.; Jia, Y.; Lei, K.; Wang, Z.; Zhang, W.; Yang, C.; Liu, Z.; Xie, F. Synergistic strategies in photodynamic combination therapy for cancer: Mechanisms, nanotechnology, and clinical translation. Front. Oncol. 2025, 15, 1607259. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, T.; Fujimoto, A.; Kawaguchi, H.; Kurosaki, T.; Kitamura, A. Stress granule dysfunction via chromophore-associated light inactivation. bioRxiv 2023. preprint. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, K.; Matsuda, T.; Sakai, N.; Fu, D.; Noda, M.; Uchiyama, S.; Kotera, I.; Arai, Y.; Horiuchi, M.; Fukui, K.; et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci. Rep. 2013, 3, 2629. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Qian, Y. Biodegradable fluorescent protein chromophore nanoparticles for hypoxic two-photon photodynamic therapy. Biomater. Sci. 2024, 12, 4567–4579. [Google Scholar] [CrossRef]
- Adeniyi, M.; Awosan, W. Nanoparticle-enhanced near-infrared fluorescence probes: A breakthrough in cancer imaging techniques. Int. J. Fundam. Med. Res. 2025, 1, 34883. [Google Scholar]
- Alsaafeen, B.H.; Ali, B.R.; Elkord, E. Resistance Mechanisms to Immune Checkpoint Inhibitors: Updated Insights. Mol. Cancer 2025, 24, 20. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, M.; Chen, R.; Ni, J.; Zhao, W.; Li, S.; Lu, X.; Jiao, H.; Cao, X. Innovative drugs promote precision cancer therapy. Clin. Cancer Bull. 2023, 2, 1. [Google Scholar] [CrossRef]
- Youssef, E.; Fletcher, B.; Palmer, D. Enhancing Precision in Cancer Treatment: The Role of Gene Therapy and Immune Modulation in Oncology. Front. Med. 2024, 11, 1527600. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Liao, Z.; Liu, A.; Huo, S. Transformable Nanodrugs for Overcoming the Biological Barriers in the Tumor Environment during Drug Delivery. Nanoscale 2023, 15, 8976–8992. [Google Scholar] [CrossRef]
- Labidi, S.; Meti, N.; Barua, R.; Li, M.; Riromar, J.; Jiang, D.M.; Fallah-Rad, N.; Sridhar, S.S.; Del Rincon, S.V.; Pezo, R.C.; et al. Clinical variables associated with immune checkpoint inhibitor outcomes in metastatic urothelial carcinoma: A multicentre retrospective cohort study. BMJ Open 2024, 14, e081480. [Google Scholar] [CrossRef]
- Kim, B. Designing healthcare for human use: Human factors and practical considerations for the translational process. Front. Health Serv. 2023, 3, 1188114. [Google Scholar] [CrossRef] [PubMed]
- Kishi, N.; Matsuo, Y.; Shintani, T.; Ogura, M.; Mitsuyoshi, T.; Araki, N.; Fujii, K.; Okumura, S.; Nakamatsu, K.; Kishi, T. Recurrence patterns and progression-free survival after chemoradiotherapy with or without consolidation durvalumab for stage III NSCLC. J. Radiat. Res. 2023, 64, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, K.; Mizugaki, H.; Ikezawa, Y.; Morita, R.; Yokoo, K.; Sumi, T.; Aso, M.; Kikuchi, H.; Nakamura, A.; Sekikawa, M.; et al. Real-world data of first-line treatment with pembrolizumab for NSCLC with high PD-L1 expression in elderly patients: A subgroup analysis of HOT/NJLCG2001. Jpn. J. Clin. Oncol. 2025, 55, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, J.; Zhang, L.; Cheng, S.; Yu, J. Network meta-analysis of first-line immune checkpoint inhibitor therapy in advanced non-squamous NSCLC patients with PD-L1 ≥50%. BMC Cancer 2023, 23, 791. [Google Scholar] [CrossRef]
- Richters, A.; Yildirim, H.; Booth, C.M.; Badillo, F.E.V.; Kiemeney, L.A.L.M.; Aben, K.K.H. Changes to primary end points in immune checkpoint inhibitor trials for urothelial, renal, and lung cancers: A systematic review. JAMA Oncol. 2023, 9, 1144–1147. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, T.; Wang, D.; Zhu, Y.; Hua, W. Efficacy of neoadjuvant PD-1/PD-L1 inhibitor in resectable NSCLC: A meta-analysis based on randomized controlled trials. BMC Cancer 2024, 24, 1522. [Google Scholar] [CrossRef]
- Khan, T.H.; Muhammad, N.; Tarique, M.; Usmani, D.; Naz, H.; Sarode, A. The Role of Cancer-Specific Target Antigens in CAR T Cell Therapy in Hematological Malignancies. Curr. Tissue Microenviron. Rep. 2024, 5, 61–67. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef]
- Ganpisetti, R.; Giridharan, S.; Vaskuri, G.S.S.J.; Narang, N.; Basim, P.; Dokmeci, M.R.; Ermis, M.; Rojekar, S.; Gholap, A.D.; Kommineni, N. Biological Nanocarriers in Cancer Therapy: Cutting Edge Innovations in Precision Drug Delivery. Biomolecules 2025, 15, 802. [Google Scholar] [CrossRef]
- Sabit, H.; Pawlik, T.M.; Radwan, F.; Abdel-Hakeem, M.; Abdel-Ghany, S.; Wadan, A.H.S.; Elzawahri, M.; El-Hashash, A.; Arneth, B. Precision nanomedicine: Navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery. Mol. Cancer 2025, 24, 160. [Google Scholar] [CrossRef]
- Dienstmann, R.; Rodon, J.; Barretina, J.; Tabernero, J. Genomic medicine frontier in human solid tumors: Prospects and challenges. J. Clin. Oncol. 2013, 31, 1874–1884. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Zhou, C.; Chen, Y.; Feng, X.; Tang, H. Real-world study of PD-1/L1 immune checkpoint inhibitors for advanced non-small cell lung cancer after resistance to EGFR-TKIs. Front. Oncol. 2023, 13, 1217872. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.-Y. Exploring Treatment Options in Cancer: Tumor Treatment Strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef]
- Xie, J.; Mao, Q.Y.; Chen, J.H.; Shi, H.J.; Zhan, P.Q.; Wang, H.F. ASCO GU 2023: Final OS Analysis of Atezolizumab Monotherapy vs Chemotherapy in Untreated Locally Advanced or Metastatic Urothelial Carcinoma from the Phase 3 IMvigor130 Study. 2023. Available online: https://www.urotoday.com/conference-highlights/asco-gu-2023/asco-gu-2023-bladder-cancer/142544-asco-gu-2023-final-os-analysis-of-atezolizumab-monotherapy-vs-chemotherapy-in-untreated-locally-advanced-or-metastatic-urothelial-carcinoma-from-the-phase-3-imvigor130-study.html (accessed on 2 June 2025).
- Mounika, M.S.; Ganpisetti, R.; Bag, I.; Rana, R.; Sanjay, G.; Giribabu, K. 3D bioprinting models for novel breast cancer strategies. Res. J. Pharm. Technol. 2022, 15, 5576–5582. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, W.-J.; Cho, Y.-J.; Jung, J.-W.; Kim, N.-S.; Choi, I.-Y. Advances in Cancer Genomics and Precision Oncology. Genes Genom. 2025, 47, 399–416. [Google Scholar] [CrossRef]
- Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo CRISPR screening identifies Pbrm1 as a suppressor of antitumor immunity. Nature 2017, 547, 413–418. [Google Scholar] [CrossRef]
- Mout, R.; Ray, M.; Yesilbag Tonga, G.; Lee, Y.W.; Tay, T.; Sasaki, K.; Rotello, V.M. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano 2017, 11, 2452–2458. [Google Scholar] [CrossRef]
- Ventura, A.; Kirsch, D.G.; McLaughlin, M.E.; Tuveson, D.A.; Grimm, J.; Lintault, L.; Newman, J.; Reczek, E.E.; Weissleder, R.; Jacks, T. Restoration of p53 function leads to tumour regression in vivo. Nature 2007, 445, 661–665. [Google Scholar] [CrossRef]
- Xue, W.; Zender, L.; Miething, C.; Dickins, R.A.; Hernando, E.; Krizhanovsky, V.; Cordon-Cardo, C.; Lowe, S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007, 445, 656–660. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.-S.; Hirsch, F.R. PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–361. [Google Scholar] [CrossRef]
- Wei, J.; Li, W.; Zhang, P.; Guo, F.; Liu, M. Current Trends in Sensitizing Immune Checkpoint Inhibitors for Cancer Treatment. Mol. Cancer 2024, 23, 279. [Google Scholar] [CrossRef]
- Qi, C.; Li, Y.; Zeng, H.; Wei, Q.; Tan, S.; Zhang, Y.; Li, W.; Tian, P. Current Status and Progress of PD-L1 Detection: Guiding Immunotherapy for Non-Small Cell Lung Cancer. Clin. Exp. Med. 2024, 24, 162. [Google Scholar] [CrossRef]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.A.; Stephens, P.J.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457–463. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- Prince, H.M.; Bishton, M.J.; Harrison, S.J. Clinical studies of histone deacetylase inhibitors. Clin. Cancer Res. 2009, 15, 3958–3969. [Google Scholar] [CrossRef] [PubMed]
- West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 2014, 124, 30–39. [Google Scholar] [CrossRef]
- Yang, X.; Lay, F.; Han, H.; Jones, P.A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 2010, 31, 536–546. [Google Scholar] [CrossRef]
- Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Epigenetic Drugs in Cancer Therapy. Cancer Metastasis Rev. 2025, 44, 37. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Joyce, J.A.; Fearon, D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef]
- Raza, A.; Mohsen, R.; Kanbour, A.; Zar Gul, A.R.; Philip, A.; Vijayakumar, S.; Hydrose, S.; Prabhu, K.S.; Al-Suwaidi, A.K.; Inchakalody, V.P.; et al. Serum immune mediators as novel predictors of response to anti-PD-1/PD-L1 therapy in NSCLC patients with high tissue-PD-L1 expression. Front. Immunol. 2023, 14, 1157100. [Google Scholar] [CrossRef]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Peng, K.W.; Bell, J.C. Oncolytic Virotherapy. Nat. Biotechnol. 2012, 30, 658–670. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Collichio, F.A.; Harrington, K.J.; Middleton, M.R.; Downey, G.S.; Öhrling, K.; Kaufman, H.L.; Amatruda, T.; Senzer, N.; Chesney, J.; et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 498–513. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, H.; Tang, Q.; Shi, Z.; Zhou, L. Clinical Advances in Oncolytic Virus Therapy for Malignant Glioma: A Systematic Review. Discov. Oncol. 2023, 14, 183. [Google Scholar] [CrossRef]
- Guo, Z.S.; Liu, Z.; Kowalsky, S.P.; Feist, M.; Kalinski, P.; Bartlett, D.L. Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity. Front. Oncol. 2014, 4, 74. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, L.; Xu, Y.; Liang, L.; Liu, L.; Chen, X.; Li, H.; Liu, H. The Progress and Prospects of Targeting the Adenosine Pathway in Cancer Immunotherapy. Biomark. Res. 2025, 13, 75. [Google Scholar] [CrossRef]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Cancer Res. 2019, 79, 5356–5362. [Google Scholar] [CrossRef]
- Melief, C.J.M.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277. [Google Scholar] [CrossRef]
- Moon, J.J.; Suh, H.; Bershteyn, A.; Stephan, M.T.; Liu, H.; Ling, N.; Dryden, K.A.; Jones, H.; Zal, T.; Irvine, D.J. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 2011, 10, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Geginat, J.; Lanzavecchia, A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 2004, 22, 745–763. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Wang, X.; Han, M.; Guo, Y. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment. Int. J. Nanomed. 2024, 19, 4533–4568. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dolan, D.G.; Dreicer, R.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Jeong, M.; Jang, I. Comparative Effectiveness and Immunogenicity of Single-Dose and Multi-Dose Human Papillomavirus Vaccination: A Systematic Review. BMC Public Health 2025, 25, 2330. [Google Scholar] [CrossRef]
- Takeda, M.; Yoshida, S.; Inoue, T.; Sekido, Y.; Hata, T.; Hamabe, A.; Ogino, T.; Miyoshi, N.; Uemura, M.; Yamamoto, H.; et al. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers 2025, 17, 428. [Google Scholar] [CrossRef]
- Hao, L.; Li, S.; Hu, X. New Insights into T-Cell Exhaustion in Liver Cancer: From Mechanism to Therapy. J. Cancer Res. Clin. Oncol. 2023, 149, 12543–12560. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Zhang, Y.; Zhao, Q.; Wei, J.; Xin, J. Overcoming Acquired Resistance to Cancer Immune Checkpoint Therapy: Potential Strategies Based on Molecular Mechanisms. Cell Biosci. 2023, 13, 120. [Google Scholar] [CrossRef]
- Benci, J.L.; Xu, B.; Qiu, Y.; Wu, T.D.; Dada, H.; Twyman-Saint Victor, C.; Cucolo, L.; Cordes, B.; Denize, T.; Jure-Kunkel, M.; et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 2016, 167, 1540–1554.e12. [Google Scholar] [CrossRef]
- Thomas, E.D.; Lochte, H.L., Jr.; Lu, W.C.; Ferrebee, J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef]
- Loren, A.W.; Mielcarek, M.; Bolaños-Meade, J.; Brammer, J.; Cowden, M.; Di Stasi, A.; El-Jawahri, A.; Elmariah, H.; Gundabolu, K.; Gutman, J.; et al. Hematopoietic Cell Transplantation, Version 3.2025, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2025, 23, e250047. [Google Scholar] [CrossRef]
- DeWolf, S.; Kuttiyara, J.; Vinci, P.; Fei, T.; Slingerland, J.; Katsamakis, Z.A.; Fein, J.A.; Gipson, B.; Lorenc, R.; Zinsmeyer, V.; et al. Bone Marrow and Blood Demonstrate Distinct Immune Reconstitution Patterns and Correlations with Relapse Post-Transplant. Blood Adv. 2025, 9, 15626. [Google Scholar] [CrossRef]
- Appelbaum, F.R. Hematopoietic-cell transplantation at 50. N. Engl. J. Med. 2007, 357, 1472–1475. [Google Scholar] [CrossRef]
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore antitumor immunity. J. Exp. Med. 2010, 207, 2187–2194. [Google Scholar] [CrossRef]
- Moser, J.C.; Hu-Lieskovan, S. Mechanisms of resistance to PD-1 checkpoint blockade. Drugs 2020, 80, 459–465. [Google Scholar] [CrossRef]
- Ho, P.C.; Bihuniak, J.D.; Macintyre, A.N.; Staron, M.; Liu, X.; Amezquita, R.; Tsui, Y.C.; Cui, G.; Micevic, G.; Perales, J.C.; et al. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 2015, 162, 1217–1228. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; To, K.K.W.; Zhu, S.; Wang, F.; Fu, L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J. Exp. Clin. Cancer Res. 2025, 44, 145. [Google Scholar] [CrossRef] [PubMed]
- Starzer, A.M.; Preusser, M.; Berghoff, A.S. Immune escape mechanisms and therapeutic approaches in cancer: The cancer-immunity cycle. Ther. Adv. Med. Oncol. 2022, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Xiong, W.; Xu, Y.; Zou, J.; Zeng, Y.; Liu, J.; Peng, Y.; Hu, C.; Wu, F. Immunometabolism: A New Dimension in Immunotherapy Resistance. Front. Med. 2023, 17, 585–616. [Google Scholar] [CrossRef]
- Swetha, K.L.; Roy, A. Tumor Heterogeneity and Nanoparticle-Mediated Tumor Targeting: The Importance of Delivery System Personalization. Drug Deliv. Transl. Res. 2018, 8, 1508–1526. [Google Scholar] [CrossRef]
- Khan, I.A.; Yu, T.; Yang, M.; Liu, J.; Chen, Z. A systematic review of toxicity, biodistribution, and biosafety in upconversion nanomaterials: Critical insights into toxicity mitigation strategies and future directions for safe applications. BME Front. 2025, 6, 0120. [Google Scholar] [CrossRef]
- de Souza Cardoso Delfino, C.; de Paula Pereira, M.C.; dos Santos Oliveira, M.; de Carvalho Favareto, I.; Valladão, V.S.; de Oliveira Mota, M.; Costa, M.V.B.; Sousa-Batista, A.J.; Balbino, T.A. Scaling nanopharmaceutical production for personalized medicine: Challenges and strategies. J. Nanopart. Res. 2025, 27, 108. [Google Scholar] [CrossRef]
- Foulkes, R.; Man, E.; Thind, J.; Yeung, S.; Joy, A.; Hoskins, C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater. Sci. 2020, 8, 4653–4664. [Google Scholar] [CrossRef]
- Joyce, P.; Allen, C.J.; Alonso, M.J.; Ashford, M.; Bradbury, M.S.; Germain, M.; Kavallaris, M.; Langer, R.; Lammers, T.; Peracchia, M.T.; et al. A Translational Framework to DELIVER Nanomedicines to the Clinic. Nat. Nanotechnol. 2024, 19, 1123–1138. [Google Scholar] [CrossRef]
- Mao, Y.; Xie, J.; Yang, F.; Luo, Y.; Du, J.; Xiang, H. Advances and Prospects of Precision Nanomedicine in Personalized Tumor Theranostics. Front. Cell Dev. Biol. 2024, 12, 1514399. [Google Scholar] [CrossRef]
- Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Al Amili, M.; Guo, S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.-C.; Canchola, A.; Zhang, F.; Lin, Z. Machine Learning and Artificial Intelligence in Nanomedicine: Modeling Nanoparticle–Biological Interactions, Optimizing Surface Functionalization, and Predicting Pharmacokinetics across Patient Profiles. WIREs Nanomed. Nanobiotechnol. 2025, 17, e20027. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, C. Smart Nanoparticle Delivery of Cancer Vaccines Enhances Tumor Immune Responses: A Review. Front. Nanotechnol. 2025, 7, 1564267. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, Y.; Lim, S.; Jang, H.-K.; Kim, H.-O. Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9. Pharmaceutics 2024, 16, 1197. [Google Scholar] [CrossRef]
- Tian, Y.; Carrillo-Malani, N.; Feng, K.; Miller, J.; Busch, T.M.; Sundaram, K.M.; Cheng, Z.; Amirshaghaghi, A.; Tsourkas, A. Theranostic Phthalocyanine and Naphthalocyanine Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Tumors. Nanotheranostics 2024, 8, 100–111. [Google Scholar] [CrossRef]
- Sorrentino, C.; Ciummo, S.L.; Di Carlo, E. Nanomedicine for Cancer Patient-Centered Care. MedComm 2024, 5, e767. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S.; Curigliano, G.; Snyder, A.; Romero, P.; et al. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Papaporfyriou, A.; Bartziokas, K.; Apessos, I.; Mueller, J.; Leivaditis, V.; Koletsis, E.; Grapatsas, K. Comparative Efficacy and Safety of Neoadjuvant Immunotherapy with Nivolumab vs. Pembrolizumab in Resectable Non-Small Cell Lung Cancer: A Systematic Review. Curr. Oncol. 2024, 31, 6289–6299. [Google Scholar] [CrossRef]
- Liu, L.; Yan, Y.; Wang, Y.; Li, Z.; Yang, L.; Yu, K.; Zhao, Z. Comparative efficacy and safety of first-line PD-1/PD-L1 inhibitors in immunotherapy for non-small cell lung cancer: A network meta-analysis. Oncol. Lett. 2025, 29, 157. [Google Scholar] [CrossRef]
- Morgensztern, D.; Herbst, R.S. Nivolumab and Pembrolizumab for Non-Small Cell Lung Cancer. Clin. Cancer Res. 2016, 22, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Gettinger, S.; Rizvi, N.A.; Chow, L.Q.M.; Borghaei, H.; Brahmer, J.R.; Harris, T.J.; Felip, E.; Cuffe, S.; Chen, Y.; Powney, R.; et al. Five-year overall survival with nivolumab in previously treated advanced NSCLC: Outcomes by PD-L1 expression. J. Clin. Oncol. 2021, 39, 723–733. [Google Scholar]
- Su, R.; Chen, Z.; Hong, D.; Jiang, S.; Yuan, Y.; Cai, X.; Hu, H.; Fu, C.; Huang, Z.; Wang, Z.; et al. Effectiveness and Safety of Immune Checkpoint Inhibitor Monotherapy in Advanced Upper Tract Urothelial Carcinoma: A Multicenter Real-World Study. Cancer Med. 2023, 12, 10587–10596. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Shiroyama, T.; Tamiya, M.; Minami, T.; Kinehara, Y.; Tamiya, A.; Suga, Y.; Kuge, T.; Mori, M.; Suzuki, H.; et al. Real-World Outcomes of Nivolumab Plus Ipilimumab and Pembrolizumab with Chemotherapy in Advanced NSCLC: A Multicenter Retrospective Comparative Study. Cancer Immunol. Immunother. 2024, 73, 4. [Google Scholar] [CrossRef]
- Facheris, G.; Cossali, G.; Imbrescia, J.; La Mattina, S.; Mataj, E.; Meli, N.; Volpi, G.; Triggiani, L.; Guerini, A.E.; Levi, G.; et al. Real-World Insights into the Impact of Durvalumab on Stage III Unresectable Non-Small Cell Lung Cancer—A Narrative Review. Cancers 2025, 17, 874. [Google Scholar] [CrossRef]
- Shalata, W.; Rabinovich, N.M.; Agbarya, A.; Yakobson, A.; Dudnik, Y.; Abu Jama, A.; Cohen, A.Y.; Shalata, S.; Abu Hamed, A.; Ber, T.I.; et al. Efficacy of pembrolizumab vs. nivolumab plus ipilimumab in metastatic NSCLC in relation to PD-L1 and TMB status. Cancers 2024, 16, 1825. [Google Scholar] [CrossRef]
- Shimizu, T.; Inoue, E.; Ohkuma, R.; Kobayashi, S.; Tsunoda, T.; Wada, S. Soluble PD-L1 changes in advanced NSCLC patients treated with PD-1 inhibitors: An individual patient data meta-analysis. Front. Immunol. 2023, 14, 1308381. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef]
- Ehmann, F.; Sakai-Kato, K.; Duncan, R.; Pérez de la Ossa, D.H.; Pita, R.; Vidal, J.M.; Kohli, A.; Tothfalusi, L.; Sanh, A.; Tinton, S.; et al. Next-Generation Nanomedicines and Nanosimilars: EU Regulators’ Initiatives Relating to The Development and Evaluation of Nanomedicines. Nanomedicine 2013, 8, 849–856. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Definition and Preferred Terms for Nanomaterials and Nanomedicines; WHO: Geneva, Switzerland, 2020; pp. 1–30. [Google Scholar]
- Marre, D.; Nystrom, A.M.; Zhang, H.; Fraser, D.; Miller, D.; Boyd, B.J.; Porter, C.J.H.; Prud’homme, R.K. Quality-by-Design Approach to the Development and Scale-Up of Nanomedicine Formulations. J. Control. Release 2019, 311, 55–68. [Google Scholar] [CrossRef]
- Sammasagi, S.S.; Sutar, K.P.; Hooli, S. Scale-Up and Quality Control Challenges in the Industrial Manufacturing of Nanoformulations: Current Trends and Future Perspectives. Int. J. Sci. Appl. Technol. 2025, 16, 2. [Google Scholar] [CrossRef]
- Aguiam, N.; Moura, L.I.F.; Oliveira, M.; Florindo, H.; Lopes, J.A. Process Analytics for the Manufacturing of Nanomedicines: Challenges and Opportunities. In Nanomedicine Manufacturing and Applications; Silva, A.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2025; Chapter 7; pp. 157–176. [Google Scholar] [CrossRef]
- Caputo, F.; Favre, G.; Borchard, G.; Calzolai, L.; Fisicaro, P.; Frejafon, E.; Günday-Türeli, N.; Koltsov, D.; Minelli, C.; Nelson, B.C.; et al. Toward an International Standardisation Roadmap for Nanomedicine. Drug Deliv. Transl. Res. 2024, 14, 2578–2588. [Google Scholar] [CrossRef] [PubMed]
- Havelikar, U.; Ghorpade, K.B.; Kumar, A.; Patel, A.; Singh, M.; Banjare, N.; Gupta, P.N. Comprehensive Insights into Mechanism of Nanotoxicity, Assessment Methods and Regulatory Challenges of Nanomedicines. Discover Nano 2024, 19, 165. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Kankala, R.K.; Wang, S.-B.; Chen, A.-Z. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules 2019, 24, 675. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tian, Y.; Yang, R.; Wang, H.; Allahou, L.W.; Chang, J.; Williams, G.; Knowles, J.C.; Poma, A. Nanotechnology in Healthcare: Safety and Environmental Risks. J. Nanobiotechnol. 2024, 22, 715. [Google Scholar] [CrossRef]
- Abu-Qdais, H.A.; Abu-Dalo, M.A.; Hajeer, Y.Y. Impacts of Nanosilver-Based Textile Products Using a Life Cycle Assessment. Sustainability 2021, 13, 3436. [Google Scholar] [CrossRef]
- Lai, R.W.S.; Yeung, K.W.Y.; Yung, M.M.N.; Leung, C.H.; Wong, C.S.; Chan, C.M.; Wong, M.H. Regulation of Engineered Nanomaterials: Current Challenges, Insights and Future Directions. Environ. Sci. Pollut. Res. 2018, 25, 3060–3077. [Google Scholar] [CrossRef]
- Cui, K.; Wang, L.; Huang, Y. Nanomaterial-Based Biosensors for Post-Marketing Biomarker Surveillance: Opportunities and Challenges. Front. Bioeng. Biotechnol. 2024, 12, 1414746. [Google Scholar] [CrossRef]
- Gomes, K.L.G.; da Silva, R.E.; da Silva, J.B.; Bosio, C.G.P.; Garbi Novaes, M.R.C. Post-Marketing Authorisation Safety and Efficacy Surveillance of Advanced Therapy Medicinal Products in Brazil, the European Union, the United States and Japan. Cytotherapy 2023, 25, 1113–1123. [Google Scholar] [CrossRef]
- Agrahari, V.; Choonara, Y.E.; Mosharraf, M.; Pillay, V. The Role of Artificial Intelligence and Machine Learning in Accelerating the Discovery and Development of Nanomedicine. Pharm. Res. 2024, 41, 2289–2297. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.D.; Monferrer, D.; Penon, O.; Rivera-Gil, P. Regulatory Pathways and Guidelines for Nanotechnology-Enabled Health Products: A Comparative Review of EU and US Frameworks. Front. Med. 2025, 12, 1544393. [Google Scholar] [CrossRef]
- Warner, J.; Prada Jardim, A.; Albera, C.; Smith, J.; Doe, R.; Li, Y. Artificial Intelligence-Driven Signal Detection in Pharmacovigilance: Leveraging Machine Learning and Patient Registries for Enhanced Drug Safety Surveillance. Pharm. Med. 2025, 39, 183–198. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpe, V.; Cock, I.E. Advances in Cancer Treatment Through Nanotheranostics and Emerging Therapies. J. Nanotheranostics 2025, 6, 29. https://doi.org/10.3390/jnt6040029
Akpe V, Cock IE. Advances in Cancer Treatment Through Nanotheranostics and Emerging Therapies. Journal of Nanotheranostics. 2025; 6(4):29. https://doi.org/10.3390/jnt6040029
Chicago/Turabian StyleAkpe, Victor, and Ian E. Cock. 2025. "Advances in Cancer Treatment Through Nanotheranostics and Emerging Therapies" Journal of Nanotheranostics 6, no. 4: 29. https://doi.org/10.3390/jnt6040029
APA StyleAkpe, V., & Cock, I. E. (2025). Advances in Cancer Treatment Through Nanotheranostics and Emerging Therapies. Journal of Nanotheranostics, 6(4), 29. https://doi.org/10.3390/jnt6040029

